
Algorithmica
DOI 10.1007/s00453-012-9665-z

Algorithms for Placing Monitors in a Flow Network

Francis Chin · Marek Chrobak · Li Yan

Received: 21 May 2010 / Accepted: 29 May 2012
© Springer Science+Business Media, LLC 2012

Abstract In the Flow Edge-Monitor Problem, we are given an undirected graph G =
(V ,E), an integer k > 0 and some unknown circulation ψ on G. We want to find a
set of k edges in G, so that if we place k monitors on those edges to measure the flow
along them, the total number of edges for which the flow can be uniquely determined
is maximized. In this paper, we first show that the Flow Edge-Monitor Problem is
NP-hard. Then we study an algorithm called σ -GREEDY that, in each step, places
monitors on σ edges for which the number of edges where the flow is determined
is maximized. We show that the approximation ratio of 1-GREEDY is 3 and that the
approximation ratio of 2-GREEDY is 2.

Keywords Approximation algorithm

1 Introduction

We study the Flow Edge-Monitor Problem (FLOWMNTRS, for short), where the ob-
jective is to find k edges in an undirected graph G = (V ,E) with an unknown circu-
lation ψ , so that if we place k flow monitors on these edges to measure the flow along
them, we will maximize the total number of edges for which the value and direction
of ψ is uniquely determined by the flow conservation property. Intuitively, the objec-
tive is to maximize the number of bridge edges in the subgraph induced by edges not
covered by monitors. (For a more rigorous definition of the problem, see Sect. 2.)

Research of F. Chin supported in parts by grant (HKU 7113/07E).
Research of M. Chrobak and L. Yan supported by NSF Grant CCF-0729071.

F. Chin
Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

M. Chrobak · L. Yan (�)
Department of Computer Science, University of California, Riverside, CA 92521, USA
e-mail: lyan@cs.ucr.edu

mailto:lyan@cs.ucr.edu

Algorithmica

Fig. 1 A graph with 4 monitors

Consider, for example, the graph and the monitors shown in Fig. 1. In this example
we have k = 4 monitors represented by rectangles attached to edges, with measured
flow values and directions shown inside. Thus we have ψ(2,3) = 4, ψ(3,8) = 2,
ψ(6,4) = 7 and ψ(1,2) = 1. From the flow conservation property, we can then de-
termine that ψ(3,5) = 2, ψ(8,6) = 2, ψ(7,5) = 3 and ψ(5,6) = 5. Thus with 4
monitors we can determine flow values on 8 edges.

Our Results We first show that the FLOWMNTRS problem is NP-hard. This proof
appears in Sect. 3. Next, in Sect. 4, we study polynomial-time approximation algo-
rithms. We introduce an algorithm called σ -GREEDY that, in each step, places up to
σ monitors in such a way that the number of edges with known flow is maximized.
We then prove that 1-GREEDY is a 3-approximation algorithm and that 2-GREEDY

is a 2-approximation algorithm. In both cases, our analysis is tight. In fact, our ap-
proximation results are stronger, as they apply to the weighted case, where the input
graph has weights on edges, and the objective is to maximize the total weight of the
edges with known flow.

The running times of these two algorithms are O(k(m + n)) and O(km2(m + n)),
respectively, where n = |V | and m = |E|. In fact, as we explain in Sect. 4.1, it is
possible to modify 1-GREEDY to improve its running time to O(m + n + k logn)

without increasing the approximation ratio, although this modification does not gen-
eralize easily to larger values of σ .

Overview of Main Ideas The analysis of the greedy algorithm is based on several
ideas. The first idea is to show that the problem can be reduced in linear time to the
case of weighted 3-edge-connected graphs. This process involves “gluing” together
some connected components, removing bridges, and replacing some sets of edges by
single weighted edges. For example, if a graph has an induced path of length 5, this
path can be replaced by one edge of weight 5. The complete reduction is described
in Sect. 2.

The assumption that the input graph is 3-edge-connected implies that the optimum
solution contains at most 3k edges. This leads to a simple analysis of 1-GREEDY,
given in Sect. 4.1, since we then only need to show that 1-GREEDY’s gain is not less
than the total weight of the k heaviest edges.

The analysis of 2-GREEDY, however, is much more subtle, since it is not suffi-
cient to focus only on the number of edges (in the weighted 3-edge-connected graph
obtained from the reduction). Very roughly, depending on the structure of the graph,

Algorithmica

2-GREEDY may collect either few heavy edges or many light ones, yet still we can
show that in all cases its overall gain amortizes to at least half of the optimum. The
idea is to divide the edges of the graph into small sets called bundles and charge the
algorithm’s gain to the weights of these bundles. This analysis is the most technical
part of the paper and is given in Sect. 4.2.

