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The 2D Online Bin Packing is a fundamental problem in Computer Science and the determination of its
asymptotic competitive ratio has research attention. In a long series of papers, the lower bound of this ratio
has been improved from 1.808, 1.856 to 1.907 and its upper bound reduced from 3.25, 3.0625, 2.8596, 2.7834
to 2.66013. In this article, we rewrite the upper bound record to 2.5545. Our idea for the improvement is as
follows.

In 2002, Seiden and van Stee [Seiden and van Stee 2003] proposed an elegant algorithm called H ⊗ C,
comprised of the Harmonic algorithm H and the Improved Harmonic algorithm C, for the two-dimensional
online bin packing problem and proved that the algorithm has an asymptotic competitive ratio of at most
2.66013. Since the best known online algorithm for one-dimensional bin packing is the Super Harmonic
algorithm [Seiden 2002], a natural question to ask is: could a better upper bound be achieved by using the
Super Harmonic algorithm instead of the Improved Harmonic algorithm? However, as mentioned in Seiden
and van Stee [2003], the previous analysis framework does not work. In this article, we give a positive answer
for this question. A new upper bound of 2.5545 is obtained for 2-dimensional online bin packing. The main
idea is to develop new weighting functions for the Super Harmonic algorithm and propose new techniques
to bound the total weight in a rectangular bin.
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1. INTRODUCTION

In two-dimensional bin packing, each item (wi, hi) is a rectangle of width wi ≤ 1 and
height hi ≤ 1. Given a list of such rectangular items, one is asked to pack all of them
into a minimum number of square bins of side length one so that their sides are paral-
lel to the sides of the bin. Rotation is not allowed. The problem is clearly strongly

X. Han was partially supported by the Fundamental Research Funds for the Central Universities and NFSC
(11101065). G. Zhang was partially supported by NSFC (10971192).
Authors’ addresses: X. Han, Software School, Dalian University of Technology, Road 8, Economy and Tech-
nology Development Zone, Dalian, P.R. China, 116620; email: hanxin.mail@gmail.com; F. Y. L. Chin, H.-F.
Ting, and Y. Zhang, Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong,
China; email: {chin, hfting, yzhang}@cs.hku.hk; G. Zhang, College of Computer Science, Zhejiang University,
ZheDa Road 38, Hangzhou 310027, China; email: zgc@zju.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1549-6325/2011/09-ART50 $10.00

DOI 10.1145/2000807.2000818 http://doi.acm.org/10.1145/2000807.2000818

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 50, Publication date: September 2011.



50:2 X. Han et al.

NP-hard since it is a generalization of the one-dimensional bin packing problem
[Coffman et al. 1987]. In this article, we will consider the online version of two-
dimensional bin packing, in which the items are released one by one and we must
irrevocably pack the current item into a bin without any information on the next
items. Before presenting the previous results and our work, we first review the stan-
dard measure for online bin packing algorithms.

Asymptotic Competitive Ratio. To evaluate an online algorithm for bin packing prob-
lems, we use the asymptotic competitive ratio defined as follows. Consider an online
algorithm A. For any list L of items, let A(L) be the cost (number of bins used) in-
curred by algorithm A and let OPT (L) be the corresponding optimal value. Then, the
asymptotic competitive ratio for algorithm A is

R∞
A = lim

k→∞
sup max

L
{A(L)/OPT (L)|OPT (L) = k}.

Previous Work. Bin packing has been well-studied. For the one-dimensional case,
Johnson et al. [1974] showed that the First Fit algorithm (FF) has an asymptotic com-
petitive ratio of 1.7. Yao [1980] improved algorithm FF with a better upper bound of
5/3. Lee and Lee [1985] introduced the class of Harmonic algorithms, for which an
asymptotic competitive ratio of 1.63597 was achieved. Ramanan et al. [1989] further
improved the upper bound to 1.61217. The best known upper bound so far is from the
Super Harmonic algorithm by Seiden [2002] whose asymptotic competitive ratio is at
most 1.58889. As for the negative results, Yao [1980] showed that no online algorithm
has asymptotic competitive ratio less than 1.5. Brown [1979] and Liang [1980] inde-
pendently provided a better lower bound of 1.53635. The best known lower bound to
date is 1.54014 [van Vliet 1992].

As for two-dimensional online bin packing, a lower bound of 1.6 was given by
Galambos [1991]. The result was gradually improved to 1.808 [Galambos and van
Vliet 1994], 1.857 [van Vliet 1995], and 1.907 [Blitz et al. 1996]. Coppersmith and
Raghan [1989] gave the first online algorithm with asymptotic competitive ratio 3.25.
Csirik et al. [1993] improved the upper bound to 3.0625. Csirik and van Vliet [1993]
presented an algorithm for all d dimensions, where in particular for two dimensions,
they obtained a ratio of at most 2.8596. Based on the techniques of the Improved Har-
monic, Han et al. [2001] improved the upper bound to 2.7834. The best known online
algorithm to date is the one called A ⊗ C presented by Seiden and van Stee [2003],
where Aand C stand for two one-dimensional online bin packing algorithms. Basically,
A and C are applied to one dimension of the items with rounding sizes. In this seminal
paper, Seiden and van Stee proved that the asymptotic competitive ratio of H ⊗ C is
at most 2.66013, where H is the Harmonic algorithm [Lee and Lee 1985] and C is an
instance of the improved Harmonic algorithm. It has been open since then to improve
the upper bound. A natural idea is to use an instance of the Super Harmonic algorithm
[Seiden 2002] instead of the improved Harmonic algorithm. However, as mentioned in
Seiden and van Stee [2003], in that case, the previous analysis framework cannot be
extended to Super Harmonic.

We also briefly overview the offline results on two-dimensional bin packing. Chung
et al. [1982] showed an approximation algorithm with an asymptotic performance ratio
of 2.125. Caprara [2002] improved the upper bound to 1.69103. Bansal et al. [2009]
derived a randomized algorithm with asymptotic performance ratio of at most 1.525.
As for the negative results, Bansal et al. [2006] showed that the two-dimensional bin
packing problem does not admit an asymptotic polynomial-time approximation scheme.

