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Abstract

Rank aggregation, originally an important issue in social choice theory, has become
more and more important in information retrieval applications over the Internet,
such as meta-search, recommendation system, etc. In this work, we consider an
aggregation function using a weighted version of the normalized Kendall-7 distance.
We propose a polynomial time approximation scheme, as well as a practical heuristic
algorithm with the approximation ratio two for the NP-hard problem. In addition,
we discuss issues and models for the dynamic rank aggregation problem.
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1 Introduction

The rank aggregation problem finds a “consensus” ranking on a set of alterna-
tives, based on preferences of individual voters. The topic is the focus of social
choice theory. Its applications have included elections, and most recently, the
meta-search problem on the Internet. The on-line version is especially useful
for such applications, in that the top few ranks may be constructed and be
presented to the users before the orders of the rest of the candidates are sorted
out.

Dwork, et al., [10] studied the rank aggregation problem in the context of Web
searching with an eye toward reducing spam in meta-search. They applied the
criterion of Kendall-7 distance to evaluate the aggregated rank. The Kendall-7
distance between two ranking lists is the total number of pairs of alternatives
that are assigned to different relative orders in the two ranking lists. Given

a collection of partial rankings 7,7, -+, 7, of alternative web pages, they
are interested in the complete ranking 7 that minimizes the average of the
Kendall-7 distance between m and 7; (i = 1,2, - -, k). The problem was shown

to be NP-hard for fixed even k > 4 (that is, even for aggregation of a small
number of ranking lists) and an effective procedure “local Kemenization” was
developed to obtain a local Kemeny optimal ranking which satisfies the ex-
tended Condorcet criterion. A 2-approximation algorithm was obtained for
full list rank aggregation but no proven approximation algorithm was known
for partial list rank aggregation [10].

In reality, however, different voters (search engines in our discussion) may not
rank the same candidate list. The metric of Kendall-7 distance may not be the
best for such cases of partial rankings. If two partial rankings overlap over a
small number of alternatives (and thus their Kendall-7 distance is small), one
may not have full confidence to conclude that the two rankings differ a little.
Dwork, et al., further proposed a normalized Kendall-7 distance to deal with
this problem with partial ranking lists. We follow the main idea embedded in
this approach and propose to consider both Kendall-7 distance and the size
of overlap of the partial ranking lists for an alternative measure for partial
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ranking aggregation. That is, our measure prorates the normalized Kendall-7
distance by the number of common elements in the two measured rank lists.

Therefore, for a given collection of partial rankings 7,7, - - -, 7, with differ-
ent ranking lengths, we are interested in finding a final ranking 7 of all the

candidates such that the sum of |N, N N,]| (1 — D@m ) s maximized,

( [Nz, N Nx| )
2

where N, is the set of alternatives in 7;, N is the set of alternatives in 7 and
D(7;,7) is the Kendall-7 distance between 7 and 7; (i = 1,2,---,k). We use
the convention that the above term will be evaluated to zero if the N, N N, is
empty. We comment that this problem is equivalent to Kemeny aggregation
problem [10] in a weighted version. Here, the weight of each partial ranking is
determined by its overlap with the final ranking.

A particular feature of the rank aggregation problem on the web is that the
number of voters is much less than the number of alternatives. As of September
2002, there were only eleven major general purpose search engines, and on the
other hand, it was estimated that Google® has indexed about 968 million web
pages by March 2002*. Secondly, each voter ranks a different set of alterna-
tives, determined by the different coverage of web search engines. Therefore,
we should focus on this case where the number of voters is bounded by a
constant.

We focus on the new aggregation method (we call it the Coherence aggrega-
tion problem). In Section 2, we introduce the formal definitions. We generalize
the extended Condorcet criterion (ECC) to the weighted case, and show that
the Coherence optimal ranking for partial ranking aggregation satisfies the
weighted ECC. In Section 3, we discuss the NP-hardness of the Coherence
aggregation problem and present a heuristic algorithm with performance ra-
tio 2, and with a proof that the heuristic solution satisfies the weighted ECC.
We note that although the Kemeny aggregation problem and the Coherence
aggregation problem are equivalent in the weighted case, they are not equal
in approximation. There is no approximation algorithm with constant ratio
for Kemeny aggregation for partial rankings. In Section 4, we derive a PTAS
for the Coherence aggregation problem. Our approach is motivated by tech-
niques developed in [1,2]. In [2], Arora, et al., presented a unified framework
for designing polynomial time approximation schemes (PTASs) for “dense”
instances of many NP-hard optimization problems. Their unified framework
begins with the idea of exhaustive sampling: picking a small random set of
elements, guessing where they go on the optimum solution, and then using
their placement to determine placement of other elements. Arora, et al., [2]
applied this technique to some ‘smooth’ assignment problems by shrinking the