Related Work A closely related problem was studied by Gu and Jia [5] who con-
sidered a traffic flow network with directed edges. They observed that m − n + 1
monitors are necessary to determine the flow on all edges of a strongly connected
graph, and that this bound can be achieved by placing flow monitors on edges in the
complement of a spanning tree. (The same bound applies to connected undirected
graphs.) Khuller et al. [7] studied an optimization problem where pressure meters
may be placed on nodes of a flow network. An edge whose both endpoints have a
pressure meter will have the flow determined using the pressure difference, and other
edges may have the flow determined via flow conservation property. The goal is to
compute the minimum number of meters needed to determine the flow on every edge
in the network. They showed that this problem is NP-hard and MAX-SNP-hard, and
that a local-search based algorithm achieves 2-approximation. For planar graphs, they
have a polynomial-time approximation scheme. The model in [7] differs from ours in
that it assumes that the flow satisfies Kirchhoff’s current and voltage laws, while we
only assume the current law (that is, the flow preservation property). This distinction
is reflected in different choices of “meters”: vertex meters in [7] and edge monitors in
our paper. Recall that, as explained above, minimizing the number of edge monitors
needed to determine the flow on all edges is trivial, providing a further justification
for our choice of the objective function.

The FLOWMNTRS problem is also related to the classical k-cut and multi-way
cut problems [1, 4, 8, 10], where the goal is to find a minimum-weight set of edges
that partitions the graph into k connected components. One way to view our monitor
problem is that we want to maximize the number of connected components obtained
from removing the monitor edges and the resulting bridge edges.

2 Preliminaries

We now give formal definitions. Let G = (V ,E) be an undirected graph. Throughout
the paper, we use n = |V | to denote the number of vertices in G and m = |E| to be the
number of edges. We will typically use letters u,v, x, y, . . . , possibly with indices,
to denote vertices, and a, b, e, f, . . . to denote edges. If an edge e has endpoints x, y,
we write e = {x, y}. We allow multiple edges and loops in G, so the endpoints do not
uniquely define an edge: if e = {x, y} and f = {x, y}, it is not necessarily true that
e = f .

A circulation on G is a function ψ that assigns a flow value and a direction to
any edge in E. (We use the terms “circulation” and “flow” interchangeably, slightly
abusing the terminology.) Denoting by ψ(u,v) the flow on e = {u,v} from u to v,
we require that ψ satisfies the following two conditions (i) ψ is anti-symmetric, that
is ψ(u,v) = −ψ(v,u) for each edge {u,v}, and (ii) ψ satisfies the flow conservation
property, that is

∑
{u,v}∈E ψ(u, v) = 0 for each vertex v.

Algorithmica

A bridge in G is an edge whose removal increases the number of connected com-
ponents of G. Let Br(G) be the set of bridges in G.

Suppose that some circulation ψ is given for all edges in some set M ⊆ E, and
not for other edges. We have the following observation:

Observation 1 For {u,v} ∈ E − M , ψ(u,v) is uniquely determined from the flow
preservation property if and only if {u,v} ∈ Br(G − M).

We can now define the gain of M to be gain(G,M) = |M ∪ Br(G − M)|, that is,
the total number of edges for which the flow can be determined if we place monitors
on the edges in M . We will refer to the edges in M as monitor edges, while the bridge
edges in Br(G − M) will be called extra edges. If G is understood from context, we
will write simply gain(M) instead of gain(G,M).

The Flow Edge-Monitor Problem (FLOWMNTRS) can now be defined formally
as follows: given a graph G = (V ,E) and an integer k > 0, find a set M ⊆ E with
|M| ≤ k that maximizes gain(G,M).

The Weighted Case We consider the extension of FLOWMNTRS to weighted graphs,
where each edge e has a non-negative weight w(e) assigned to it, and the task is to
maximize the weighted gain. More precisely, if M are the monitor edges, then the
formula for the (weighted) gain is gain(M) = ∑

e∈M∪B w(e), for B = Br(G − M).
We will denote this problem by WFLOWMNTRS.

Throughout the paper, we denote by M∗ some arbitrary, but fixed, optimal monitor
edge set. Let B∗ = Br(G − M∗) be the set of extra edges corresponding to M∗. Then
the optimal gain is gain∗(G, k) = w(M∗ ∪ B∗).

Simplifying Assumptions We make some assumptions about the input graph G that
will simplify the proofs. First, if k ≥ m, then we can simply take M = E and this
will be an optimal solution to WFLOWMNTRS. Therefore, without loss of generality,
throughout the paper we will assume that m > k.

The total flow across any cut of G must be 0. In particular, the flow value on any
bridge is 0, so we can assume that G does not have any bridges. Further, if G is
not connected, we can do this: take any two vertices u, v from different connected
components and contract them into one vertex. This operation does not affect the
solution to WFLOWMNTRS. This follows from Observation 1, because, denoting by
G′ the graph after the contraction, for any set M of monitor edges, G−M and G′−M

have exactly the same set of bridges. By repeating these contractions enough many
times, we can transform G into a connected graph.

Summarizing, we conclude that, without loss of generality, we can assume that G

is connected and does not have any bridges. In other words, G is 2-edge-connected.
(Recall that, for an integer c ≥ 1, a graph H is called c-edge-connected, if H is
connected and it remains connected after removing any set of at most c − 1 edges
from H .)

