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Abstract. In the one-way trading problem, a seller has some product
to be sold to a sequence σ of buyers u1, u2, . . . , uσ arriving online and he
needs to decide, for each ui, the amount of product to be sold to ui at the
then-prevailing market price pi. The objective is to maximize the seller’s
revenue. We note that most previous algorithms for the problem need to
impose some artificial upper bound M and lower bound m on the market
prices, and the seller needs to know either the values of M and m, or
their ratio M/m, at the outset. Moreover, the performance guarantees
provided by these algorithms depend only on M and m, and are often too
loose; for example, given a one-way trading algorithm with competitive
ratio Θ(log(M/m)), its actual performance can be significantly better
when the actual highest to actual lowest price ratio is significantly smaller
than M/m.

This paper gives a one-way trading algorithm that does not impose any
bounds on market prices and whose performance guarantee depends di-
rectly on the input. In particular, we give a class of one-way trading algo-
rithms such that for any positive integer h and any positive number ϵ, we
have an algorithm Ah,ϵ that has competitive ratio O(log r∗(log(2) r∗) . . .
(log(h−1) r∗)(log(h) r∗)1+ϵ) if the value of r∗ = p∗/p1, the ratio of the
highest market price p∗ = maxi pi and the first price p1, is large and sat-
isfy log(h) r∗ > 1, where log(i) x denotes the application of the logarithm
function i times to x ; otherwise, Ah,ϵ has a constant competitive ratio
Γh. We also show that our algorithms are near optimal by showing that
given any positive integer h and any one-way trading algorithm A, we
can construct a sequence of buyers σ with log(h) r∗ > 1 such that the
ratio between the optimal revenue and the revenue obtained by A is at
least Ω(log r∗(log(2) r∗) . . . (log(h−1) r∗)(log(h) r∗)).
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1 Introduction

The one-way trading problem, which was introduced by El-Yaniv et al.[10, 11]
and Borodin et al.[6], involves selling a fixed amount of a product to a sequence
of buyers, with the objective of maximizing the seller’s revenue. A major dif-
ference between this problem and other general revenue maximization problems
commonly studied in economics and computer science is that for the general
problems, the seller has some control of the prices; he can determine the amount
and the price of product to be sold to each buyer. However, for the one-way trad-
ing problem, a seller has no control of the prices, and when a buyer arrives, he
can only determine the amount of the product to be sold at the then-prevailing
market price. There are many applications that can be modeled as a one-way
trading problem. One example is money-exchange, in which a seller has some
initial asset, say US dollars, and he wants to sell them at the price of some target
asset, say yen. In fact, the one-way trading problem is formulated as a money
exchange problem in [10].The exchange rate fluctuates everyday. To maximize
the amount of yen gained, the seller needs to decide, for each day, the right
amount of US dollars to be changed at the exchange rate used on that day.
Other applications such as stock selling in a stock market and electricity selling
in a power grid can also be modeled naturally as one-way trading problem.

It is easy to solve the offline version of the problem; if the seller knows all
the future prices, he can simply wait for the highest price and then sell all his
product at that price. However, our problem is online in nature, and without
knowledge of future prices, a player cannot be sure whether the current price is
the highest. More formally, in our one-way trading problem, there is a seller who
has L units of product to be sold, and there is a sequence of buyers u1, u2, . . . , uσ

arriving. When a buyer ui arrives, the then-prevailing unit price pi is revealed
and the seller needs to decide the amount xi of product to be sold to ui at price
pi, and the objective is to maximize

∑
i pixi subject to

∑
i xi ≤ L. The main

features of the problem that make it difficult and interesting include: (1) the
seller has no control of the prices, which fluctuates with time, and (2) he does
not have any knowledge about the future prices, i.e., when ui arrives, he does
not know any price pj where j > i, and (3) he needs to decide the amount of
product to be sold to a buyer ui as soon as ui arrives.