3 http://www.google.com
4 http://www.searchengineshowdown.com



space of possible placements of the random sample. The unweighted version
of our model can be reduced to the maximum acyclic subgraph problem and
the required smoothness condition is satisfied. It follows that a polynomial
time approximation scheme can be obtained by their general framework for
the unweighted case. For the weighted case, the smoothness condition on the
coefficients in their unified approach is not satisfied. Our solution further ex-
tends and exploits their general methodology and provides new insight into
design and analysis of polynomial time approximation scheme.

In Section 5, we discuss the dynamic version which is interesting for applica-
tion to the meta search problem over the Internet where rank aggregation is
dynamic in nature and involves in a large corpus of data. We discuss various
algorithmic issues here and propose interesting research problems. In Section
6, we conclude with remarks on our results and discussion on future directions.

2 Definitions

Given a set of alternatives N = {1,2,---,n}, a ranking m with respect to N is
a permutation of some elements of N which represents a voter’s or a judge’s
preference on these alternatives. If m orders all the elements in NV, it is called a
complete ranking; otherwise, a partial ranking. For a ranking 7, let N; denote
the set of elements presented in 7, || = |N;| denote the number of elements
in 7, or the length of 7. For each i € N,, 7(i) denote the position of the
element 7 in 7, and for any two elements 7,j € N, m(i) < 7(j) implies that i
is ranked higher than j by 7.

The rank aggregation problem is to combine a number of different rank order-
ings on a set of alternatives, in order to obtain a ‘better’ ranking. The notion
of ‘better’ depends on what objective we strive to optimize. Among numerous
ranking criteria, the methods based on Kendall-T distance are accepted and
studied extensively[14,3-5,7]. The Kendall-7 distance between two rankings 7
and o is defined as

D(r,o) = |{(3,7) : w(i) < 7(j),but o(i) > o(j),Vi,j € Ny N N, }|.

Given a collection of partial rankings 7,7, -, 7%, the Kemeny optimal ag-
gregation is a complete ranking m with respect to the union of the elements of

T1,Ta, -+, T, which minimizes the total Kendall-r distance D(m; 7, -+, 1) =
k

For two partial rankings, if it is not the case that the elements ¢ and j appear in
both rankings, the pair (i, 7) contributes nothing to their Kendall-7 distance.
This implies that Kendall-7 distance ignores the effect of the size of “overlap”



in the measure of the discrepancy of two partial rankings. In view of this, we
consider another measurement based on the size of “overlap” and normalized
Kendall-7 distance, called coherence, to further characterize the relationship
of two rankings.

Definition 2.1 For two partial rankings T and o with |N; N N, | > 2, the
coherence of T and o is defined as

O(r,0) = |NTﬂNU|<1—%>.

When |N; N N,| < 1, we define the coherence ®(7,0) = 0.

Definition 2.2 For a collection of partial rankings 71,7, -, Tk and a com-
plete ranking m with respect to N = N, U---U N, , |7s] = ns > 2 (s =
1,2,---, K), we denote the total coherence by

: ...TKZK WTs:Kns SECGEOA )
rim ) = 3 ) = o1 D(ﬂg))

2

The Coherence optimal aggregation is a complete ranking of the elements in N
which mazimizes the total coherence ®(m; 1, -+, TK) over all complete rank-
ings w. The problem of finding the Coherence optimal aggregations is called
Coherence aggregation problem.

In the definition of coherence, the contribution of partial ranking 75 (s =
1,2,---, K) to the total coherence ®(m; 1, -, 7x) is

ns<1 - D((Z’)”)> __? {("S) ~ D(ry,m)|.