Next, we claim that we can in fact restrict our attention to 3-edge-connected
graphs. To justify it, we show that any weighted 2-edge-connected graph G = (V ,E)

can be converted in linear time into a 3-edge-connected weighted graph G′ = (V ′,E′)
such that:

Algorithmica

Fig. 2 Contracting edge groups

(i) gain∗(G, k) = gain∗(G′, k), and
(ii) If M ′ ⊆ E′ is a set of k monitor edges in G′, then in linear time one can find a

set M ⊆ E of k monitor edges in G with gain(G,M) = gain(G′,M ′).

We now show the construction of G′. A 2-cut is a pair of edges {e, e′} whose
removal disconnects G. Write e 	 e′ if {e, e′} is a 2-cut. It is known, and quite easy
to show, that relation “	” is an equivalence relation on E. The equivalence classes of
	 are called edge groups.

Suppose that G has an edge group F with |F | = q , for q ≥ 2, and let H1, . . . ,Hq

be the connected components of G − F . Then F = {e1, . . . , eq}, where, for each
i, ei = {ui, vi}, ui ∈ Hi and vi ∈ Hi+1 (for i = q we assume q + 1 ≡ 1). For i =
1, . . . , q − 1, contract edge ei so that vertices ui and vi become one vertex, and then
assign to edge eq = {uq, vq} weight

∑q

i=1 w(ei). We will refer to eq as the deputy
edge for F . Figure 2 illustrates the construction.

Let G′ = (V ′,E′) be the resulting weighted graph. By the construction, G′ is
3-edge-connected. All edge groups can be computed in linear time (see, [9], for ex-
ample), so the whole transformation can be done in linear time as well.

It remains to show that G′ satisfies conditions (i) and (ii). If M is any monitor
set, and if M has two or more monitors in the same edge group, we can remove one
of these monitors without decreasing the gain of M . Further, for any monitor edge e

of M , we can replace e by the deputy edge of the edge group containing e, without
changing the gain. This implies that, without loss of generality, we can assume that
the optimal monitor set M∗ in G contains only deputy edges. These edges remain in
G′ and the gain of M∗ in G′ will be exactly the same as its gain in G. This shows
the “≤” inequality in (i). The “≥” inequality follows from the fact that any monitor
set in G′ consists only of deputy edges from G, so all of them are in different edge
groups. The same argument implies (ii) as well.

Summarizing, we have shown in this section that, without loss of generality, we
can assume that the input graph G has m > k edges and is 3-edge-connected.

The Kernel Graph Consider an input graph G = (V ,E) and a monitor edge set M ,
and let B = Br(G − M). The kernel graph associated with G and M is defined as
the weighted graph GM = (VM,EM), where VM is the set of connected components
of G − M − B , and EM is determined as follows: For any edge e ∈ M ∪ B , where
e = {u,v}, let u′ and v′ be the connected components of G − M − B that contain,
respectively, u and v. Then we add edge {u′, v′} to EM . The weights are preserved,
that is w({u′, v′}) = w({u,v}). We will say that this edge {u′, v′} represents {u,v}

Algorithmica

Fig. 3 The kernel graph for the
example in Fig. 1. The loop in
vertex {1,2,4,7} represents
edge {2,1}

or corresponds to {u,v}. In fact, we will often identify {u,v} with {u′, v′}, treating
them as the same object. We point out that in general GM is a multigraph, as it may
have multiple edges and loops (even when G does not). However, since G is 3-edge-
connected, it is easy to see that so is GM .

Figure 3 shows the kernel graph corresponding to the graph and the monitor set in
the example from Fig. 1 (all edge weights are 1).

Note that we have |EM | ≤ k + |VM | − 1. This can be derived directly from the
definitions: The edges in GM that represent extra edges are the bridges in GM and
therefore they form a forest in GM . This (and the fact that GM is connected) implies
that the number of extra edges is at most |VM | − 1, and the inequality follows.

In the paper, we will use the concept of kernel graphs only with respect to some
optimal monitor set. Let M∗ be some arbitrary, but fixed, optimal monitor edge set.
To simplify notation, we will write G∗ = (V ∗,E∗) for the kernel graph associated
with M∗, that is G∗ = GM∗ , V ∗ = VM∗ and E∗ = EM∗ . In this notation, we have
gain∗(G, k) = w(E∗). In the analysis of our algorithms, we will be comparing the
weights of edges collected by the algorithm against the edges in the kernel graph G∗.

3 Proof of NP-Hardness of FLOWMNTRS

We show that the FLOWMNTRS is NP-hard (even in the unweighted case), via a
reduction from the CLIQUE problem. We start with a simple lemma.

Lemma 2 Let a1, a2, . . . , as be s positive integers such that
∑s

i=1 ai = n, for a fixed
integer n. Then

∑s
i=1

(
ai

2

)
is maximized if and only if aj = n − s + 1 for some j and

ai = 1 for all i �= j .

Above, we assume that
(1

2

) = 1(1 − 0)/2 = 0.

