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ABSTRACT

Protein complexes play a critical role in many biological processes. Identifying the com-

ponent proteins in a protein complex is an important step in understanding the complex

as well as the related biological activities. This paper addresses the problem of predicting

protein complexes from the protein-protein interaction (PPI) network of one species using a

computational approach. Most of the previous methods rely on the assumption that proteins

within the same complex would have relatively more interactions. This translates into dense

subgraphs in the PPI network. However, the existing software tools have limited success.

Recently, Gavin et al. (2006) provided a detailed study on the organization of protein

complexes and suggested that a complex consists of two parts: a core and an attachment.

Based on this core-attachment concept, we developed a novel approach to identify complexes

from the PPI network by identifying their cores and attachments separately. We evaluated

the effectiveness of our proposed approach using three different datasets and compared the

quality of our predicted complexes with three existing tools. The evaluation results show

that we can predict many more complexes and with higher accuracy than these tools with an

improvement of over 30%. To verify the cores we identified in each complex, we compared

our cores with the mediators produced by Andreopoulos et al. (2007), which were claimed to

be the cores, based on the benchmark result produced by Gavin et al. (2006). We found that

the cores we produced are of much higher quality ranging from 10- to 30-fold more correctly

predicted cores and with better accuracy. Availability: http://alse.cs.hku.hk/complexes/.
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1. INTRODUCTION

BIOLOGICAL PROCESSES—such as signal transduction, cell cycle, and replication—involve complicated

organization and interactions among protein molecules. Unfortunately, the mechanism for most of

these activities is still unknown. Protein complexes are one of the fundamental units of macromolecular

organization and play an important role in integrating individual gene products to perform useful cellular

functions. For example, ˛3ˇ1-tetraspanin protein complexes are important in regulating the protrusive

activity of the tumor cells (Sugiura et al., 1999); complexes consisting of PDZ proteins have been found
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to be critical during the establishment of cell-cell adhesions and epithelial cell polarity (Roh et al., 2003).

Identifying the component proteins in a protein complex is an essential step towards understanding various

biological processes.

Although technologies such as high-pressure liquid chromatography column (HPLC) and tandem mass

spectrometry (MS/MS) are available for researchers to analyze protein mixtures, current proteomics tech-

nology is still not mature enough to provide an easy and effective method for identifying individual

proteins that are present in the protein complexes (McDonald et al., 2006). On the other hand, it is

generally believed that proteins inside the same complex usually have more interactions than those not in

the same complex. As a large amount of protein interaction data has become available (e.g., DIP [Xenarios

et al., 2000], Krogan [Krogan et al., 2006], Gavin [Gavin et al., 2006]), predicting protein complexes

from protein-protein interaction data using computational methods provides an alternative approach (e.g.,

CFinder [Adamcsek et al., 2006], MCODE [Bader et al., 2003], MCL [Dongen, 2000; Enright et al.,

2002]).

However, it is not trivial to come up with an effective computational method to predict protein complexes

from protein interaction data. Protein interaction data is usually represented by a protein-protein interaction

(PPI) network in which the nodes are proteins and an edge between two nodes represents a known

interaction between the two proteins. A major difficulty is the absence of an appropriate definition to

define which group of proteins should be in the same complex in such a PPI network. Most of the existing

approaches rely on the idea that proteins within the same complex would have relatively more interactions.

So, these approaches aim at finding dense subgraphs inside the PPI network. They mainly differ on how

they define a dense subgraph and the procedure to cluster the nodes into dense subgraphs.

CFinder (Adamcsek et al., 2006) defines a dense subgraph based on the concept of k-clique. A k-clique

is a complete subgraph with k nodes. Each dense subgraph is found by merging a series of adjacent

k-cliques where two k-cliques are said to be adjacent if they share .k � 1/ nodes. If k is small, say k D 3,

there is too much noise. We have examined the PPI network for yeast from the Database of Interacting

Proteins (DIP) (Xenarios et al., 2000) and found that there are more than 800 3-cliques in the network, but

less than 15% are inside known complexes (based on MIPS database [Mewes et al., 2000]). If k is large,

the requirement becomes too stringent as it is well-known that there are missing interactions in the PPI

network. Thus, some of the complexes, that do not have enough known interactions to form 4-cliques, may

be missed. For examples, if k is set to 3, the Golgi Transport Complex (ID: 260.20.401) will be missed

as CFinder tries to merge too many noisy 3-cliques into the complex; if k is set to 4, the Transcription

Complex (ID: 510.190.40) will be missed as there are not enough 4-cliques inside the complex.