Previous results.
After introducing the one-way trading problem, El-Yaniv et al. gave in [11] an al-
gorithm for the problem that works under the assumption that there are a lower
bound m and an upper bound M on the market prices such that pi ∈ [m,M ]
for all pi, and that these bounds m and M are known to the algorithm. They
proved that their algorithm has competitive ratio O(log(M/m)), and showed
that it is optimal by deriving a matching lower bound. They also studied the
case when only the ratio M/m is known, and gave an optimal algorithm for this
case. Without knowledge of M/m in advance, an algorithm with competitive ra-
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tio O(log(M/m) log1+ϵ(log(M/m))) was given in [11]. 4 More recently, Fujiwara
et al.[12] have studied the one-way trading problem under the assumption that
the input prices follow some given probability distribution. In [9], Chen et al. in-
troduced the planning game problem, which is similar to the one-way trading
problem, and they gave an algorithm for their problem which imposes some d-
ifferent constraint on the prices: instead of assuming that pi ∈ [m,M ] for some
price range [m,M ], their algorithm assumes that the difference between any two
consecutive prices pi and pi+1 is not too large, or more precisely, they assumed
that for any i, pi/β ≤ pi+1 ≤ αpi for some fixed α, β > 1. They showed that if

there are n buyers, their algorithm has competitive ratio nαβ−(n−1)(α+β)+(n−2)
αβ−1 .

In [11], El-Yaniv et al. also studied another problem similar to the one-way
trading problem, namely the 1-max-search problem, in which there is a sequence
of prices coming online, and when a price arrives, we have to decide immediate-
ly whether we accept the price or not. The objective is to accept the highest
price. By assuming that all prices fall in the range [m,M ] and these bounds m
and M are known, they gave an algorithm for this problem with competitive
ratio O(

√
M/m), i.e., the ratio of the highest price and the price accepted by

the algorithm is O(
√
M/m). In [14], Lorenz et al. generalized the 1-max-search

problem to the k-max-search problem, in which the objective is to accept the k
highest prices. By requiring that the bounds m and M are known, they gave an
optimal algorithm for the problem, which has competitive ratio k+1

√
kk(M/m).

For recent related research on revenue maximization that allows price setting,
we mention the auction problem [4, 13] and the pricing problem [1–3, 5, 7, 8]. For
the auction problem, there are bidders competing for the products by sending
their bids to the auctioneer, and the auctioneer chooses some bidders, and de-
termines the price and amount of products to be sold to each chosen bidder. For
the pricing problem, we have studied an interesting version in [16] in which the
seller has m units of products to sell and each buyer has a valuation (i.e., price
at which he is willing to buy) represented by a function v(x), which gives the
valuation per unit if x units are purchased. When the highest valuation v∗ is
known, we gave an algorithm with competitive ratio O(log v∗). Moreover, this
algorithm was shown to be asymptotically optimal by giving a matching lower
bound. We also studied in [17] an extension of this problem, in which there are
multiple types of products and each user is interested in a particular bundle of
products.

Our Contribution.
In this paper, we consider the unbounded one-way trading algorithm that does
not need to impose any constraint on the market prices, and we derive a bound
on its competitive ratio that depends directly on the input, or more precisely,
depends on r∗ = p∗/p1, the ratio of the highest price p∗ = maxi pi and the

4 Remark 4 in [11] said that it is possible to achieve an upper bound of
O(log(M/m)(log(log(k)(M/m)))1+ϵ), however, this bound contradicts with the gen-
eral lower bound of the competitive ratio in this paper. Thus, the claimed upper
bound in [11] does not hold for general case.
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first price p1 (in fact, our algorithm will treat p1 as the lowest price and ignore
any prices lower than p1). Furthermore, the algorithm does not make any as-
sumption on the number of prices pi in the input sequence and an adversary
can terminate the sequence at any time by sending buyers with extremely low
prices. In fact, we propose a generic one-way trading algorithm whose behav-
ior depends on some given function f(x), which can be any function satisfying
the following conditions: (i) It is non-increasing, and (ii)

∫∞
1

f(t)dt is bounded.
Roughly speaking, f(x) helps us determine the amount of products the seller
should sell at price x. We show that by using f(x) in our generic algorithm, we
have a one-way trading algorithm with competitive ratio O( 1

r∗f(r∗) ). Thus, to

get a small competitive ratio, it suffices to find a f(x) that satisfies (i) and (ii),
and f(x) is as large as possible. We observe that the following class of functions
satisfies our requirements:

1

x log x(log(2) x) . . . (log(h−1) x)(log(h) x)1+ϵ
,

where h is any positive integer and ϵ is any positive real number, and where
log(k) x denotes the function log log . . . log x, which applies the logarithm function
k times to x. Based on these functions, (a different function for each different
value of h and ϵ) our generic algorithm gives us a class of one-way trading
algorithms such that for any fixed positive integer h and positive number ϵ,
we have an algorithm Ah,ϵ such that when log(h) r∗ > 1, Ah,ϵ has competitive

ratio O((log r∗) . . . (log(h−1) r∗)(log(h) r∗)1+ϵ); otherwise, its competitive ratio
is bounded by some constant Γh depending only on h. We also show that the
bounds are almost tight by employing the divergence of the same class of function
when ϵ = 0 to design an adversary such that, given any online algorithm A for
the problem, the adversary gives a sequence of buyers σ such that the ratio
between the revenue obtained by an optimal offline algorithm on σ and that
obtained by A is Ω((log r∗) . . . (log(h−1) r∗)(log(h) r∗)) for any positive integer
h. Moreover, we show that our results still hold if the amount of products sold
to each buyer is constrained to be at most a maximum amount specified by the
buyer.

2 Upper bound

Since products could be sold fractionally, we may assume, without loss of gen-
erality, that the seller has one unit of product to sell. The offline version is easy
to solve: the whole product is assigned to the buyer with the highest market
price. However, for the online version, we have no information about the future
prices, including the bound of the highest market price. If the whole amount of
product has been sold by the time a buyer with very high market price arrives,
the performance will be poor. Thus, we must keep or reserve some amount in
case there is a future buyer with a higher market price. On the other hand, if we
reserve too much for the possible buyer with higher market price and assign very
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little to the buyers who have come already, the performance will be also poor
since the possible buyer with higher price may not come. Thus, to have a good
performance, the amount sold and the amount remaining should be balanced
nicely.

For the purposes of illustrating the main ideas of our algorithm only, consider
the case when all prices are non-negative integers; in general, our algorithm is
not restricted to integer prices. We make the following observations.

– Our algorithm should only sell products when the price is strictly higher
than the maximum price that we have seen so far. For example, suppose the
input sequence of prices is 1, 4, 2, 3, 6, 5, 12. We can ignore the prices 2, 3, 5
and do not sell any at these prices because the optimal offline algorithm will
ignore these prices anyway; if our solution is competitive for the input 1, 4,
6, 12, it will also be competitive for the input 1, 4, 2, 3, 6, 5, 12. Therefore,
we can focus on handling price sequences that are strictly increasing.

– If we have a good solution for a sequence of strictly increasing and consecu-
tive prices, i.e., for the price sequence 1, 2, 3, ..., p∗, then we can easily modify
it to get a good solution for any price sequences that are strictly increasingly
with the highest price p∗. For example, suppose that for the prices 1, 2, 3, 4,
our algorithm sells an amount δ1, δ2, δ3, δ4 of products at prices 1, 2, 3, 4,
respectively and thus obtains a revenue of R = δ1 + 2δ2 + 3δ3 + 4δ4. Then,
for the strictly increasing price sequence 1, 3, 4, we can sell an amount of δ1
at price 1, δ2 + δ3 at price 3, and δ4 at price 4. Then, the revenue we obtain
is δ1 + 3(δ2 + δ3) + 4δ4 ≥ R.

Therefore, our algorithm can focus on strictly increasing and consecutive
price sequences. For these sequences, we only need to determine the amount δi
of products to be sold at price pi. Since there is only one unit of product, we
must have

∑+∞
i=1 δi ≤ 1. Another property that is desirable is that the δis should

be decreasing, i.e., δ1 > δ2 > δ3 > ...5; the leading δis should be large so that we
can sell enough products even if the market crashes very early, i.e., the adversary
declares immediately that there are no more buyers, or buyers with extremely
low market prices. Then, for any input price sequence with highest value p∗, our
algorithm will have revenue at least δ1 + 2δ2 + ...+ p∗δ∗ ≥ (p∗)2δ∗/2, and since
no algorithm (including the offline optimal algorithm) can have revenue higher
than p∗, the competitive ratio of this algorithm is O(1/(p∗δ∗)) (Lemma 1).

Now we give the algorithm. The algorithm assigns amounts based on a non-
increasing function f(x), which computes the value of δi such that

∫ +∞
0

f(x)dx =

1,
∫ 1

0
f(x)dx = δ1,

∫ 2

1
f(x)dx = δ2, ...,

∫ i

i−1
f(x)dx = δi.