Proof By routine algebra, one can verify that for 2 ≤ a ≤ b we have
(

a

2

)

+
(

b

2

)

<

(
a − 1

2

)

+
(

b + 1

2

)

. (1)

Without loss of generality, assume a1 = maxi ai . If ai > 1, for any i > 1, by the
inequality above, we can change a1 ← a1 + 1 and ai ← ai − 1, increasing the value
of

∑s
i=1

(
ai

2

)
. By repeating this argument, we obtain that an optimum is achieved for

Algorithmica

a1 = n − s + 1 and a2 = a3 = · · · = as = 1. That all optima have this form (up to a
permutation of the ai ’s) follows from the fact that inequality (1) is strict. �

Theorem 3 FLOWMNTRS is NP-hard.

Proof In the CLIQUE problem, given an undirected graph G = (V ,E) and an in-
teger q > 0, we wish to determine if G has a clique of size at least q . CLIQUE

is well-known to be NP-complete (see [3]). We show how to reduce CLIQUE, in
polynomial-time, to DECFLOWMNTRS, the decision version of FLOWMNTRS, de-
fined as follows: Given a graph G = (V ,E) and two integers, k, l > 0, is there a set
M of k edges in G for which |Br(G − M)| ≥ l?

The reduction is simple. Suppose we have an instance G = (V ,E), q of CLIQUE.
Without loss of generality, we can assume that G is connected and q ≥ 3. Let n = |V |
and m = |E|. We map this instance into an instance G,k, l of DECFLOWMNTRS,
where k = m − (

q
2

) − l and l = n − q . This clearly takes polynomial time. Thus, to
complete the proof, it is sufficient to prove the following claim:

(∗) G has a clique of size q iff G has a set M of k edges for which |Br(G−M)| ≥ l.

We now prove (∗). The main idea is that, by the choice of parameters k and l, the
monitors and extra edges in the solution of the instance of DECFLOWMNTRS must
be exactly the edges outside the size-q clique of G.

(⇒) Suppose that G has a clique C of size q . Let G′ be the graph obtained by
contracting C into a single vertex and let T be a spanning tree of G′. We then take
M to be the set of edges of G′ outside T . Thus the edges in T will be the bridges
of G − M . Since G′ has n − q + 1 vertices, T has l = n − q edges, and M has
m − (

q
2

) − l = k edges.
(⇐) Suppose there is a set M of k monitor edges that yields a set B of l′ extra

edges, where l ≤ l′ ≤ n − 1. We show that G has a clique of size q .
Let s be the number of connected components of G − M − B , and denote by

a1, a2, . . . , as the cardinalities of these components (numbers of vertices). Since
|B| = l′, we have s ≥ l′ + 1. Also,

∑s
i=1 ai = n and

∑s
i=1

(
ai

2

) + k + l′ ≥ m. There-
fore, using Lemma 2, and the choice of k and l, we have

(
n − l′

2

)

+ l′ ≥
(

n − s + 1

2

)

+ l′ (2)

≥
s∑

i=1

(
ai

2

)

+ l′ (3)

≥ m − k (4)

=
(

n − l

2

)

+ l.

By routine calculus, the function f (x) = 1
2 (n − x)(n − x − 1) + x is decreasing in

interval [0, n − 1], and therefore the above derivation implies that l′ ≤ l, so we can
conclude that l′ = l. This, in turn, implies that all inequalities in this derivation are in

Algorithmica

Algorithm σ -GREEDY

G0 = (V,E0) ← G = (V,E)

M0 ← ∅
X0 ← ∅
for t ← 1,2, . . . , �k/σ�

if Et−1 = ∅
then return M = Mt−1 and halt

σ ′ ← σ

if t = �k/σ� + 1
then σ ′ = k mod σ

if |Et−1| ≤ σ ′
then P ← Et−1
else

find P ⊆ Et−1 with |P| = σ ′
that maximizes w(P ∪ Br(Gt−1 − P))

Yt ← P ∪ Br(Gt−1 − P)

Xt ← Xt−1 ∪ Yt

Et ← Et−1 − Yt

Gt ← (V,Et)

Mt ← Mt−1 ∪ P
return M = M�k/σ�

Fig. 4 Pseudo-code for Algorithm σ -GREEDY. Yt represents the edges collected by the algorithm in
step t , with P ⊆ Yt being the set of monitor edges and Yt − P the set of extra edges. Mt represents all
monitor edges collected up to step t and Xt represents all edges collected up to step t

fact equalities. Since (2) is an equality, we have s − 1 = l′ = l = n − q . Then, since
(3) is an equality, Lemma 2 implies that aj = q for some j and ai = 1 for all i �= j .
Finally, (4) can be an equality only if all the connected components are cliques. In
particular, we obtain that the j th component is a clique of size q . �

4 Algorithm σ -GREEDY

Fix some integer constant σ ≥ 1. Let G = (V ,E) be the input graph with n = |V |,
m = |E|, and with weights on edges. As justified in Sect. 2, we will assume that
m > k and that G is 3-edge-connected.

Algorithm σ -GREEDY that we study in this section works in �k/σ� steps and
returns a set of k monitor edges. In each step, it assigns σ monitors to a set P of
σ edges that maximizes the gain in this step, that is, the total weight of the monitor
edges in P and the bridges in G − P . These edges are then removed from G, and
the process is repeated. A more rigorous description is given in Fig. 4, which also
deals with special cases when the number of monitors or edges left in the graph is
less than σ .