Molecular Complex Detection (MCODE) (Bader et al., 2003) assumes that a protein v should be part

of a complex if it has a subset of neighbors with high degree, say k, and there are a lot of interactions

(more precisely, the number of known interactions over the total number of possible interactions) among

these proteins (including v/. It starts by assigning a weight to each protein based on local neighbor density.

Then, starting from the protein with the highest weight, it recursively adds neighbors with weights larger

than a threshold into the cluster. However, MCODE has a similar problem as CFinder. The assumption

that v should have neighbors of high degree and that these neighbors have lots of interactions may not

be valid if k is large. In practice, the default value for k is recommended to be 2 in the software. This

tends to include noise into the complexes. The COPI complex (ID: 260.30.10) is an example missed by

MCODE because too much noise is included in the predicted cluster.

Markov Cluster Algorithm (MCL) (Dongen, 2000; Enright et al., 2002) uses quite a different idea to

identify the dense regions. They use the concept of random walks as follows. Assume that a walker starts

at an arbitrary protein v, the walker will visit a neighbor with equal probability. If he walks into a dense

region, it will be harder to get out of the region. So, by simulating a large amount of random walks, called

flow, for a long enough period, an underlying cluster structure will be identified. Note that MCL considers

the notion of dense subgraph in a relative sense. In other words, the clusters identified may not necessarily

have an absolute high density. MCL is able to predict complexes with low density provided the proteins

inside the complex have relatively fewer interactions with proteins outside the complex. However, they

may miss some complexes with very high density, for example, the Exosome complex (ID: 440.12.10).

1The complex ID refers to the complex category used in MIPS database.
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Brohee et al. (2006) compared the performance of MCL, MCODE, and the other two approaches,

RNSC (King et al., 2004) and SPC (Blatt et al., 1996), and found that MCL performed the best in

extracting complexes from PPI networks. However, we found that MCL can only identify 24 out of

81 known complexes (in MIPS) of size greater than or equal to 5 based on the DIP dataset (a match

of the known complex is defined to have an accuracy of at least 0.6. There should be room for further

improvement. Note that for complexes of size 4 or less, if only protein-protein interaction data is considered,

a good method to locate them is unlikely without including a lot of false positives.

All these existing approaches are based on the idea of finding dense subgraphs. To achieve a break-

through, we may need a deeper understanding of the organization of complexes. Recently, Gavin et al.

(2006) have taken a further step to study the organization of protein complexes. They suggested that a

complex should consist of two parts: a core component and attachments. Core proteins are the center

of the protein complex that have relatively more interactions among themselves. Each attachment protein

binds to a subset of core proteins to form a complex (see Section 2.1). They also found that among the

attachment proteins, there should be some proteins, called modules, which interact with the core proteins

quite a lot (Fig. 1). The proposed concept has been used in Andreopoulos et al. (2007) to identify cores,

called mediators, which are locally significant proteins that mediate the function of modules. The way they

formulate a mediator captures some of the properties of a core in Gavin et al. (2006), so a few of their

predicted mediators overlap with the cores found in Gavin et al. (2006). However, not all properties of a

core component, in particular, the number of interactions among the proteins inside the core, have been

considered. The overall accuracy of using mediators to predict cores is not satisfactory.

In this paper, we try to use the new findings in Gavin et al. (2006) directly to predict protein complexes

from the PPI network. The key idea behind our approach consists of three main steps: (1) predict core

components; (2) identify attachments for the cores and eliminate insignificant cores; and (3) compute

and rank the significance of predicted complexes. Basically, for each disjoint potential core, we define a

p-score to evaluate how likely it would be the core component of a complex based on the number of

interactions among proteins inside a potential core and the number of interactions between proteins inside

the core and their common neighbors (potential attachment proteins). Then, for each identified core, we

add all proteins that have interactions with the majority of core proteins in the complex. At the same time,

some of insignificant core candidates will be eliminated based on the assumption that only one core is

assumed for each complex. Finally, we derive a measure to evaluate the significance of each predicted

complex. None of the previous work gives an effective method to rank the predicted complexes. On the

other hand, we make use of the concept that proteins inside the same complex should have relatively more

interactions than proteins not in the same complex and propose an effective ranking score for the predicted

complexes.