Let

2
wy = s=1,2,--, K.

ng —1’
If w; is considered as the weight of the corresponding ranking, the Coherence
aggregation problem is equivalent to the Kemeny aggregation problem in the
weighted version, where the weight of each partial ranking is determined by
its overlap with the final ranking. When the lengths of all partial rankings
are equal, the Coherence aggregation problem is equivalent to the Kemeny
aggregation problem proposed by Dwork et al., [10]. Kemeny optimal rankings
are of particular interest because they satisfy the extended Condorcet criterion
(ECQ): if there is a partition (P, P) of the elements in N such that for any i €
P and j € P, the majority prefers i to j, then i must be ranked higher than ;.
Recently, Dwork, et al., [10] studied the Kemeny optimal aggregation problem



in the context of the Web and showed that ECC has excellent “spam-fighting”
properties in the context of meta-search. When the weights are imposed upon
the rankings, we can generalize the ECC to the following weighted version.

Weighted Extended Condorcet Criterion (Weighted ECC):

Given partial rankings 71, 79, - - -, Tk and the corresponding weights oy, ao, - - -, ak-
Let 7 be a complete ranking of their aggregation. For any partition (P, P) of
the elements of N, and for all i € P and j € P, if we have D sirs (i) <rs (j) Xs >

Y sim(i)>s(j) Osy then in the aggregation m, i is ranked higher than j. We call

7 satisfying the weighted extended Condorcet criterion (weighted ECC).

Proposition 2.1 Let 7 be a coherence optimal aggregation for partial rankings
T, To,*++, Ti. Lhen 7 satisfies the weighted extended Condorcet criterion with
respect to Ty, To, -+ -, T and their weights wy,wsy, -+, Wk.

Proof. Suppose that there is a partition (P, P) of N such that for all i € P
and j € P we have that D sire(i)<ms () Ws = Dsimy(i)>ms(j) Wsy DUt there exist two
elements * € P and j* € P such that 7(5*) < 7(¢*). Let (i*, %) be an adjacent
such pair in 7. Let 7’ be the ranking obtained by transposing the positions of
1* and j*. Then we have that

(I)(W,;Tla"'aTK)_q)(ﬂ;Tla"'aTK): Z Ws — Z ws > 0,

5175 (1) <75 (5*) 5175 (%) <75 (%)

which contradicts to the optimality of 7. O

3 Complexity and Heuristic Algorithm

For partial rankings of length 2, finding Coherence optimal aggregation is
exactly the same problem as finding an acyclic subgraph with maximum weight
in a weighted digraph, and hence is NP-hard [13]. Bartholdi, et al., [5] proved
that the Kemeny aggregation problem is NP-hard for an unbounded number of
complete rankings. Their proof can also derive the proof of NP-hardness for the
Coherence aggregation problem for an unbounded number of partial rankings
with unbounded length. On the other hand, Dwork, et al., [10] discussed the
hardness in the setting of interest in meta-search: many alternatives and very
few voters. They showed that computing a Kemeny optimal ranking is still NP-
hard for any fixed even K > 4. Their result derives directly the NP-hardness
of the Coherence aggregation problem for all integer K > 4, since odd number
of partial rankings can be obtained from even number of complete rankings
by splitting one complete ranking into two partial rankings.

Theorem 3.1 The Coherence aggregation problem for a given collection of



K partial rankings, for integer K > 4, is NP-hard.

In the rest of this paper, when the given collection of rankings {7, -+, 7x} is
clear from the context, we will denote ®(r; 7, -+, 7x) by ®(m). The following
proposition gives a relationship between an aggregation and its reversal for a
given collection of partial rankings, which derives the performance ratio of our
heuristic algorithm.

Proposition 3.2 Let m and ©" be an aggregation total ranking and its reversal
with respect to a collection of rankings T, 7, - - -, Tk, respectively. Then

K

O(m) + P(n") = Zns.

s=1

Proof. By the definition of coherence,

d(r) + &(n") = 2K n, 1 — D) + 3K n, 1 — D)
(") (")
2 K
2(") =D — D(r" —
( ) ) (7, 75) (7", 75) Zns

s=1

K
- Zs:l

ne — 1

where the last equality holds because D(m,75) + D(n", 75) = ("; ). O

Followed from Proposition 3.2, for any aggregation 7 and its reversal 7" with
respect to 7,7y, -+, Tk, a simple 2-approximation algorithm can be obtained
by comparing the coherence values of 7 and #". In this section, we investigate
heuristic procedures that construct a better aggregation while taking into
account the data of the given instance of the problem. The algorithm consists
of two parts: Initial Ranking and Adjustment.

Given a collection of partial rankings 7, -, 7 with |75] = ny > 2 (s =
1,2,---,K) and N = N, U---UN,. = {1,2,---,n}, the weight of each
partial ranking is defined as wy; = T s =1,2,---, K. For each ordered
n JE—
pair (i,7) (i,j € N), we define the p;eference value r;; as the sum of weights
of the partial rankings which rank ¢ higher than 7, that is,

Tij = Z Wg.