Note that each step of the algorithm runs in time O(mσ (n + m)), by trying all
possible combinations of σ edges in the remaining graph Gt−1 to find P . Hence,

Algorithmica

Algorithm σ -GREEDY runs in time O(kmσ (n + m)/σ). For σ = 1, it is possible to
modify 1-GREEDY to reduce the running time to O(m+n+ k logn), as explained in
the next section.

4.1 Analysis of 1-GREEDY

In this section we consider the case σ = 1. Algorithm 1-GREEDY at each step chooses
an edge whose removal maximizes the gain and places a monitor on this edge. This
edge and its corresponding bridges are removed from the graph. This process is re-
peated k times. We show that this algorithm has approximation ratio 3.

Analysis Fix the value of k, and some optimal solution M∗ of k monitor edges,
and let G∗ = (V ∗,E∗) be the corresponding kernel graph. To avoid clutter, we will
identify each edge in E∗ with its corresponding edge in E, thus thinking of E∗ as a
subset of E. For example, when we say that the algorithm collected some e ∈ E∗, we
mean that it collected the edge in E represented by e.

Recall that gain∗(G, k) = w(E∗), where w(E∗) is the sum of weights of the edges
in E∗. Thus we need to show that 1-GREEDY’s gain is at least 1

3w(E∗).
Let ei , i = 1,2, . . . , k, be the k heaviest edges in E∗, ordered by weight, that is

w(e1) ≥ w(e2) ≥ · · · ≥ w(ek). First, we claim that for each t = 0,1, . . . , k, we have

w(Xt) ≥
t∑

i=1

w(ei), (5)

where Xt denotes the set of edges collected by the algorithm in the first t steps.
The proof of (5) is by a straightforward induction. It is vacuously true for t = 0.

Suppose (5) holds for t ′ = t − 1; we will then show that it also holds for t . If Xt

contains all edges e1, . . . , et , then (5) holds. Otherwise, choose any j , 1 ≤ j ≤ t ,
for which ej /∈ Xt . By induction, w(Xt−1) ≥ ∑t−1

i=1 w(ei), and ej is available to
1-GREEDY in step t , so its gain in step t is at least w(ej). Therefore w(Xt) ≥
w(Xt−1) + w(ej) ≥ w(Xt−1) + w(et) ≥ ∑t

i=1 w(ei), completing the proof of (5).
Since G is 3-edge-connected, each vertex in G∗ has degree at least 3, so |E∗| ≥

3
2 |V ∗|, which implies that k ≥ |E∗| − |V ∗| + 1 > 1

3 |E∗|. Thus, from (5), we obtain

that the gain of 1-GREEDY is w(Xk) ≥ ∑k
i=1 w(ei) ≥ 1

3w(E∗). Summarizing, we
obtain:

Theorem 4 Algorithm 1-GREEDY is a polynomial-time 3-approximation algorithm
for the Weighted Flow Edge-Monitor Problem, WFLOWMNTRS.

With a somewhat more careful analysis, one can show that the approximation ratio
of 1-GREEDY is actually 3(1−1/k), which matches our lower bound example below.

A Tight-Bound Example We now present an example showing that our analysis of
1-GREEDY is tight. Graph G consists of one connected component with 2k − 2 ver-
tices, in which each vertex has degree 3 and each edge has weight 1, and the other

Algorithmica

Fig. 5 Lower bound example
for 1-GREEDY, with k = 5

connected component that has only two vertices connected by k + 2 edges each of
weight 1 + ε. Figure 5 shows the construction for k = 5.

1-GREEDY will be collecting edges from the 2-vertex component on the left, end-
ing up with k edges and total gain (1+ε)k. The optimum solution is to put k monitors
in the cubic component on the right, thus gaining all 3k − 3 edges from this compo-
nent. For ε → 0, the approximation ratio tends to 3(1 − 1/k).

The Running Time As explained in the previous section, the running time of 1-
GREEDY is at most O(km(m + n)): we have at most k steps, and in each step, for
each edge, in O(m+n)-time compute the gain of removing this edge. We can reduce
the running time of each step by computing, in linear time (see, for example, [9]), a
partition of the edge set into edge groups. We choose an edge group with maximum
total weight and remove any edge from this group. The time per step is O(m + n),
giving us an O(k(m + n))-time implementation of 1-GREEDY.

However, as the analysis above shows, instead of following 1-GREEDY, we can
instead choose the k heaviest edges and still accomplish approximation ratio 3. This
modified algorithm will then run in time O(m + n + k logn) by, say, using a heap to
extract the k heaviest edges. Unfortunately, this modification does not seem to extend
to Algorithm σ -GREEDY for σ ≥ 2.