We have compared our approach with MCL, MCODE, and CFinder. The results based on three PPI

networks (DIP, Krogan, Gavin) show that our approach is better than all these existing approaches and

can identify significantly many more known complexes than other approaches (30% more than MCL and

CFinder, and double that of MCODE). We have also evaluated the quality of our predicted cores using the

cores found by Gavin et al. (2006) as the benchmark. We compared our result with the mediators given

by Andreopoulos et al. (2007). We can predict a lot more cores (ranging from 10- to 30-fold more), also

FIG. 1. Example of a protein complex.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2008.01TT&iName=master.img-002.png&w=275&h=127
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with much higher accuracy. We have examined some of the high-ranked complexes we identified but not

found in the list of known complexes. From the evidence of the known functions of the involved proteins,

we found that they should be closely related and may be novel complexes not yet verified. We hope that

this new core-attachment approach can provide a new and effective method for finding novel complexes

from PPI networks.

2. METHODS

In this section, we describe how to discover a protein complex and estimate how likely a particular set

of proteins can form a complex based on a given protein-protein interaction database.

The interactions between proteins can be represented by a graph (protein-protein interaction [PPI]

network) defined as follows: Each protein is represented by a distinct node, and there is an edge (interaction)

joining node u and node v if and only if some biological experiments (Ito et al., 2001; Krogan et al.,

2006; Uetz et al., 2000) have shown that the corresponding proteins of these two nodes can bind to each

other, i.e., we do not consider transient protein-protein interactions. In this case, we call u a neighbor of

v, and vice versa. A protein complex is a set of proteins bound together to form a stable structure. The

proteins in the complex and their known interactions form a subgraph of the PPI network. However, not

every subgraph of the PPI network is a protein complex. In this work, we aim to find the list of distinct

proteins that form a complex, so we ignore the interactions between the same protein, i.e., we do not

consider self-loop in the PPI network.

Our method is based on a new finding for the organization of a protein complex (Gavin et al., 2006)

in which proteins in each complex can be divided into two types: core and attachment. Each protein

complex has a unique set of core proteins with sizes varying from 1 to 23 which do not appear in other

protein complexes. Different from the core proteins, attachment proteins may appear in several complexes.

Based on this organization, we discover protein complexes by first discovering the disjoint sets of core

proteins and then identifying the attachments for each complex from its core proteins (see Section 2.2).

The methods of predicting core proteins and their attachments are described in Sections 2.1 and 2.2,

respectively, with their corresponding p-value. A ranking of the protein complexes based on p-value can

also be derived.

2.1. Core proteins

Core proteins have three main properties (Gavin et al., 2006):

1. They have relatively more interactions among themselves.

2. The attachment proteins bind to the core proteins to form protein complex.

3. Each protein complex has a unique set of core proteins.

When considering property 1, the core proteins of a complex should be a subgraph of the PPI network with

relatively (when compared with the degree of the nodes) more edges among themselves. For property 2,

since each attachment protein usually binds to 2 or more core proteins to form a protein complex, if an

attachment protein binds to a subset of core proteins, this attachment protein will be a common neighbor

of the subset of core proteins it binds to in the PPI network. The core proteins in the same protein complex

should have relatively more common neighbors than other proteins in the PPI network. For property 3,

each set of core proteins should be disjoint.

When considering whether two proteins p1 and p2 of degree d1 and d2, respectively, are core proteins

for the same protein complex, we consider the number of interactions i (i D 0 or 1) between these two

proteins and the number of their common neighbors m. We calculate the probability that p1 and p2 have

�i interactions and �m common neighbors under the null hypothesis that the d1 edges connecting p1 and

d2 edges connecting p2 are randomly assigned in the PPI network according to a uniform distribution. In

fact we only study two situations: when i D 1, p1 and p2 must have an interaction between them; when

i D 0, p1 and p2 might or might not have an interaction between them.