5:76 (1) <75 (7)

Thus, the Coherence aggregation problem is to find a ranking 7 of N that
maximizes the total Coherence ®(7) = >
(i.5):m (8)<m ()



For each element ¢ € N, denote

Z rj; and Q(7) Z Tij-

JiFi JijFi

We note that P(i) and Q(i) are the contributions to the total Coherence
by assigning element ¢ in the lowest position and the highest position of the
ranking, respectively. The main idea of Initial Ranking procedure is, in every
iteration, to arrange some element to the lowest or highest position, according
to their contributions P(i) and Q(i). In Adjustment procedure, if there are
two adjacent ordered elements iy and i,y such that ry; < 7, in the
ranking obtained already, we transpose the positions of them to get a better
ranking.

Initial Ranking Procedure
1. Set S« N, u<+1and v < n.
2. Compute 7 = max;es{|P (i) —Q(¢)|}, and denote i* the element with the
largest . If P(i*) < Q(i*), set 7w(i*) < u, u + u + 1; if P(i*) > Q(i%),
set 7(i*) <= v, v <= v — 1. For each element j € S\ {i* } let

P(j) < P(j) —ri; and Q(j) < Q(j) — i

And set S <+ S\ {i*}.
3. If v > u, go to Step 2; else, stop and output the rankmg .
Adjustment Procedure Given a ranking @ =iy,4o,: -, p.
1. Set 7 < j; «+ 11 and [ «+ 1.
2. Compute k* = VI<k<I, T it < Tip 1
max{k : 1 <k <1, rj4,, > i, otherwise
Insert element ;1 at position £* +1 and get a new ranking with [ +1
elements:
For k < k*, set ji < Ji;
For k = k* + 1, set ji < 411;
For k* +1 <k <Il+1, set jp < Jr_1.
Set m < ji1,- -, Jie1, and [ < [+ 1.
3. If [ < n, go to Step 2; else, stop and output the ranking 7*.

The coherence preserved by the Initial Ranking procedure is at least one half
of the total value 3% | n,, since this property holds in every iteration with re-
spect to the coherence incurred by the element i*. We remark that there may
be some other rules for choosing the element ¢* in the Initial Ranking proce-
dure for choosing and ranking the corresponding element, such as, according
to the value (1) v = max;es{P (i)} = P(i*); or (2) v = maxzeg{Q( )} Q).

The main idea of our Adjustment procedure is similar to the Local Kem-
enization procedure investigated in [10], which computes a locally Kemeny
optimal aggregation of 7,7, -+, 7k being maximally consistent with the ini-
tial ranking. Since in Adjustment procedure, insertion of a new element in



each iteration can be viewed as a number of consecutive swaps of neighbor-
ing elements in the original ranking, following from the definition of weighted
ECC and Proposition 2.1, we have

Proposition 3.3 Let 7* be a ranking obtained from Adjustment procedure with
respect to T, Ta, -+, Tk and their weights wy,wsq, -+, wg. Then 7 satisfies the

weighted ECC.

4 Polynomial Time Approximation Schemes

Arora, et al., [2] presented a unified framework for developing into polynomial
time approximation schemes (PTASs) for “dense” instances of many NP-hard
optimization problems, such as, maximum cut, graph bisection and maximum
3-satisfiability. Their unified framework begins with the idea of exhaustive
sampling: picking a small random set of elements, guessing where they go on
the optimum solution, and then using their placement to determine the place-
ment of other elements. Arora, et al.,[1] applied this technique to assignment
problems by shrinking the space of possible placements of the random sample.
They designed PTASs for some ‘smooth’ dense subcases of many well known
NP-hard arrangement problems, including minimum linear arrangement, d-
dimensional arrangement, betweenness, maximum acyclic subgraph, etc. In
this section, we show that the same techniques in [1] can also derive a PTAS
for the Coherence aggregation problem, though the coefficients do not satisfy
the ‘smoothness’ condition.