For the special case where items are squares, there is also a large number of
results [Coppersmith and Paghavan 1989; Seiden and van Stee 2003; Miyazawa
and Wakabayashi 2003; Epstein and van Stee 2004, 2005b, 2005a; Han et al. 2006].
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Especially for bounded space online algorithms, Epstein and van Stee [2005b] gave an
optimal online algorithm.

Our Contributions. There are two main contributions in this article.

—We revisit the 1D online bin-packing algorithm: Super Harmonic, and give new
weighting functions for it, which are much simpler than the ones introduced in
Seiden [2002], and the new weighting functions have interests in its own.

—We generalize the previous analysis framework for 2D online bin-packing algorithms
used in Seiden and van Stee [2003], and show that the new analysis framework is
very useful in analyzing 2D or multidimensional online bin-packing problems.

By combining the new weighting functions with the new analysis framework, we
design a new 2D online bin-packing algorithm with a competitive ratio 2.5545, which
improves the previous bound of 2.66013 in 2002 [Seiden and van Stee 2003]. As men-
tioned in Seiden and van Stee [2003], the old analysis framework does not work well
with the old weighting functions in Seiden [2002], that is, the old approach does not
guarantee an upper bound better than 2.66013. This is testified in the following way:
consider our algorithm, if we use old weighting functions with the old framework to an-
alyze it, the competitive ratio is at least 3.04, and if we use the old weighting functions
with the new framework, the competitive ratio is at least 2.79.

Organization of This Article. Section 2 will review the Harmonic and Super Har-
monic algorithms as preliminaries. Section 3 defines the weighting functions for Super
Harmonic. Section 4 describes and analyzes the two-dimensional online bin-packing
algorithm H ⊗ SH+. Section 5 concludes.

2. PRELIMINARIES

We first review two online algorithms for one-dimensional bin packing, Harmonic
and Super Harmonic, which are employed in designing online algorithms for two-
dimensional bin packing.

2.1. The Harmonic Algorithm

The Harmonic algorithm is a fundamental bin packing algorithm with a simple and
nice structure, that was introduced by Lee and Lee [1985]. The algorithm works as
follows. Given a positive integer k, each item is immediately classified into one of k
types according to its size upon its arrival. In particular, if an item has a size in interval
(1/(i + 1), 1

i ] for some integer i, where 1 ≤ i < k, then it is a type i item; otherwise, it is of
type k. The type i item is then packed, using the simple Next Fit (NF) algorithm, into the
open (not fully packed) bin designated to contain type i items exclusively; new bins are
opened when necessary. At any time, there is at most one open bin for each type and any
closed (fully packed) bin for type i is packed exactly with i items of type i for 1 ≤ i < k.

For an item of size x, we define a weighting function WH(x) for the Harmonic algo-
rithm as follows:

WH(x) =
{

1
i , if 1

i+1 < x ≤ 1
i with 1 ≤ i < k.

k
k−1 x if 0 < x ≤ 1

k .

The following lemma is directly from Lee and Lee [1985].
LEMMA 2.1. For any list L, we have

H(L) ≤
∑
p∈L

WH(p) + O(1),

where H(L) is the number of bins used by the Harmonic algorithm for list L.
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2.2. The Super Harmonic Algorithm

The Super Harmonic algorithm [Seiden 2002] is a generalization of the Improved
Harmonic algorithm and the Harmonic algorithm. Super Harmonic first classifies each
item into one of k+1 types, where k is a positive integer, and then assigns to the item a
color of either blue or red. It allows items of up to two different types to share the same
bin. In any one bin, all items of the same type have same color and items of different
type have different colors. For items of type i (i ≤ k), the algorithm maintains two
parameters βi and γi to bound respectively the number of blue items and the number
of red items in a bin. More details are given in this section.

Classification into Types. Let t1 = 1 > t2 > · · · > tk > tk+1 = ε > tk+2 = 0 be real
numbers. An interval Ii is defined to be (ti+1, ti], for i = 1, . . . , k + 1. An item with size
x is of type i if x ∈ Ii.

Coloring Red or Blue. Each type i item is also assigned a color, either red or blue, for
i ≤ k. The algorithm uses two sets of counters, e1, . . . , ek and s1, . . . , sk, all of which are
initially zero. The total number of type i items is denoted by si, while the number of
type i red items is denoted by ei. For 1 ≤ i ≤ k, during the packing process, the fraction
of type i items that are red is maintained, that is, ei = �αisi�, where α1, . . . , αk ∈ [0,1]
are constants.

Maximal Number of Blue Items. Let βi = �1/ti� for 1 ≤ i ≤ k, that is the maximal
number of blue items of type i that can be accepted in a single bin.

Space Left for Red Items. Let δi = 1 − tiβi, which is the lower bound of the space left
when a bin consists of βi blue items of type i. If possible, we want to use the space
left for small red items. Note that, in the algorithm, in order to simplify the analysis,
instead of using δi, less space is used, namely D = {�0,�1, . . . ,�K}, as the spaces into
which red items can be packed, where 0 = �0 < �1 < · · · < �K < 1/2 and K ≤ k.
Let �φ(i) be the space to be used to accommodate red items in a bin that holds βi blue
items of type i, where function φ is defined as {1,. . . ,k} 	→ {0,. . . ,K} such that φ(i) is
the maximum number such that �φ(i) ≤ δi. If φ(i) = 0, then no red items are accepted.

We set αi = 0 if ti > �K. For convenient use in our analysis in the next section, we
introduce a function called ϕ(i), which gives the index of the smallest space in D into
which a red item of type i can be placed:

ϕ(i) = min{ j | ti ≤ � j, 1 ≤ j ≤ K}.
Maximal Number of Red Items. Now we define γi. Let γi = 0 if ti > �K; otherwise,

γi = max{1, ��1/ti�}, that is, if �1 < ti ≤ �K, we set γi = 1, otherwise, γi = ��1/ti�.

Naming Bins. It is also convenient to name the bins by groups as follows.

{(i) | φi = 0, 1 ≤ i ≤ k}.

{(i, ?) | φi 
= 0, 1 ≤ i ≤ k}.