4.2 Analysis of 2-GREEDY

We now consider σ = 2. At each step, Algorithm 2-GREEDY selects two edges that
maximize the gain. Ties are broken arbitrarily. We place monitors on these two edges,
and then remove them from G, as well as the resulting bridges. The process continues
for � 1

2k� steps. Exceptional situations, when k is odd, or we run out of edges, etc., are
handled as in Fig. 4. In this section we show that 2-GREEDY is a 2-approximation
algorithm.

Idea of the Analysis Let G = (V ,E) be the input graph with weights on edges.
As before, we will assume that m > k and that G is 3-edge-connected. We can
further assume that 2-GREEDY never runs out of edges, for otherwise it computes
an optimal solution. We fix some optimal solution M∗, and let G∗ = (V ∗,E∗) be
the corresponding kernel graph with ν = |V ∗| vertices and μ = |E∗| edges. Recall
that gain∗(G, k) = w(E∗); thus we need to show that 2-GREEDY’s gain is at least
1
2w(E∗).

Our proof for 1-GREEDY was based on the observation that k ≥ 1
3 |E∗|; thus we

only needed to show that 1-GREEDY’s gain is at least the total weight of the k heaviest

Algorithmica

edges in E∗. This is not sufficient for 2-GREEDY. To see this, consider a simple
situation where G∗ is unweighted with all vertices of degree 3, the extra edges form
a tree in G∗, and k is even. Then μ = 3

2ν and μ = ν + k − 1, so μ ≈ 3k. Therefore
we need to show that in this case 2-GREEDY collects at least 3

2k edges. For the
unweighted graph, this is not hard to show: pick a set J of 1

2k independent vertices
in G∗. (Such J exists, by the assumption that all vertices in G∗ have degree 3.)
For each vertex v in J , at each step of 2-GREEDY, either the three edges of v have
already been collected, or they can be collected in this step by placing monitors on
two of them. (It is also possible that one edge out of v has already been collected,
but in this case the remaining two can be collected in this step as well.) Therefore the
gain of 2-GREEDY in 1

2k steps will be at least the number of edges out of J , that is
3
2k.

If G is weighted, the argument above is not sufficient, since the edges incident to
vertices in J may have small weights. Further, it may happen that 2-GREEDY will
collect only k edges in total, if they are heavy enough, and in this case we need to
argue that their total weight is at least 1

2w(E∗), even though k may be only about
1
3 |E∗|.

The proof consists of two parts. First, we introduce the concept of a bundle. In-
tuitively, a bundle is a set of edges that can be collected with at most two monitors,
although our definition is more restrictive and will be given shortly. We show that G∗
contains a set T of at most � 1

2k� disjoint bundles with total weight at least 1
2w(E∗).

In the second part of the proof we show that the gain of 2-GREEDY is at least the
total weight of T .

Analysis For any vertex in G∗ of degree 3, the set of three edges incident on this
vertex is called a tripod. A set β of edges is called a bundle if β is either a tripod or
it consists of at most two edges. Clearly, all edges of a bundle can be collected with
at most 2 monitors. If T is a set of bundles, by ET we denote the set of edges in T ,
that is ET = ⋃

β∈T β . (We will extend the definition of bundles later in the proof of
Lemma 6.)

Lemma 5 For k ≥ 2, there exists a set T of at most �k/2� disjoint bundles such that
w(ET) ≥ 1

2w(E∗).

Proof First, we construct a collection Z of bundles that contains all tripods in G∗ and
such that each edge appears in exactly two bundles in Z. To this end, we create two
copies of each edge. If e = {x, y} is an edge, then by ex and ey we will denote these
two copies of e. Let F be the set of all these edge copies.

For each vertex v of G∗ of degree 3, if e, f , g are the edges incident to v, add the
tripod β = {ev, f v, gv} to Z and remove ev , f v and gv from F . Let F ′ be the set of
remaining edges in F .

We now want to partition F ′ into pairs, with each pair becoming a bundle. Assume
first that |F ′| is even; the argument for the general case is essentially the same but
slightly more cumbersome because of the parity issue, and it will be explained later.

Group the edges in F ′ arbitrarily into pairs. As long as any of these pairs has two
copies of the same edge, say {ex, ey}, do this: take any other pair {f u, gv} (where

Algorithmica

possibly f = g) and replace these two pairs by pairs {ex, f u} and {ey, gv}. Eventually
each pair will contain different edges. All these pairs become bundles that are now
added to Z. This completes the construction of Z.

To construct T , we now greedily extract from Z non-overlapping bundles with
maximum weight. More specifically, we start with T = ∅, and repeat the following
step as long as |Z| ≥ 4: choose a bundle β in Z with maximum w(β), add it to
T , and then remove from Z exactly four bundles: β , all other bundles in Z that
intersect β , and possible a few more additional bundles so that the total is four. This
is possible, because, by the definition of Z, each bundle in Z intersects at most three
other bundles in Z. If, at the end, |Z| �= ∅, then we add to T the bundle β in Z with
maximum w(β) and remove all remaining bundles (at most three) from Z.