Let (p1, p2, ..., p
∗) be the sequence of strictly increasing transacted prices, i.e.

prices at which the seller sells some (non-zero) amount to the buyer. For ease of
analysis, we can normalize this sequence to be (r1, r2, ..., r

∗) = (1, p2/p1, ..., p
∗/p1)

where the first price r1 is 1 and the normalized maximum r∗ is the ratio of the

5 The decreasing of δi can be argued easily. WLOG, assume that p1 < p2 and δ1 ≤ δ2,
we can show that the competitive ratio can be decreased by moving a small amount
from δ2 to δ1. This process can continue until δ1 > δ2.
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highest transacted price p∗ to the lowest transacted price p1. Any buyers with
market price less than p1 will be ignored. For the sake of simplicity, we shall
denote ri as the normalized price of the i-th buyer and r∗ as the highest normal-
ized price. The online selling strategy is described below as Algorithm 1. Note
that Algorithm 1 can handle non-integer prices.

Algorithm 1 : Online Selling

Initially, let cr∗ ← 0. {}cr∗ is the current highest normalized price.
repeat

when a buyer with normalized market price r comes
if r > cr∗ then

Assign
∫ r

cr∗
f(x)dx products to this buyer.

cr∗ ← r
end if

until no buyer comes

Lemma 1. Suppose r∗ is the highest normalized market price, if f(.) is a non-
increasing function, the competitive ratio is at most O( 1

r∗·f(r∗) ).

Proof. The revenue received from Algorithm 1 is

r1

∫ r1

0

f(r)dr + r2

∫ r2

r1

f(r)dr + ...+ r∗
∫ r∗

r∗−
f(r)dr ≥

∫ r∗

0

r · f(r)dr

where r∗− is the second highest normalized market price in the sequence.
Since f(r) is non-increasing, the revenue received from Algorithm 1 is at least∫ r∗

0

r · f(r)dr ≥ f(r∗)

∫ r∗

0

rdr = f(r∗) · (r
∗)2

2
.

Note that the maximum revenue is r∗ given that the seller has only one unit to
sell, and therefore, the competitive ratio is at most

r∗∫ r∗

0
r · f(r)dr

= O(
1

r∗ · f(r∗)
).

⊓⊔

In order to get a good performance, we need to find a non-increasing function
f(x) such that

∫∞
0

f(x)dx converges to 1, or more simply,
∫∞
0

f(x)dx = c for
some constant c (as we can normalize it to 1 later), and for any x > 1, f(x)
is as large as possible. After assuming the first market price is 1, we may just
analyze the property of

∫∞
1

f(x)dx. It is well known that
∫∞
1

1
xdx diverges and

thus f(x) = 1/x is too large. Similarly as
∫∞
1

1
x1+ϵ dx converges for any ϵ > 0,

f(x) = 1/(x ·xϵ) is too small. This suggests that f(x) = 1/(xξ(x)) where ξ(x) is
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an increasing function and ξ(x) = o(xϵ) for any ϵ > 0. A good candidate for ξ(x)
is a poly-log function of x. This motivates us to focus on the class of functions
f(x) = 1/(x log x log(2) x . . . (log(i) x)1+ϵ) where ϵ > 0 and log(i) x denotes the
application of the logarithm function i times to x, where i ≥ 0. Now we define
the class of functions formally.

Definition 1. Assume real number ϵ ≥ 0, integer i ≥ 0, b0 = 1, and bi+1 = ebi ,
define function qi,ϵ(x) for x ≥ bi as follows.

qi,ϵ(x) =

{
x1+ϵ if i = 0
x · qi−1,ϵ(lnx) if i > 0

Thus, q1,ϵ(x) = x · (lnx)1+ϵ, q2,ϵ(x) = x · (lnx) · (ln(2) x)1+ϵ, and qi,ϵ(x) =

x · (lnx) · (ln(2) x) · ... · (ln(i) x)1+ϵ. The following lemma gives the condition when∫ +∞
bi

1
qi,ϵ(x)

dx converges.

Lemma 2. For each integer i ≥ 0,
∫ +∞
bi

1
qi,ϵ(x)

dx converges if and only if ϵ > 0,

in particular,
∫ +∞
bi

1
qi,0(x)

dx diverges.