{(?, j) | α j 
= 0, 1 ≤ j ≤ k}.

{(i, j) | φi 
= 0, α j 
= 0, γ j tj ≤ �φ(i), 1 ≤ i, j ≤ k}.
Group (i) consists of bins that hold only blue items of type i. Group (i, j) consists of

bins that contain blue items of type i and red items of type j. Blue group (i, ?) and red
group (?, j) are indeterminate bins currently containing only blue items of type i or red
items of type j respectively. During packing, red items or blue items will be packed into
indeterminate bins if necessary, that is, indeterminate bins will be changed into (i, j).
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The Super Harmonic algorithm is outlined as follows.
Super Harmonic Algorithm
(1) For each item p : i ← type of p,

(a) if i = k + 1 then use NF algorithm,
(b) else si ← si + 1; if ei < �αisi� then ei ← ei + 1; { color p red }

i. If there is a bin in group (?, i) with fewer than γi type i items, then place p in it.
Else if, for any j, there is a bin in group ( j, i) with fewer than γi type i items then
place p in it.

ii. Else if there is some bin in group ( j, ?) such that �φ( j) ≥ γiti , then pack p in it and
change the bin into ( j, i).

iii. Otherwise, open a bin (?, i), pack p in it.
(c) else {color p blue}:

i. if φi = 0 then if there is a bin in group i with fewer than βi items then pack p in it,
else open a new group i bin, then pack p in it.

ii. Else:
A. if, for any j, there is a bin in group (i, j) or (i, ?) with fewer than βi type i items,

then pack p in it.
B. Else if there is a bin in group (?, j) such that �φ(i) ≥ γ j tj then pack p in it, and

change the group of this bin into (i, j).
C. Otherwise, open a new bin (i, ?) and pack p in it.

3. NEW WEIGHTING FUNCTIONS FOR SUPER HARMONIC

In this section, we develop new weighting functions for Super Harmonic that are
simpler than the weighting system in Seiden [2002]. The weighting functions will be
useful in analyzing the proposed online algorithm as we shall see in the next section.

3.1. Intuitions for Defining Weights

Weighting functions are widely used in analyzing online bin-packing problems. Roughly
speaking, for an item, the value by one of weight functions is the fraction of a bin
occupied by the item in the online algorithm. There is a constraint in defining weights
for items for an online algorithm, which will be given later. We will use K+1 weighting
functions. Let Wi(p) be the ith weight of an item p, where 1 ≤ i ≤ K + 1. For any input
L, the constraint is

A(L) ≤ max
1≤i≤K+1

{ ∑
p∈L

Wi(p)
}

+ O(1), (1)

where A(L) is the number of bins used by algorithm A.
Consider the Super Harmonic algorithm. For 1 ≤ i ≤ k, let si be the number of type

i pieces. For 1 ≤ i, s ≤ k, let B(i), B(i,s), B(i,?), B(?,i) be the number of bins in groups (i),
(i, s), (i, ?), and (?, i). Then we have

∑
i

{
B(i) +

∑
s

B(i,s) + B(i,?)

}
=

∑
i

(1 − αi)si

βi
+ O(1) (2)

and ∑
i

{
B(?,i) +

∑
s

B(s,i)

}
=

∑
i

αisi

γi
+ O(1). (3)

So, for each item with size x ∈ Ii, where i ≤ k, if we define its weight as:
1 − αi

βi
+ αi

γi
,
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then it is not difficult to see that the constraint (1) holds. However, this weighting
function is not good enough, that is, it always leads to a competitive ratio of at least
1.69103 if we use this weighting function to analyze the Super Harmonic algorithm.

The main reason is that for each bin in group (i, s) we account it twice, where 1 ≤
i, s ≤ k. Next, we give some intuitions for improving this weighting function.

By (2) and (3), observe that

∑
i

∑
s

B(i,s) ≤
∑

i

(1 − αi)si

βi
+ O(1) (4)

and ∑
i

∑
s

B(s,i) ≤
∑

i

αisi

γi
+ O(1). (5)

So, we have

∑
i

∑
s

B(i,s) =
∑

i
∑

s B(i,s) + ∑
i
∑

s B(s,i)

2

≤
∑

i

(1 − αi)si

2βi
+

∑
i

αisi

2γi
+ O(1)

= si

∑
i

(
1 − αi

2βi
+ αi

2γi

)
+ O(1).

Hence, for an item with size x ∈ Ii, after packing, if there is a bin in group (i, s) and
also a bin in group (s, i), then we can define its weight as below:

1 − αi

2βi
+ αi

2γi
.

This is the main intuition for defining our new weighting functions, which will be given
in the next subsection.

3.2. New Weighting Functions

Remember that in Super Harmonic, there is a set D = {�0,�1, . . . , �K} representing
the “free spaces” reserved for red items. Recall the two functions φ(i) and ϕ(i) are
related to free spaces and have the following meanings: φ(i) = j implies that free space
� j is reserved for red items in a bin consisting of βi blue items of type i, and ϕ(i) = j
indicates that a red item of type i could be packed in free space �≥ j .

We are now ready to define new weighting functions. Items with size larger than
ε will be first considered. Let E be the number of indeterminate red group bins (?, i)
when the whole packing is done.

If E = 0, that is, every red item is placed in a bin with one or more blue items, then
we define the weighting function as:

W1(x) = 1 − αi

βi
if x ∈ Ii. (6)

Otherwise, E > 0 implies that for some i, an indeterminate red group bin (?, i) exists
after packing. Let r be the type of the smallest red item in the indeterminate red group

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 50, Publication date: September 2011.



A New Upper Bound 2.5545 on 2D Online Bin Packing 50:7

bins. If 2 ≤ ϕ(r) ≤ K, then we define the corresponding weighting functions as follows:

W K+2−ϕ(r)(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1−αi
βi

+ αi
2γi

if x ∈ Ii, φ(i) < ϕ(r) and ϕ(i) < ϕ(r),
1−αi

βi
+ αi

γi
if x ∈ Ii, φ(i) < ϕ(r) and ϕ(i) ≥ ϕ(r),

1−αi
2βi

+ αi
γi

if x ∈ Ii, φ(i) ≥ ϕ(r) and ϕ(i) ≥ ϕ(r),
1−αi
2βi

+ αi
2γi

if x ∈ Ii, φ(i) ≥ ϕ(r) and ϕ(i) < ϕ(r).