Let N be the number of proteins in the PPI network, the probability that p1 and p2 have exactly

i interactions between themselves can be calculated by considering the number of combinations to assign
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d1 � i and d2 � i edges connecting p1 and p2 respectively to the rest of the N � 2 proteins as follows:
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Given that p1 and p2 have i interactions, the probability that p1 and p2 have exactly m common

neighbors can be calculated by dividing the proteins into three groups: common neighbors of p1 and p2,

neighbors of p1, and neighbors of p2:
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The probability that p1 and p2 have �i interactions and �m common neighbors can be calculated by the

product of Equations (1) and (2)
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Small p-value(p1, p2/ means that the null hypothesis is likely to be wrong for proteins p1 and p2, i.e.,

proteins p1 and p2 have higher chance of being a pair of core proteins in the same complex.

Complexes (as well as cores) may not have an absolute high density. Also, the size of a core may

vary from 1 to 23. The degrees and the numbers of common neighbors of core proteins may vary a lot

in different protein complexes. Thus, we cannot simply set one single threshold (i.e., p-value.p1; p2/ �

threshold) to determine whether two proteins are a pair of core proteins in the same complex. Instead,

we compare p-value.p1; p2/ with other p-values involving protein p1 and p2. If p-value.p1; p2/ is the

smallest p-value among p-value.p1; pk/ and p-value.p2; pk/ for all possible protein pk , i.e.,

p-value.p1; p2/ < min
pj Dp1 or p2

pk …fp1;p2g

fp-value.pj ; pk/g; (4)

then we will conclude that proteins p1 and p2 are a pair of core proteins in the same complex. Similarly,

we say a protein pj is in a set of proteins C in the same complex if the p-value of pj and any other

protein in the core is smaller than the p-value of pj and any other protein not in the core, i.e.,

8pj 2 C max
pl 2C �fpj g

fp-value.pj ; pl/g < min
pk…C

fp-value.pj ; pk/g (5)

In our algorithm, we progressively merge some proteins to a set of core proteins of size 2, 3, etc.,

until we cannot further increase the size of a core protein set with the condition defined by Equations (4)

and (5). It is easy to see that the core protein sets are disjoint because each protein can only associate with

a unique set of proteins with the lowest p-values. After discovering core proteins of size at least 2, we

pick each of the rest of the proteins as single core protein. As a remark, Equation (1) can be extended to

compute the p-value for cores of more than two proteins. However, the computational requirement will be

increased substantially. So, we use the progressive approach to identify cores of more than two proteins.
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2.2. Attachment proteins

Each attachment protein usually binds to two or more core proteins depending on the size of core protein

set. Given a core protein set of a complex, we pick those proteins that are common neighbor of over half of

the core proteins as the attachment proteins. When there is only one core protein, we pick all its neighbors

as the attachment proteins. We do not consider the degree of protein when determining whether it is an

attachment of a complex because an attachment protein may appear in more than one protein complex. In

this case, the attachment protein can have many interactions with core proteins in other complexes.

2.3. Noisy cores

It is possible that some of the cores identified in the first step are noise because some of the attachment

proteins which have relatively more interactions may also be identified as core proteins. After finding the

attachment proteins for each core, some of these noisy cores may appear as the attachment of other cores.

Since core proteins usually should not appear as attachments to other cores (Gavin et al., 2006), we can

make use of this concept to filter out some of these noisy cores: the cores that overlap with the attachment

of other cores or the cores whose attachment proteins overlap with other cores. We define a significant

score for each core as follows.

Given a set C of c core proteins with total degree dc , ic interactions in between the core proteins

and ia interactions with their corresponding m attachments, we define pexact.ic ; m; ia j c; dc/ to be the

probability that C has ic interactions in between and ia interactions with its m attachments under the null

hypothesis that the dc interactions involved with proteins in C and the N proteins in the PPI network under

a uniform distribution (Equation (6)). The first term of the numerator calculates the number of ways to

allocate the ic interactions between core proteins. The second term calculates the number of ways to select

m attachments. The third term calculates the number of ways to select the rest of the proteins interacting

with the core proteins. The fourth term approximates the number of ways to allocate the interactions

between core proteins and attachments where dmin is the minimum number of core proteins an attachment

protein must interact with. This is an approximation because of the restriction that an attachment cannot

have two interactions with the same core proteins.
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We then calculate the probability pcore.ic; m; ia j c; dc/ that C has �ic interactions in between, �m

attachments and �ia interactions with the core proteins by summing up all possible cases:
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X
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00
c ; m; i 00

a j c; d 00
c / (7)