Proof. By induction on i. When i = 0, b0 = 1, it is easy to see that
∫ +∞
b0

1
q0,ϵ(x)

dx =∫ +∞
1

1
x1+ϵ dx converges if and only if ϵ > 0. Assume that the hypothesis is

true for i − 1. As bi = ebi−1 , we have
∫ +∞
bi

1
qi,ϵ(x)

dx =
∫ +∞
ebi−1

1
x·qi−1,ϵ(ln x)dx =∫ +∞

bi−1

1
qi−1,ϵ(y)

dy, where y = lnx. Thus,
∫ +∞
bi

1
qi,ϵ(x)

dx converges if and only if
ϵ > 0. ⊓⊔

The following theorem shows the competitive ratio of Algorithm 1 by con-
structing f(x) from qi,ϵ(x), i.e., proving that the area under f(x) when x > 0 is
bounded and f(x) is non-increasing and defined for all x > 0.

Theorem 1. Suppose r∗ is the highest normalized market price, there exists an
online algorithm Ah,ϵ for the unbounded one-way trading problem with competi-
tive ratio O(1) if r∗ < bh and O(qh−1,ϵ(log r

∗)) if r∗ ≥ bh for any fixed positive
integer h and any real number ϵ > 0.

Proof. For any fixed positive integer h, bh is a constant such that ln(h) bh = 1.
From Lemma 2, for any real number ϵ > 0, suppose

∫ +∞
bh

1
qh,ϵ(x)

dx converges to

a constant, say c. As ln(h)(x) ≥ 1 when x ≥ bh, we define function fh,ϵ(x) as
follows.

fh,ϵ(x) =

{
1

bh+c·qh,ϵ(bh)
if 0 < x < bh

qh,ϵ(bh)
bh+c·qh,ϵ(bh)

· 1
qh,ϵ(x)

if x ≥ bh

It can be verified that
∫ +∞
0

fh,ϵ(x)dx = 1 and fh,ϵ(x) is non-increasing (since
fh,ϵ(x) = fh,ϵ(bh) is a constant when 0 < x < bh and fh,ϵ(x) is decreasing when
x ≥ bh), i.e., fh,ϵ(x), which depends on h and ϵ, satisfies the requirement of
Algorithm 1, which gives Ah,ϵ. By Lemma 1, we can analyze the competitive
ratio w.r.t. the highest market price r∗.



8 Francis Y.L. Chin et al.

– If r∗ < bh, the competitive ratio is O(
bh+c·qh,ϵ(bh)

r∗ ), which is O(1).
– If r∗ ≥ bh, the competitive ratio is O( 1

r∗·fh,ϵ(r∗)
), which is O(qh−1,ϵ(log r

∗)),

i.e., O(log r∗ log(2) r∗...(log(h) r∗)1+ϵ).
⊓⊔

Now we consider the case where each buyer has a maximum amount of prod-
ucts he wants to buy at the market price. This variant can be regarded as an
extension of the previous part. Algorithm 1 assigns products only based on the
buyer’s market price with no regard for how much the buyer is able to buy, i.e.,
the buyer’s quota. Modify Algorithm 1 by taking into consideration the buyer’s
quota, we have the following conclusion. (For details, please see appendix.)

Theorem 2. For the unbounded one-way trading problem, if each buyer has a
maximum amount of products he wants to buy at the market price, there is an on-
line selling strategy with competitive ratio O(1) if r∗ < bh and O(qh−1,ϵ(log r

∗))
if r∗ ≥ bh for any fixed integer h and any real number ϵ > 0, where r∗ is the
highest normalized market price.

3 Lower bound

In this part, we present a lower bound for the competitive ratio of the unbounded
one-way trading problem. We will show that the lower bound and the upper
bound given in Section 2.1 are almost tight; in another words, Algorithm 1 is
near optimal.