If ϕ(r) = 1, we define

W K+1(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1−αi
βi

if x ∈ Ii, φ(i) = 0 and ϕ(i) = 0,

1−αi
βi

+ αi
γi

if x ∈ Ii, φ(i) = 0 and ϕ(i) > 0,

0 if x ∈ Ii, φ(i) > 0 and ϕ(i) = 0,
αi
γi

if x ∈ Ii, φ(i) > 0 and ϕ(i) > 0.

Note that in these definitions, if γi = 0 then we replace αi
γi

with zero. For an item with
size x ∈ Ik+1, we always define W j(x) = x/(1 − ε) for all j.

THEOREM 3.1. For any list L, we have

A(L) ≤ max
1≤i≤K+1

⎧⎨
⎩

∑
p∈L

Wi(p)

⎫⎬
⎭ + O(1),

where A(L) is the number of bins used by Super Harmonic for list L.

PROOF. Fix a list L. Let D be the sum of the sizes of the items of type (k+1). By NEXT
FIT, we know that the number of bins used for type (k + 1) is at most D/(1 − ε) + 1.

Again, we use E to denote the number of indeterminate red group bins when
all the packing is done. For 1 ≤ i ≤ k, let si be the number of type i pieces. Let
B(i), B(i,s), B(i,?), B(?,i) be the number of bins in groups (i), (i, s), (i, ?) and (?, i).

To prove this theorem, we consider two cases.

Case 1. If E = 0, that is,
∑

i B(?,i) = 0, every red item is packed in a bin with one or
more blue items. Therefore, we just need to count bins containing blue items:

A(L) ≤ D
1 − ε

+
∑

i

{
B(i) +

∑
s

B(i,s) + B(i,?)

}
+ O(1)

≤
∑

x∈Ik+1,x∈L

W1(x) +
∑

i

(1 − αi)si

βi
+ O(1) by (2)

=
∑

x∈Ik+1,x∈L

W1(x) +
∑

x/∈Ik+1,x∈L

W1(x) + O(1).

Case 2. E > 0. We first bound the numbers of bins of B(?,i) and B(i,?) for all i, then
consider two subcases to bound the total number of bins used.

Assume that ϕ(r) = j ≥ 1 (by the definition of function ϕ). Let e be the smallest red
item in indeterminate red group bins and r be its type. Then, every type i red item with
ϕ(i) < j is placed in a final group bin (s, i); otherwise, item e would not be the smallest
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red item. Hence, we have ∑
ϕ(i)< j

B(?,i) = 0. (7)

On the other hand, we know a bin B(?,r) and a bin B(i,?) cannot exist at the same time
by the rules of Super Harmonic if φ(i) ≥ j. Hence, we have

∑
φ(i)≥ j

B(i,?) = 0. (8)

In accordance with the Super Harmonic algorithm, for any type bin B(i), we have

φ(i) = 0. (9)

Define

X =
∑

φ(i)≥ j
ϕ(s)< j

B(i,s),

which is the total number of all the bins in groups (i, s) such that φ(i) ≥ j and ϕ(s) < j.
Then, we have

A(L) ≤ D
1 − ε

+
∑

i

(
B(i) + B(i,?) + B(?,i)

) +
∑

i

∑
s

B(i,s) + O(1)

= D
1 − ε

+
∑

i

(
B(i) + B(i,?) + B(?,i)

) + X +
∑

φ(i)< j

∑
s

B(i,s)

+
∑

ϕ(i)≥ j

∑
s

B(s,i) + O(1)

= D
1 − ε

+
∑

φ(i)< j

(
B(i) + B(i,?) +

∑
s

B(i,s)

)

+
∑

ϕ(i)≥ j

(
B(?,i) +

∑
s

B(s,i)

)
+ X + O(1). (10)

The last inequality holds from equalities
∑

i B(i) = ∑
φ(i)< j B(i) by (9),

∑
i B(i,?) =∑

φ(i)< j B(i,?) by (8) and
∑

i B(?,i) = ∑
ϕ(i)≥ j B(?,i) by (7).

Case 2.1. j ≥ 2. By the definition of variable X, we have

X ≤
∑

j≤φ(i)≤K

∑
s

B(i,s) and X ≤
∑

1≤ϕ(i)≤ j−1

∑
s

B(s,i).

It is not difficult to see,

X ≤
⎧⎨
⎩

∑
j≤φ(i)≤K

∑
s

B(i,s) +
∑

1≤ϕ(i)≤ j−1

∑
s

B(s,i)

⎫⎬
⎭

/
2. (11)
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Hence, by (10) and (11), we have

A(L) ≤ D
1 − ε

+
∑

φ(i)< j

(
B(i) + B(i,?) +

∑
s

B(i,s)

)
+

∑
ϕ(i)≥ j

(
B(?,i) +

∑
s

B(s,i)

)

+
∑

φ(i)≥ j

∑
s

B(i,s)

2
+

∑
ϕ(i)< j

∑
s

B(s,i)

2
+ O(1)

≤ D
1 − ε

+
∑

φ(i)< j

(1 − αi)si

βi
+

∑
ϕ(i)≥ j

αisi

γi
+

∑
φ(i)≥ j

(1 − αi)si

2βi
+

∑
ϕ(i)< j

αisi

2γi
+ O(1)

≤ D
1 − ε

+
∑

φ(i)< j
ϕ(i)< j

(
(1 − αi)si

βi
+ αisi

2γi

)
+

∑
φ(i)< j
ϕ(i)≥ j

(
(1 − αi)si

βi
+ αisi

γi

)

+
∑

φ(i)≥ j
ϕ(i)≥ j

(
(1 − αi)si

2βi
+ αisi

γi

)
+

∑
φ(i)≥ j
ϕ(i)< j

(
(1 − αi)si

2βi
+ αisi

2γi

)
+ O(1)

=
∑

x∈Ik+1,x∈L

W K+2− j(x) +
∑

x/∈Ik+1,x∈L

W K+2− j(x) + O(1),

where the second inequality follows directly from (2) and (3) and the last equality holds
from the new weighting functions defined in Subsection 3.2.