A set of core proteins with low pcore value means that the numbers of interactions within this set of

proteins and with its attachments are unexpectedly large and it is more likely to be a real core. Therefore,

we should select core protein sets with low pcore values. We filter the core proteins by repeatedly select core

protein set C with the lowest pcore value and remove those core proteins that overlap with the attachments

of C . Finally, we would get a set of protein complexes such that the core proteins of each complex do not

appear in other complexes.
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2.4. Ranking protein complexes

After predicting a set of protein complexes, we have to evaluate which predicted protein complex is more

likely to be a real protein complex. Many researchers (Adamcsek et al., 2006; Bader et al., 2003) have

suggested that proteins in a real protein complexes usually have more interactions in between. However,

when the sizes of the protein complexes are different, it is difficult to determine which protein complex is

more likely to be real. For example, protein complex A has five proteins and 10 interactions in between

(there are at most 10 interactions between five proteins) and protein complex B has 10 proteins and

40 interactions in between (there are at most 45 interactions between 10 proteins), we cannot determine

whether A or B is more likely to be a real complex easily as we also have to consider the number of

interactions complex A and complex B have with proteins outside the complexes. Therefore, most existing

algorithms (Adamcsek et al., 2006; Bader et al., 2003; Dongen, 2000; Enright et al., 2002) predict sets of

protein complexes without ranking them.

In this paper, we evaluate each predicted protein complex by comparing the total number of interactions

within the complex and the total number of interactions with proteins outside the complex. Suppose a

protein complex has q proteins, i interactions between proteins in the complex and dego interactions

with proteins not in the complex, i.e., the total degree of all proteins in the complex is 2i C dego. As

in Section 2.1, we calculate the probability that there are �i edges in the subgraph representing the

protein complex under the null hypothesis that the 2i C dego edges connecting proteins in the complex are

randomly assigned in the PPI network according to a uniform distribution.
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where I D minf.2i C dego/=2; . q

2
/g is the maximum number of interactions in the protein complex.

A protein complex will have a smaller p-score when it has unexpectedly large number of interactions in

the complex and has a higher probability to be a real protein complex. Therefore, we calculate the p-score

for each predicted complex and rank them according to their p-scores in increasing order.

3. RESULTS

We have implemented our approach and have evaluated the quality of our predicted complexes as well

as the quality of the cores. We used three protein-protein interaction datasets for yeast, including DIP2

(Xenarios et al., 2000) and two others obtained from high-throughput methods3 (Krogan [Krogan et al.,

2006] and Gavin [Gavin et al., 2006]). The details of the datasets are shown in Table 1.

3.1. Evaluation of predicted complexes

We compared the quality of our predicted complexes with those produced by MCL (Brohee et al., 2006),

MCODE (Bader et al., 2003), and CFinder (Adamcsek et al., 2006) using their default parameters. The

known complexes found in the MIPS (Mewes et al., 2000) database4 are used as the benchmark. We only

consider the complexes that were manually annotated independently from the DIP interaction data, and

exclude all complexes predicted based on high-throughput experiments. We consider complexes of sizes

at least 5, and there are 81 such complexes.

2Download from http://dip.doe-mbi.ucla.edu/ [version yeast20071104].
3Download from the GRID database www.thebiogrid.org/ [BioGRID version 2.0.33].
4Download from http://mips.gsf.de/ [version complexcat_data_18052006].
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TABLE 1. DETAILS OF THE DATASETS

Datasets

Number of

proteins

Number of

interactions

Average number of

interactions per proteins

DIP 4928 17,201 5.29

Krogan 2675 7080 6.98

Gavin 1430 6531 10.62

3.2. Evaluation method

Each software tool based on their recommended settings reports a list of predicted clusters (complexes).

Each cluster is compared with every known complex and given an accuracy Acc D N 2
c =NpNt (Bader

et al., 2003), where Nc is the number of common proteins shared by the predicted and known complexes,

and Np and Nt are the numbers of proteins in the predicted and true complexes, respectively. Then, for

each complex, select the cluster with the maximum accuracy. If this accuracy is larger than a threshold

t D f0:6; 0:7; 0:8g, we assume that the complex has been found. The complexes not found by the clusters

are regarded as false negative. Sensitivity is defined as the percentage of known complexes being found.