To derive a lower bound on the competitive ratio, we give an adversary that
determines the sequence of prices p1, p2, p3 . . ., and whenever the seller has sold
some products, the adversary checks the total revenue the seller has accumulated
so far, and if it is not competitive, the adversary declares immediately that there
are no more buyers, or buyers with extremely low market price, i.e., the market
“crashes”. The prices pi’s grow exponentially, i.e., pi = Θ(ei). The adversary also
determines for each i a bound ∆i, which is the minimum amount of product sold
during the first i prices in order to prevent the market crashes. In other words, if
the amount of product sold at price p1, p2, . . . , pk are s1, s2, . . . , sk, respectively,
and s1 ≥ ∆1, s1+s2 ≥ ∆2, . . . ,

∑j−1
k=1 sk ≥ ∆j−1, and

∑j
k=1 sk < ∆j , the market

crashes immediately at price pj . Note that in such case, the seller has sold at
most ∆j − ∆j−1 unit of product at pj , and since pj is much larger than all
previous prices, we would be able to show that the total revenue obtained by
the seller will be dominated by the last transaction and is O((∆j − ∆j−1)pj).
On the other hand, an offline algorithm can sell the whole unit of product at pj
and gets the maximum revenue pj . Thus the competitive ratio of the algorithm
is Ω( 1

∆j−∆j−1
) if the adversary “crashes” the market after pj . The challenge for

getting a large lower bound is to decide the ∆′
is such that (i) they are unbounded

(i.e., ∆i → ∞ when i → ∞) so that the seller will fail eventually to meet the
requirement on the minimum amount of product sold, and (ii) ∆i −∆i−1 is as
small as possible. The bound ∆i =

1
e+1 +

1
e+2 + . . .+ 1

e+i can be considered as a
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good candidate, which will lead us to a lower bound of Ω(i) or Ω(log pi) when
the highest price pi = O(ei). Below, we describe some other ∆i’s that will lead
us to a substantially larger bound.

From Lemma 2, we know that qh,0(x) is a good candidate such that there

is a bh > 0 causing
∫ +∞
bh

1
qh,0(x)

dx to diverge, where ln(h) bh = 1. The adversary

in Algorithm 2 uses
∑j

k=1
1

qh,0(bh+k−1) as a candidate for ∆j as mentioned be-

fore and sj is the amount of products assigned to buyer uj . Since 1/qh,0(x) is

monotone decreasing and
∫ +∞
bh

1
qh,0(x)

dx diverges for any fixed integer h > 0, the

sum
∑∞

k=1
1

qh,0(bh+k−1) diverges. Therefore, Algorithm 2 must be terminated on

some buyer since the seller has only one unit of product.

Algorithm 2 : Adversary for online selling

Assume that the seller has one unit of product to sell.
Let j ← 0.
repeat

Let j ← j + 1.
Send buyer uj with market price ebh+j−1 to the seller.
The seller sells sj product to buyer uj .

until
∑j

k=1
sk ≤

∑j

k=1
1

qh,0(bh+k−1)

Assume the adversary stops sending buyers after the arrival of buyer uj .

From Algorithm 2, the total revenue received is
∑j

k=1 sk · ebh+k−1, while the
maximum offline revenue is ebh+j−1. The following lemma estimates the total
revenue received from Algorithm 2.

Lemma 3.
∑j

k=1 sk · ebh+k−1 = O( ebh+j−1

qh,0(bh+j−1) )

Proof. From the adversary’s strategy, at any step j′ < j,

j′∑
k=1

sk >

j′∑
k=1

1

qh,0(bh + k − 1)
,

and in the last step j,

j∑
k=1

sk ≤
j∑

k=0

1

qh,0(bh + k − 1)
.

Therefore,
j∑

k=1

sk · ebh+k−1 ≤
j∑

k=1

ebh+k−1

qh,0(bh + k − 1)
.

In Lemma 4, we show that

ebh+k

qh,0(bh + k)
· qh,0(bh + k − 1)

ebh+k−1
=

e · qh,0(bh + k − 1)

qh,0(bh + k)
≥ c
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for some constant c > 1 and any k ≥ 1. Thus,

j∑
k=1

ebh+k−1

qh,0(bh + k − 1)
≤ ebh+j−1

qh,0(bh + j − 1)
· 1

1− 1/c
= O(

ebh+j−1

qh,0(bh + j − 1)
).