We now have our set T of bundles, and it remains to show that it has the desired
properties. Obviously, all bundles in T are disjoint. In each step of the construction of
T , when we add a bundle β to T , we reduce w(EZ) by at most 4w(β), so w(ET) ≥
1
4w(EZ) = 1

2w(E∗), as needed.
It remains to show that |T | ≤ � 1

2k�. Let νd be the number of vertices of degree d

in G∗. All vertices in G∗ have degree at least 3, thus

2μ =
∑

d≥3

d · νd ≥ 3ν3 + 4(ν − ν3) = 4ν − ν3.

We also have μ ≤ ν + k − 1, which, together with the inequality above yields 2μ −
ν3 ≤ 4k − 4. In Z, we have exactly ν3 tripods and 1

2 (2μ − 3ν3) = μ − 3
2ν3 pairs, so

we obtain |Z| = μ− 1
2ν3 ≤ 2k −2. Hence |T | ≤ �(2k −2)/4� = �(k −1)/2� ≤ � 1

2k�,
as needed.

Now we deal with the case when |F ′| is odd. We execute the same process for
pairing edges, but in this case we will end up with one unpaired edge that will become
a bundle by itself. The proof that w(ET) ≥ 1

2w(E∗) remains valid. We still need to
show that |T | ≤ � 1

2k�. In Z, we have ν3 tripods, 1
2 (2μ − 3ν3 − 1) pairs, and one

singleton; hence |Z| = ν3 + 1
2 (2μ − 3ν3 − 1) + 1 = 1

2 (2μ − ν3 + 1). As before, we
have 2μ − ν3 ≤ 4k − 4, but now 2μ − ν3 = (2μ − 3ν3) + 2ν3 = |F ′| + 2ν3 is odd,
which implies that we in fact have 2μ − ν3 + 1 ≤ 4k − 4. This implies |Z| ≤ 2k − 2,
and the bound |T | ≤ �k/2� follows, as before. �

Lemma 6 Let k ≥ 2, and let T be the set of bundles constructed in Lemma 5. Then
w(X�k/2�) ≥ w(ET); thus 2-GREEDY’s gain is at least w(ET).

Proof Let � = �k/2�. To prove the lemma, we show that there is a partition of ET

into disjoint sets B1,B2, . . . ,B� (some possibly empty) such that w(Bt) ≤ w(Yt), for
t = 1,2, . . . , �, where Yt is the set of edges collected by 2-GREEDY in step t . This is
clearly sufficient to establish the theorem.

The idea of the proof is to proceed one step at a time, for t = 1,2, . . . , �, starting
with T ′ = T and at each step reducing the number of bundles in T ′. The invariant will
be that at each step t , all bundles in T ′ will be available to 2-GREEDY for collection.
At step t , we eliminate from these bundles all edges collected by the algorithm, and
rearrange some bundles, if necessary, in such a way that the number of bundles in T ′
strictly decreases.

Algorithmica

To implement the above idea we need to extend the definition of bundles. If β =
{e, f, g} is a tripod in G∗ and 2-GREEDY collects e at some step t ′ < t while f,g

remain uncollected until step t , then the pair β ′ = {f,g} is called a bipod at step t . If
β ⊆ E∗ is a set of edges not collected in the first t − 1 steps, then β is called a bundle
at step t if either (i) β is a tripod in G∗, or (ii) β = β1 ∪ β2, where each βi is either
an edge or a bipod or ∅. (We will omit phrase “at time t” whenever t is understood
from context.) Clearly, this definition extends the one given earlier in this section.
However, it is still true that 2-GREEDY can collect all edges from a bundle in a single
step (that is, with two monitors).

Now we describe the construction of the sets Bt . Initially, T ′ = T . Suppose that,
for some t ≥ 1, we have already constructed B1, . . . ,Bt−1 and modified T ′ accord-
ingly. Consider now step t of 2-GREEDY. We distinguish three cases.

Case 1: Yt intersects at most one bundle in T ′. If Yt intersects one bundle, let β be
this bundle; otherwise, let β be any bundle. Remove β from T and set Bt = β .

Case 2: Yt contains a bundle in T ′. In this case we simply set Bt = Yt ∩ ET ′ and
we update T ′ as follows: remove from T ′ all bundles that are contained in Yt , and for
each other bundle β in T ′ that intersects Yt , remove from β the edges in Yt (that is,
β ← β − Yt).

Case 3: Yt intersects at least two bundles in T ′ but it does not contain any. We let
Bt = Yt ∩ ET ′ . To update T ′, we proceed in two steps. First, choose any two bundles
β1, β2 in T ′ intersected by Yt , and replace them by β1 ∪β2 −Yt . Then, for each other
bundle β in T ′ intersected by Yt , remove from β all edges in Yt .

Note that Cases 2 and 3 are not mutually exclusive. If, at some steps, both of these
cases apply, any of them can be chosen arbitrarily.

We claim that this procedure is correct, in the sense that at each step t all elements
of T ′ are bundles. To this end, we make two observations. If β = {e, f, g} is a tripod
at time t , then 2-GREEDY can either collect one edge from β or all three, but it cannot
collect just two. If one edge is collected, the remaining edges form a bipod. Also, if
{e, f } is a bipod at time t , then 2-GREEDY either collects both edges e, f or none. If
we remove any edges from a bundle, it obviously remains a bundle. Another type of
update occurs in Case 3 where we replace β1 and β2 by β1 ∪ β2 − Yt . Here, by the
case condition, each βi − Yt is either an edge or a bipod, and thus β1 ∪ β2 − Yt is a
correct bundle.