Clusters that cannot match any known complex with accuracy more than t are regarded as false positives.

Specificity is defined as the percentage of false positive clusters. Here, we do not use the average accuracy

for comparison as in Brohee et al. (2006), because the average accuracy cannot indicate how many protein

complexes have been predicted by the software accurately. However, the relative performances of the

software are the same when they are measured by average accuracy.

Note that MCL, MCODE, and CFinder predict different numbers of clusters without ranking. Since we

cannot control the number of predictions from these tools, to provide a reasonable comparison, if a tool

reports x clusters, our approach uses the top x clusters, if possible or all clusters from our software for

the comparison.

3.3. Results on predicting protein complexes

The tables below show the performance of our algorithm (Core) compared to the other three tools on

three different datasets and three different thresholds for the accuracy measure (t D 0:6, 0.7, 0.8). A known

complex is regarded as being found by the software if there is a predicted cluster reported by the software

which matches this known complex with accuracy at least t . Table 2 shows our comparison results with

MCL core predicted more complexes in all cases and on average about 30% more complexes than MCL.

We can also achieve a higher specificity in all cases, that is, among our predicted clusters, we have a high

percentage of them that match known complexes.

Table 3 shows our comparison results with MCODE. Core is a clear winner in all cases. In many cases,

the number of predicted complexes is about double or even triple that of MCODE and with a higher

specificity in all cases. Tables 4 and 5 show our comparison results with CFinder for clique size (k/ of 3

and 4, respectively. Core produces much better results.

TABLE 2. MCL VERSUS CORE

No. of known complexes correctly predicted

MCL/Core t � 0:6 t � 0:7 t � 0:8

Krogan 30/36 20/26 10/15

DIP 28/37 16/21 7/11

Gavin 32/35 26/29 11/17

The numbers of predicted complexes by MCL are 633, 1250, and 232

for Krogan, DIP, and Gavin, respectively.
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TABLE 3. MCODE VERSUS CORE

No. of known complexes correctly predicted

MCODE/Core t � 0:6 t � 0:7 t � 0:8

Krogan 17/29 13/22 7/13

DIP 6/24 5/16 2/8

Gavin 23/32 19/27 8/17

The numbers of predicted complexes by MCODE are 72, 77, and 105 for

Krogan, DIP, and Gavin, respectively.

TABLE 4. CFINDER (k D 3) VERSUS CORE

No. of known complexes correctly predicted

CFinder/Core t � 0:6 t � 0:7 t � 0:8

Krogan 19/32 16/24 11/14

DIP 17/35 11/21 6/11

Gavin 22/31 16/27 12/17

The numbers of predicted complexes by CFinder (k D 3) are 115, 245,

and 98 for Krogan, DIP, and Gavin, respectively.

TABLE 5. CFINDER (k D 4) VERSUS CORE

No. of known complexes correctly predicted

CFinder/Core t � 0:6 t � 0:7 t � 0:8

Krogan 19/28 14/22 10/13

DIP 28/28 13/19 5/11

Gavin 25/29 20/26 13/16

The numbers of predicted complexes by CFinder (k D 4) are 66, 100, and

71 for Krogan, DIP, and Gavin, respectively.

Overall, Core performs much better than all existing tools in identifying more known complexes in all

cases. In fact, when the required accuracy is increased from 0.6 to 0.8, Core still produces much better

results than all the other tools.

3.4. Evaluation of predicted cores

We have also compared the quality of our predicted cores with the mediators predicted by Andreopoulos

et al. (2007) on the dataset Gavin (Gavin et al., 2006). There are 491 cores found in Gavin et al. (2006),

while there are 274 mediators predicted by Andreopoulos et al. (2007). We assume that a core can be found

by a software tool if the accuracy between this core and a predicted core is �. In our experiments, we

used � D 0:4, 0.5, 0.6, 0.7, and 0.8. We used the same accuracy measure for the predicted cores as for the

predicted complexes. To compare with the 274 mediators, we used the cores from the top 274 complexes.