⊓⊔

Lemma 4. For any integer h ≥ 1 and k ≥ 1, there exist a constant c > 1, such
that

e · qh,0(bh + k − 1)

qh,0(bh + k)
≥ c

Proof. Based on the logarithmic characteristic of qh,0(x), i.e., the increasing rate

is decreasing with the increase of x,
qh,0(bh+k−1)
qh,0(bh+k) achieves the lowest value when

k = 1. Thus, it is sufficient to prove the following inequality for any integer
h ≥ 1.

e · qh,0(bh)
qh,0(bh + 1)

≥ c > 1 (1)

We prove Inequality (1) by induction on h.

Basis step: h = 1. As bh = e,

e · q1,0(b1)
q1,0(b1 + 1)

=
e · b1 · ln b1

(b1 + 1) · ln(b1 + 1)
≈ 1.513 > 1

Induction step: Assume Inequality (1) is true for h,

e · qh,0(bh)
qh,0(bh + 1)

=
e · bh · ln bh · ... · ln(h) bh

(bh + 1) · ln(bh + 1) · ... · ln(h)(bh + 1)

=
e · bh
bh + 1

h∏
h′=1

ln(h
′) bh

ln(h
′)(bh + 1)

≥ c > 1 (2)

Then for h+ 1,

e · qh+1,0(bh+1)

qh+1,0(bh+1 + 1)
=

e · bh+1 · ln bh+1 · ... · ln(h+1) bh+1

(bh+1 + 1) · ln(bh+1 + 1) · ... · ln(h+1)(bh+1 + 1)

=
e · bh+1

bh+1 + 1

h+1∏
h′=1

ln(h
′) bh+1

ln(h
′)(bh+1 + 1)

(3)

We shall prove that e·bh+1

bh+1+1

∏h+1
h′=1

ln(h′) bh+1

ln(h′)(bh+1+1)
as given in Equation (3) is

larger than
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e·bh
bh+1

∏h
h′=1

ln(h′) bh
ln(h′)(bh+1)

as given in Equation (2) term by term. Since ln bh+1 = bh,

we have ln(bh+1 + 1) < bh + 1. Thus, for any 2 ≤ h′ ≤ h+ 1,

ln(h
′) bh+1

ln(h
′)(bh+1 + 1)

>
ln(h

′−1) bh

ln(h
′−1)(bh + 1)

As for the first few terms, because ln bh+1 = bh and ln(bh+1 + 1) = bh + δ,
where δ ≪ 1, we have

bh+1 · ln bh+1

(bh+1 + 1) · ln(bh+1 + 1)
≥ bh

bh + 1

Thus, we have shown that

e · qh,0(bh + k)

qh,0(bh + k + 1)
≥ c > 1.

⊓⊔

Based on the above analysis, Theorem 3 gives the lower bound on the com-
petitive ratio of the unbounded one-way trading problem.

Theorem 3. The competitive ratio of the unbounded one-way trading problem
is at least Ω(qh,0(log r

∗)) = Ω(log r∗ · log(2) r∗ · ... · log(h+1) r∗) where r∗ is the
highest normalized market price and h > 0 is any fixed integer.

Proof. Assume that Algorithm 2 terminates on some buyer uj . As mentioned be-

fore, the revenue received from Algorithm 2 is
∑j

k=1 sk·ebh+k−1 = O( ebh+j−1

qh,0(bh+j−1) )

(Lemma 3), and the maximum offline revenue is ebh+j−1 by assigning the whole
product to buyer uj with the market price ebi+j−1. As pj = ebh+j−1, the perfor-

mance ratio is at least Ω(qh,0(bh + j − 1)) = Ω(log pj log
(2) pj ... log

(h+1) pj)) =

Ω(log r∗ log(2) r∗... log(h+1) r∗)) since bh can be regarded as a constant and r∗ =
pj/p1 = ej−1. ⊓⊔

4 Conclusion

There are many real applications where the market price fluctuates and cannot
be controlled by the seller. It is a problem of practical interest to find a good
revenue-maximizing (or profit-maximizing) selling strategy for the seller in such
a situation. This paper has made an attempt towards this direction. However,
the strategy prescribed in this paper may not be too practical in the sense that,
for example, products are not sold when the market price decreases. The reality
is that, in practice, the seller may have a fixed time-frame to sell and cannot wait
forever for the buyer with the highest price to arrive, and price movements from
one moment to the next may not be drastic or arbitrary. Additional assumptions
and/or constraints to the unbounded one-way trading problem to reflect such
practical realities will be studied in our next attempt and hopefully could lead
to more practical selling strategies.
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