Case 2.2. j = 1. In accordance with the Super Harmonic algorithm, for any type
of bin (i, s), we have ϕ(s) ≥ 1, where 1 ≤ i, s ≤ k and k is a parameter de-
fined in Super Harmonic. Hence, there is no such bin (i, s) with ϕ(s) < 1, that is,
X = ∅.

Then, by (10), we have

A(L) ≤ D
1 − ε

+
∑

φ(i)<1

(
B(i) + B(i,?) +

∑
s

B(i,s)

)
+

∑
ϕ(i)≥1

(
B(?,i) +

∑
s

B(s,i)

)
+ O(1)

≤ D
1 − ε

+
∑

φ(i)=0

(1 − αi)si

βi
+

∑
ϕ(i)≥1

αisi

γi
+ O(1)

≤ D
1 − ε

+
∑

φ(i)=0
ϕ(i)=0

(1 − αi)si

βi
+

∑
φ(i)=0
ϕ(i)>0

(
(1 − αi)si

βi
+ αisi

γi

)
+

∑
φ(i)>0
ϕ(i)>0

αisi

γi
+ O(1)

=
∑

x∈Ik+1,x∈L

W K+1(x) +
∑

x/∈Ik+1,x∈L

W K+1(x) + O(1),

where the last equality holds from the new weighting functions defined in Section 3.2.
Therefore, we have A(L) ≤ max1≤i≤K+1{

∑
p∈L Wi(p)} + O(1).

4. ALGORITHM H ⊗ SH + AND ITS ANALYSIS

In the section, we first review a class of online algorithms for two dimensional online
bin packing, called H ⊗ C [Seiden and van Stee 2003]. Next we introduce a new
instance of algorithm H ⊗ SH+, where H is Harmonic and SH+ (Strange Harmonic+)
is an instance of Super Harmonic. Then we propose some new techniques on how to
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bound the total weight in a single bin, which is crucial to obtaining a better asymptotic
competitive ratio for the H⊗C algorithm. Finally, we apply new weighting functions for
SH+ to analyze the two-dimensional online bin-packing algorithm H⊗SH+ and show
its competitive ratio at most 2.5545, which implies that the new weighting functions
work very well with the generalized approach of bounding the total weight in a single
bin.

4.1. Algorithms H × C and H ⊗ C

Now we review two-dimensional online bin-packing algorithms H × C and H ⊗ C
[Seiden and van Stee 2003], where H is Harmonic and C is Super Harmonic.

Given an item p = (w, h), H × C operates as follows.

(1) Packing Items into Slices. If w ≥ ε then pack p into a slice of height 1 and width ti
by H (Harmonic algorithm), where ti+1 < w ≤ ti; else pack it into a slice of height 1
and width ε(1 − δ)i by H (Harmonic algorithm), where ε(1 − δ)i+1 < w ≤ ε(1 − δ)i

and δ > 0 is arbitrarily small.
(2) Packing Slices into Bins. When a new slice is required in the step, we allocate it

from a bin using algorithm C.

H⊗C is a randomized algorithm, which operates as follows: before processing begins,
we flip a fair coin. If the result is heads, then we run H × C; otherwise, we run C × H,
that is, the roles of height and width are interchanged. Note that it is possible to
derandomize H ⊗ C without increasing its performance ratio. For details, we refer to
Seiden and van Stee [2003].

THEOREM 4.1. If an online 1D bin-packing algorithm C has weighting functions
Wi

C(x) such that C(L) ≤ maxi{
∑

x∈L Wi
C(x)} + O(1), then the cost by algorithm H ⊗ C for

input L is at most

1
2(1 − δ)

⎛
⎝max

i

⎧⎨
⎩

∑
p∈L

Wi
H×C(p)

⎫⎬
⎭ + max

i

⎧⎨
⎩

∑
p∈L

Wi
C×H(p)

⎫⎬
⎭

⎞
⎠ + O(1),

and the asymptotic competitive ratio of algorithm H ⊗ C is at most

1
2(1 − δ)

max
X

⎛
⎝max

i

⎧⎨
⎩

∑
(x,y)∈X

WH(x)Wi
C(y)

⎫⎬
⎭ + max

i

⎧⎨
⎩

∑
(x,y)∈X

WH(y)Wi
C(x),

⎫⎬
⎭

⎞
⎠ ,

where δ is a parameter defined in H ⊗ C algorithm and X is any set of items that fit in
a single bin.

4.2. An instance of Super Harmonic SH +
As mentioned in Seiden [2002], it is a hard problem to find appropriate parameters
in designing an instance of Super Harmonic, especially setting ti. The parameters in
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SH+ are found through a trial-and-error way and are defined as follows:

i ti αi βi δi φ(i) ϕ(i) γi
1 1 0 1 0 0 0 0
2 0.706 0 1 0.294 1 0 0
3 0.657 0 1 0.343 2 0 0
4 0.647 0 1 0.353 3 0 0
5 0.625 0 1 0.375 4 0 0
6 0.6 0 1 0.4 5 0 0
7 0.58 0 1 0.42 6 0 0
8 0.5 0 2 0 0 0 0
9 0.42 0.162 2 0.16 0 6 1

10 0.4 0.192 2 0.2 0 5 1
11 0.375 0.2346 2 0.25 0 4 1
12 0.353 0.3004 2 0.294 1 3 1
13 0.343 0.3077 2 0.314 1 2 1
14 1/3 0 3 0 0 0 0
15 0.294 0.0816 3 0.118 0 1 1
16 1/4 0.186 4 0 0 1 1
17 1/5 0.092 5 0 0 1 1
18 1/6 0.1456 6 0 0 1 1
19 0.147 0.2162 6 0.118 0 1 2
20 1/7 0.1525 7 0 0 1 2

21 − 49 1/(i − 13) f f (i) i − 13 0 0 1 ��1/ti�
50 1/37 0 37 0 0 0 0
51 1/38 0 ∗ ∗ ∗ ∗ ∗

j = φ(i) � j Red accepted
1 0.294 15..50
2 0.343 13, 15..50
3 0.353 12, 13, 15..50
4 0.375 11..13, 15..50
5 0.4 10..13, 15..50
6 0.42 9..13, 15..50

where f f (i) = 1.35(50 − i)/37(i − 12).
Then, we have seven weighting functions for SH+, that is, Wi

C as defined in the last
section, where 1 ≤ i ≤ 7.