Next, we estimate the weight of the sets Bt . In Cases 2 and 3 we have Bt ⊆ Yt ,
so clearly w(Yt) ≥ w(Bt). Due to the fact that it takes no more than two monitors to
collect all edges in a bundle and 2-GREEDY chooses Yt , w(Yt) is at least as large as
the weight of any bundle in T ′ at time t ; hence w(Yt) ≥ w(Bt) holds for Case 1 as
well.

Finally, note that we have no more than � bundles in T ′ to start with and the total
number of bundles in T ′ strictly decreases in each step. Therefore after � steps we will
have T ′ = ∅, and thus B1,B2, . . . ,B� is a partition of ET , completing the proof. �

In the case for k = 1, 2-GREEDY actually gets an optimal solution, and Lemma 5
and 6 combined imply that for k ≥ 2 the gain of 2-GREEDY is at least half of the
optimum. Thus, summarizing, we obtain our main result.

Algorithmica

Theorem 7 Algorithm 2-GREEDY is a polynomial-time 2-approximation algorithm
for the Weighted Flow Edge-Monitor Problem, WFLOWMNTRS.

A Tight-Bound Example Our analysis of 2-GREEDY is tight. The example is essen-
tially the same as the one for 1-GREEDY, illustrated in Fig. 5, except that the edges
in the 2-vertex component on the left side have now weights 1.5 + ε. 2-GREEDY will
be collecting edges from this 2-vertex component, so its total gain will be (1.5 + ε)k,
while the optimum gain is 3k − 3. For ε → 0 and k → ∞, the ratio tends to 2.

5 Final Comments

The most intriguing open question is what is the approximation ratio of σ -GREEDY

in the limit for σ → ∞. We can show that this limit is not lower than 1.5, and we
conjecture that 1.5 is indeed the correct answer.

A natural question to ask is whether our results can be extended to directed graphs.
It is not difficult to show that this is indeed true; both the NP-hardness proof and 2-
approximation can be adapted to that case.

Another question is whether Algorithm σ -GREEDY can be implemented faster—
in time that is a polynomial function with exponent independent of σ . Even consider-
ably speeding-up 2-GREEDY would be of some interest, although this would proba-
bly require efficiently maintaining information about 3-edge-connected components
in the presence of edge deletions and is a research topic of its own. To the best of our
knowledge, the fastest fully dynamic algorithm for 3-edge-connectivity takes time
O(n2/3) per update and query [2] (see also [6]) and it is unclear whether this algo-
rithm is sufficient for our purpose, since in addition to simply removing edges, we
also need to be able to find the edges that optimize the gain at each step.

Another intriguing direction to pursue would be to study the extension of our prob-
lem to arbitrary linear systems of equations. In that context, we can put k “monitors”
on k variables of the system to measure their values. The objective is to maximize
the number of variables whose values can be uniquely deduced from the monitored
variables.

References

1. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of
multiway cuts (extended abstract). In: Proceedings of 24th ACM Symposium on Theory of Computing
(STOC’92), pp. 241–251 (1992)

2. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification—a technique for speeding up
dynamic graph algorithms. J. ACM 44, 669–696 (1997)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, San Francisco (1979)

4. Goldschmidt, O., Hochbaum, D.S.: Polynomial algorithm for the k-cut problem. In: Proceedings of
29th Annual IEEE Symposium on Foundations of Computer Science (FOCS’88), pp. 444–451 (1988)

5. Gu, W., Jia, X.: On a traffic control problem. In: Proceedings of 8th International Symposium on
Parallel Architectures, Algorithms and Networks (I-SPAN’05), pp. 510–515 (2005)

6. Italiano, G.F.: Fully dynamic connectivity: upper and lower bounds. In: Kao, M.-Y. (ed.) Encyclopedia
of Algorithms, pp. 335–337. Springer, Berlin (2008)

Algorithmica

7. Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM J.
Comput. 32(2), 470–487 (2003)

8. Saran, H., Vazirani, V.V.: Finding k-cuts within twice the optimal. SIAM J. Comput. 24(1), 101–108
(1995)

9. Tsin, Y.H.: A simple 3-edge-connected component algorithm. Theory Comput. Syst. 40, 125–142
(2007)

10. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

	Algorithms for Placing Monitors in a Flow Network
	Abstract
	Introduction
	Our Results
	Overview of Main Ideas
	Related Work

	Preliminaries
	The Weighted Case
	Simplifying Assumptions
	The Kernel Graph

	Proof of NP-Hardness of FlowMntrs
	Algorithm sigma-Greedy
	Analysis of 1-Greedy
	Analysis
	A Tight-Bound Example
	The Running Time

	Analysis of 2-Greedy
	Idea of the Analysis
	Analysis
	A Tight-Bound Example

	Final Comments
	References