3.5. Results

Table 6 shows the numbers of cores correctly predicted by Core and the software used in Andreopoulos

et al. (2007) using different accuracy thresholds. It is clear that the performance of Core is significantly

better than Andreopoulos et al. (2007). In all cases, Core can predict many more benchmark cores than

the mediators with less false positives and false negatives.
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TABLE 6. COMPARISON ON THE NUMBER OF CORRECTLY

PREDICTED BENCHMARK CORES

Accuracy threshold (�/

�0.4 �0.5 �0.6 �0.7 �0.8

Core

TP 267 244 169 150 103

FP 44 60 112 131 172

FN 224 247 322 341 388

Mediators

TP 29 13 8 5 0

FP 238 258 265 268 274

FN 462 478 483 486 491

FIG. 2. Interactions between 6-protein core. FIG. 3. Interactions between 5-protein core.

The quality of the cores produced by our software is much higher. In fact, there are quite a few

cases where our predicted core matches completely with the known core found in Gavin et al. (2006).

For example, Figure 2 shows a 6-protein core, which is exactly the same as the core given in Gavin

et al. (2006). Based on the gene ontology (GO5) database, all the component proteins (ORC1, ORC2,

ORC3, ORC4, ORC5, and ORC6) have the same function of directing DNA duplication by binding to

replication origins and are involved in transcriptional silencing. The complex constructed from this core

also matches very well with the known complex (post-replication complex). These results also support the

core-attachment concept presented in Gavin et al. (2006).

Another example is the 5-protein core (Fig. 3) with proteins ARC15, ARC18, ARC19, ARC35, and

ARC40. This core also matches exactly with a known core. The proteins are all required for the motility

and integrity of cortical actin patches. The cluster predicted using this core matches very well with the

known complex (Arp2p/Arp3p complex).

Table 7 shows the distribution of the sizes of the cores predicted by the tools when compared to the

known cores found in Gavin et al. (2006). The cores predicted by our software seem to have a distribution

more similar to that of the known cores than the mediators predicted by Andreopoulos et al. (2007).

4. DISCUSSION

We have performed a preliminary investigation on those predicted complexes reported by Core that are

of high rank, but do not match any of the known complexes. We found that they may be potentially new

5www.geneontology.org/.
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TABLE 7. DISTRIBUTION OF THE SIZES OF THE CORES

Size of cores Maximum Minimum Average

Gavin et al. (2006) 23 1 2.98

Core 8 1 1.99

Mediators 152 1 12.31

complexes. For most of these complexes, their cores match quite well with the known cores given in Gavin

et al. (2006), and the functions of the core proteins are very related. For example, the predicted complex of

rank 1 consists of 39 proteins with two proteins (YOl077C and YHR052W) in its core. This core is found

to be totally inside a known core given in Gavin et al. (2006). These two proteins have been predicted to

be in the same complex also in Ho et al. (2002), Riffle et al. (2007), and Qiu et al. (2008). The functions

of the core proteins are found to be closely related to ribosome biogenesis and assembly. Another example

is the complex predicted to be of rank 4. This complex has 32 proteins with three proteins (YDR101C,

YLR074C, and YGR245C) forming the core. This core is also totally inside a known core given in Gavin

et al. (2006). The result is also supported by Riffle et al. (2007). Further investigation is needed to verify

whether these predicted complexes are real complexes.

5. CONCLUSION

We have developed a new approach for predicting protein complexes from the PPI network of single

species based on a recent study on the organization of complexes. We found that this approach is more

effective than existing approaches and can identify more known complexes. It also has the potential of

identifying new complexes.

In this work, emphasis is mainly on predicting cores, the step for adding attachment proteins was done

based roughly on the idea of majority rule (that is, proteins have interactions with more than half of

the cores proteins will be added as an attachment protein to the core). A better approach for selecting

attachment proteins may further improve the prediction power of the software. Also, the current ranking

function for the complexes (Step 3) may be slightly biased to large complexes. It may be interesting

to derive a better ranking function. Also, we have analyzed all 81 known complexes in our study and

have found that, in most of the cases that cannot be discovered by our software, there are only have a

few interactions among the proteins. It is unlikely that these complexes can be recovered based only on

one PPI network without additional information, e.g., GO annotation. It is known that there are missing

interactions and also false positive interactions in the PPI network. We do not consider these issues in the

current approach. Using multiple PPI networks on different species may help fill missing edges in the PPI

networks. Extending our approach to consider the possibility of having false positive interactions in the

PPI network may also produce more accurate results.
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