4.3. Previous Framework for Calculating Upper Bounds

In this section, we first introduce the previous framework for computing the upper
bound of the competitive ratio of H ⊗ SH+, then mention that the previous framework
does not work well with the instance in the last section, that is, the previous framework
does not lead to a better upper bound.

Let p = (x, y) be an item. We define the following functions.

Wi
H×C(p) = WH(x)Wi

C(y), Wi
C×H(p) = WH(y)Wi

C(x),

and

Wi, j(x, y) = WH(x)Wi
C(y) + W j

C(x)WH(y)
2

.

Then, we can obtain an upper bound on the competitive ratio R of algorithm H⊗SH+
as follows by Theorems 3.1 and 4.1, where X is any set of items that fit in a single bin.

R ≤ 1
2(1 − δ)

max
X

⎛
⎝max

1≤i≤7

⎧⎨
⎩

∑
p∈X

Wi
H×C(p)

⎫⎬
⎭ + max

1≤i≤7

⎧⎨
⎩

∑
p∈X

Wi
C×H(p)

⎫⎬
⎭

⎞
⎠

= 1
(1 − δ)

max
1≤i, j≤7,X

⎧⎨
⎩

∑
p∈X

(
Wi

H×C(p) + W j
C×H(p)

)
/2

⎫⎬
⎭

= 1
(1 − δ)

max
1≤i, j≤7,X

⎧⎨
⎩

∑
p∈X

Wi, j(x, y)

⎫⎬
⎭ . (12)
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The value of R can be estimated by the following approach.

Definition 4.2. Let f be a function mapping from (0, 1] to R
+. P( f ) is the mathe-

matical program: maximize
∑

x∈X f (x) subject to
∑

x∈X ≤ 1, over all finite sets of real
numbers X. We also use P( f ) to denote the value of this mathematical program.

LEMMA 4.3 ([SEIDEN AND VAN STEE 2003]). Let f and g be functions mapping from
(0, 1] to R

+. Let F = P( f ) and G = P(g). Then, the maximum of
∑

p∈X f (h(p))g(w(p))
over all finite multisets of items X that fit in a single bin is at most FG, where p is a
rectangle and h(p) and w(p) are its height and width, respectively.

In Seiden and van Stee [2003], f and g are defined as below:

f i, j(y) = WH(y) + Wi
C(y)

2
,

and

gi, j(x) = sup
0<y≤1

Wi, j(x, y)
f i, j(y)

.

By these definitions, we have

Wi, j(x, y) ≤ f i, j(y)gi, j(x), (13)

for all 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

4.4. A New Framework for Calculating Upper Bound

In this section, we first generalize the previous analysis framework by introducing
a new lemma and developing new functions for f and g in order to bound the total
weight in a single bin. Then we apply our new weighting functions for Super Harmonic
to algorithm H ⊗ SH+ and obtain a new upper bound for two-dimensional online bin
packing.

LEMMA 4.4. maxX{∑p∈X Wi, j(x, y)} = maxX{∑p∈X W j,i(x, y)}, where 1 ≤ i, j ≤ 7 and
X is any feasible set for one bin.

PROOF. By definition, observe that for any 1 ≤ i, j ≤ 7,

Wi, j(x, y) = W j,i(y, x). (14)

Let X = {p1, p2, . . . , pm} be a set of rectangles which fit into a single bin, where pi =
(xi, yi) is the i-th rectangle in X. If we exchange roles of x and y of pi to get new rectangles
p′

i = (yi, xi) for all i, then it is not difficult to see that the new set X′ = {p′
1, p′

2, . . . , p′
m}

is also a feasible pattern, that is, all items can fit in a single bin. On the other hand,
by Eq. (14), we have ∑

p∈X

Wi, j(p) =
∑
p′∈X′

W j,i(p′),

where 1 ≤ i, j ≤ 7. There is a one-to-one mapping between X and X′ in all the feasible
patterns. Therefore, we have this lemma.

New Functions f and g. We give new functions f and g such that (i) Lemma 4.3 can
be applied to bound the weight in a single bin, and (ii) the resultant bound is not too
loose. The new functions f and g are given as follows:

f i, j(y) = λi, jWH(y) + (1 − λi, j)Wi
C(y),
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where 0 ≤ λi, j ≤ 1. By the same approach used in Seiden and van Stee [2003], function
g is defined here:

gi, j(x) = sup
0<y≤1

Wi, j(x, y)
f i, j(y)

.

Note that in Seiden and van Stee [2003], λi, j are 1/2 for all i, j. It is not difficult to see
that (13) still holds for all 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

New Approach of Calculating P( f ). In order to use Lemma 4.3 to obtain the upper
bound on the competitive ratio R of algorithm H ⊗ C, we need to calculate P( f i, j) and
P(gi, j). Let f be one of f i, j or gi, j for 1 ≤ i, j ≤ 7. Seiden [2002] wrote a programming to
enumerate all the feasible patterns to get the bounds for P( f ). Here, we give a simple
approach by calling LP solver directly to estimate P( f ), which can be modeled as the
following mixed integer program (MIP):

max. f =
50∑

i=1

xiwi +
(

1 −
50∑

i=1

xi(ti+1 + ε)

)
× 1

1 − t51
(1)

such that
50∑

i=1

xi(ti+1 + ε) ≤ 1,

xi ≥ 0, integer.

where xi is the number of type i items in a feasible pattern, wi is the weight for an item
of type i, which is decided by function f , that is, wi = f (p) if p ∈ (ti+1, ti]. Note ti is
defined in Section 4.2. We can solve the above MIP (1) by setting ε = 0. However, this
approach does not give a good approximation solution since some infeasible solutions
are involved and affect the optimal solution too much. In order to reduce the error
caused by some bad infeasible solutions, we append some constraints that will help us
to remove some bad infeasible solutions and do not eliminate any feasible solution of
MIP (1). For example, a type i item has size larger than 0.5 if 1 ≤ i ≤ 7, then at most
one of type i can be accepted in one bin, that is, xi ≤ 1 for 1 ≤ i ≤ 7. Similarly, we have
the following inequalities:

xi ≤ 2, for 8 ≤ i ≤ 13,

xi ≤ 3, for 14 ≤ i ≤ 15,

xi ≤ i − 12, for 16 ≤ i ≤ 17,

x18 + x19 ≤ 6,

xi ≤ i − 13, for 20 ≤ i ≤ 50.

Moreover, we can add some complicated constraints such as

2x7 + x15 ≤ 3.9,

3x7 + 2x13 + x17 ≤ 5.9,

4x13 + 3x15 + x24 ≤ 11.9,

5x7 + 3.53x11 + 1.47x18 ≤ 9,

12x7 + 8x13 + 3x20 + x36 ≤ 23,

9x7 + 6x13 + 2x21 + x30 ≤ 17.

This constraints do not eliminate any feasible solution of MIP (1). For example, consider
the constraint 5x7 + 3.53x11 + 1.47x18 ≤ 9. Since an item of type 7 has size larger than
0.5, an item of type 11 has size larger than 0.353 and an item of type 18 has size
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larger than 0.147, we have 0.5x7 + 0.353x11 + 0.147x18 < 1. Equivalently, we have
5x7 + 3.53x11 + 1.47x18 < 10. It is not difficult to see that the inequality 5x7 + 3.53x11 +
1.47x18 ≤ 9 is equivalent to 5x7 + 3.53x11 + 1.47x18 < 10 when x7, x11 and x18 are
nonnegative integers. For other constraints, the arguments are analogous.

Therefore, we remodel this MIP as follows.

max. f =
50∑

i=1

xiwi +
(

1 −
50∑

i=1

xiti+1

)
× 1

1 − t51
(2)

subject to
50∑

i=1

xiti+1 ≤ 1,

xi ≤ 1, for 1 ≤ i ≤ 7, xi ≤ 2, for 8 ≤ i ≤ 13,
xi ≤ 3, for 14 ≤ i ≤ 15, xi ≤ i − 12, for 16 ≤ i ≤ 17,
x18 + x19 ≤ 6, xi ≤ i − 13, for 20 ≤ i ≤ 50,
2x7 + x15 ≤ 3.9, 3x7 + 2x13 + x17 ≤ 5.9,
4x13 + 3x15 + x24 ≤ 11.9, 5x7 + 3.53x11 + 1.47x18 ≤ 9,
12x7 + 8x13 + 3x20 + x36 ≤ 23, 9x7 + 6x13 + 2x21 + x30 ≤ 17,
xi ≥ 0, integer.

To solve MIP (2), we use a tool for solving linear and integer programs called GLPK
[GLP]. We write a program to calculate Wi, j(x, y), gi, j(x) and f i, j(y) for each (i, j), and
then call the API of GLPK to calculate P( f i, j) and P(gi, j). The values of P( f i, j) and
P(gi, j) are shown in the tables in Appendix.

Note that when we use Lemma 4.3 for the upper bound on the weight
max∀X{∑p∈X Wi, j(x, y)}, for all pairs (i, j), the calculations are independent. For dif-
ferent pairs (i, j), λi, j may be different. So, in order to get an upper bound near the true
value of max∀X{∑p∈X Wi, j(x, y)}, we have to select an appropriate λi, j . This can be done
by a trial-and-error approach.

THEOREM 4.5. For all δ > 0, the asymptotic competitive ratio of H ⊗ B is at most
2.5545.

PROOF. In accordance with the tables in Appendix, by Lemma 4.4 and Lemma 4.3,
we have

max
∀X

⎧⎨
⎩

∑
p∈X

W1,2(p)

⎫⎬
⎭ = max

∀X

⎧⎨
⎩

∑
p∈X

W2,1(p)

⎫⎬
⎭ ≤ P( f 1,2)P(g1,2) ≤ 2.5539.

max
∀X

⎧⎨
⎩

∑
p∈X

W1,6(p)

⎫⎬
⎭ = max

∀X

⎧⎨
⎩

∑
p∈X

W6,1(p)

⎫⎬
⎭ ≤ P( f 6,1)P(g6,1) ≤ 2.5545.

max
∀X

⎧⎨
⎩

∑
p∈X

W2,5(p)

⎫⎬
⎭ = max

∀X

⎧⎨
⎩

∑
p∈X

W5,2(p)

⎫⎬
⎭ ≤ P( f 5,2)P(g5,2) ≤ 2.5340.

max
∀X

⎧⎨
⎩

∑
p∈X

W2,6(p)

⎫⎬
⎭ = max

∀X

⎧⎨
⎩

∑
p∈X

W6,2(p)

⎫⎬
⎭ ≤ P( f 6,2)P(g6,2) ≤ 2.5364.
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For all the other (i, j), by Lemma 4.3, we have

max
∀X

⎧⎨
⎩

∑
p∈X

Wi, j(p)

⎫⎬
⎭ ≤ P( f i, j)P(gi, j) ≤ P( f 1,1)P(g1,1) ≤ 2.5545.

Remarks. If we use the weighting functions from Seiden [2002] and the previous anal-
ysis framework, we find that the competitive ratio is at least 3.04. (run our program-
ming 2DHSH.c like “./2DHSH+.exe old > yourfile”) Even if we use the new weighting
function, by the previous analysis framework, the competitive ratio is still at least 3.04,
by running our programming 2DHSH.c like “./2DHSH+.exe new1 > yourfile”. We also
find that if we use the old weighting function from Seiden [2002] with the new analysis
framework, the competitive ratio is at least 2.79. (run our programming 2DHSH.c like
“./2DHSH+.exe old2 > yourfile”) The reason is that Lemma 4.3 does not work very
well with the old weight function, that is, the resulting value F · G is away from the
maximum weight of items in a single bin.

5. CONCLUDING REMARKS

When the parameters in Super Harmonic such as αi, βi, γi and φ(i) and ϕ(i) are given, we
can calculate the weighting functions of Super Harmonic W j

B(·). Then, the weighting
functions Wi, j(x, y) for algorithm H ⊗ SH+ can be calculated as well as f i, j(y) and
gi, j(x). For each (i, j), we call the API of GLPK to solve P( f i, j) and P(gi, j).

To use our program under linux system:

—Install GLPK,
—Compile: “gcc -o 2DHSH+.exe 2DHSH+.c -lglpk”
—Run: “./2DHSH+.exe new2 > yourfile”

If there is an error message like “Could not load *.so” when you compile the
source, then try to set "LD LIBRARY PATH" as follows: “LD LIBRARY PATH=
$LD LIBRARY PATH:/usr/local/lib”, then “export LD LIBRARY PATH”.

When we use the tool for solving the mixed integer programs, there are two files
which are necessary: one is the model file for the linear or integer program itself
(refer to Appendix), and the other is the data file where the data is stored. We write
a program to generate the data and then call the tool GLPK. (Actually, we call the
API (Application Program Interface) of GLPK. To download the source file, go to:
http://sites.google.com/site/xinhan2009/Home/files/2DHSH.c).

Our framework can be applied to 3D online bin packing to result in an algorithm
H × H ⊗ SH+ with its competitive ratio 2.5545 × 1.69103(≈ 4.3198).

APPENDIXES

A. VALUES OF F I ,J AND GI ,J

(i, j) = (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)
λi, j 0.500000 0.500000 0.540000 0.550000 0.565000 0.565000 0.600000

P( f i, j) 1.598272 1.598272 1.605095 1.606845 1.609490 1.609490 1.615665
P(gi, j) 1.598272 1.597872 1.574422 1.581742 1.585430 1.587508 1.575580

P( f i, j)P(gi, j) 2.554474 2.553834 2.527096 2.541614 2.551734 2.555079 2.545610

(i, j) = (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)
λi, j 0.500000 0.500000 0.530000 0.550000 0.565000 0.565000 0.600000

P( f i, j) 1.597328 1.597328 1.597148 1.597028 1.596938 1.596938 1.596729
P(gi, j) 1.609235 1.598326 1.586301 1.595016 1.602278 1.604268 1.589545

P( f i, j)P(gi, j) 2.570476 2.553051 2.533557 2.547285 2.558739 2.561917 2.538073
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(i, j) = (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7)
λi, j 0.500000 0.500000 0.530000 0.550000 0.565000 0.565000 0.600000

P( f i, j) 1.573676 1.573676 1.572837 1.572777 1.572732 1.572732 1.572627
P(gi, j) 1.609235 1.598326 1.586301 1.595016 1.602278 1.604268 1.589545

P( f i, j)P(gi, j) 2.532414 2.515247 2.494992 2.508604 2.519954 2.523084 2.499762

(i, j) = (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7)
λi, j 0.500000 0.500000 0.535000 0.550000 0.565000 0.565000 0.600000

P( f i, j) 1.581245 1.581245 1.577140 1.575380 1.573621 1.573621 1.569515
P(gi, j) 1.609235 1.598326 1.586855 1.595016 1.602278 1.604268 1.589545

P( f i, j)P(gi, j) 2.544594 2.527344 2.502692 2.512755 2.521378 2.524510 2.494814

(i, j) = (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7)
λi, j 0.500000 0.500000 0.535000 0.550000 0.565000 0.565000 0.600000

P( f i, j) 1.585370 1.585370 1.580113 1.577860 1.575607 1.575607 1.570350
P(gi, j) 1.609542 1.598326 1.587240 1.595374 1.602747 1.604737 1.589740

P( f i, j)P(gi, j) 2.551720 2.533939 2.508019 2.517277 2.525300 2.528436 2.496449

(i, j) = (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7)
λi, j 0.500000 0.500000 0.530000 0.550000 0.565000 0.565000 0.600000

P( f i, j) 1.586853 1.586853 1.582237 1.579160 1.576853 1.576853 1.571468
P(gi, j) 1.609785 1.598326 1.586682 1.595657 1.603117 1.605107 1.589894

P( f i, j)P(gi, j) 2.554493 2.536309 2.510507 2.519798 2.527881 2.531019 2.498468

(i, j) = (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7)
λi, j 0.500000 0.515000 0.535000 0.555000 0.565000 0.570000 0.600000

P( f i, j) 1.568686 1.560602 1.549821 1.539044 1.533655 1.530958 1.517143
P(gi, j) 1.621572 1.609605 1.602462 1.612258 1.622822 1.638219 1.624359

P( f i, j)P(gi, j) 2.543738 2.511952 2.483529 2.481335 2.488849 2.508043 2.464386

B. MODEL FILE FOR GLPK AND USAGE OF OUR PROGRAM 2DHSH+.C

param I:=50;

param c{i in 1..I}>=0;

param w{i in 1..I};

var x{i in 1..I}, integer, >=0;

maximize f: sum{i in 1..I} w[i]*x[i] + (1-sum{i in 1..I} c[i]*x[i]) * 38/37;

s.t. x0: sum{i in 1..I} c[i]*x[i] <= 1;
x1: sum{i in 1..7} x[i] <= 1;
x7: sum{i in 8..13} x[i] <= 2;
x14: x[14] <= 3;
x15: x[15] <= 3;

x16: x[16] <= 4;
x17: x[17] <= 5;
x18: x[18] + x[19] <= 6;
y715: 2*x[7] + x[15] <= 3.9;
y71317: 3*x[7] + 2*x[13] + x[17] <= 5.9;
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y131524: 4*x[13] + 3*x[15] + x[24] <= 11.9;
y71118: 5*x[7] + 3.53*x[11] + 1.47 *x[18] <= 9;
y7132036: 12*x[7]+8*x[13] + 3*x[20] + x[36] <=23;
y7132130: 9*x[7] + 6*x[13] + 2*x[21] + x[30] <=17;
others{i in 20..50}: x[i] <= i -13;

end;
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