In this section, we consider the Coherence aggregation problem for K par-
tial rankings 71,79, -, Tx, where K is an integer independent of n = |N| =
INj, U+~ UN|, |7s] =ns >3 (s =1,2,---,K). The weight of each par-
tial ranking w, and the preference value r;; are defined as in Section 3. Ac-
cording to Proposition 3.2, for any complete ranking 7 and its reversal 7",
(1) +®(7") = XK n, > n, the optimal value of this problem is no less than
n/2. Therefore, to obtain an optimal ranking with at least the value (1 — )
times the optimum, where v > 0 is arbitrary, it suffices to find a ranking
whose value is within an additional factor of en from the optimal value of
the optimal ranking for a suitable € > 0. Our main result is presented in the
following theorem.

Theorem 4.1 Suppose the ranking 7 is the optimal solution of the Coherence
aggregation problem. Then for any fized € > 0, in time nPW/e) we can find a
ranking ™ of N such that

O(m) > O(1*) — en.



Several Chernoff-style tail bounds are important in the analysis of randomized
procedure. The following result is needed repeatedly in this paper, which we
present as a lemma for completeness.

Lemma 4.2 [1] Let X1, X5, -+, X, be n independent random variables such
that 0 < X; < 1. Then for X =¥ | X;, p= E[X] and X\ > 0,

Pr[|X — p| > \] < 2¢=2/7,

Let € be a given small positive, and ¢ = ¢/e for some suitable large constant
¢ > 0. Here we assume for simplicity that n is a multiple of ¢. Partition the
positions {1, 2, - - -, n} in the final ranking into consecutive equal-sized intervals
I, Iy, - -+, I, each of size n/t. A placement is a mapping g : N — {1,2,---,t}
from the set IV to the set of intervals Iy, I, -+ -, I;. A placement is called proper
if it maps n/t elements of N to each interval, that is, for every 1 < j < t,
|{i € Nlg(i) = j}| = n/t. Every complete ranking corresponds a proper
placement which is called the induced placement. Two different rankings may
induce the same placement in which case they only differ “locally”. The value
of a placement g, denoted by ¢(g), is defined as

dlo)= D riy= ;wsl{(i,j) :75(0) < 75(5) and g(i) < g(j)}]

(4,5):9(1)<g(J)

An optimal placement is a proper placement which maximizes the value ¢(g)
over all proper placement g.

Lemma 4.3 If 7 is a ranking and g is its induced proper placement, then

2Kn

4g) < () < 6lg) + =

Proof. The lower bound follows from the fact that ®(m)—¢(g9) = >y <r(s),0(i)=9() Tij =
0. For each partial ranking 75 (s = 1,2,---, K), the elements in 7, give addi-
tional coherence value to the ranking 7 at most

(7 () xw, =

N 2n
2 n/t

<
ne—17 ¢

|3

Therefore, the total difference between ®(7) and ¢(g) is at most K x (2n/t). O

Let 7* be an optimal ranking and ¢* be its induced placement, and let ¢ =

2K
(1 — —)e. Assume that g is a proper placement such that
c

¢(9) = (g") — €n,

10



and 7 is an arbitrary ranking such that ¢ is the placement induced by 7. By
Lemma 4.3, we have that

B(r) > 6(g) > dlg7) — €n > B(x*) — MT” = &) — en.

Therefore, finding an optimal ranking to our problem can be reduced to the
problem of finding a proper placement within an additive factor of €n from
the optimal placement.

The optimal placement problem can be formulated as a quadratic arrangement
problem:

Max YIS C} i TikTj1]
S wg=ntk=1,2,--,t
s.t. S =1 i=12-n
iy = 0,1 i=1,2,---,n; k=1,2,---,t

ws if 75(i) < 75(j) and 0 < k < 1
Here, ¢,y = .

0  otherwise

Let g be a proper placement, and let g;z = 1 if the element ¢ is assigned to
interval I, by ¢, and g¢;z = 0 otherwise. For each ¢ € N, and £ =1,2,---,¢,
we define

ex = Zcfjkzgjl =w, | {J € Ny, 1 7(i) < 75(j) and g(j) > k} | .
il

We also define €5, =0 for i ¢ N, (k=1,2,---,t). Then the proper placement
g corresponds to an integral solution to the following linear program:

Max Ef:l[ i1 Etk:l X Tik]

E?:Ixik:n/t k:1,2,"-,t
Etk:lxikzl i=1,2,---.n
s.t.
Eﬂcfjkla:ﬂ:éfks:1,2,---,K; 1 €N k=1,2,---t

(0 <z <1 i=1,2,m k=1,2,---,t

We will use the method of exhaustively sampling [1,2] to estimate é5,’s. How-
ever, since the lengths of K given partial rankings may be quite different from
each other, the coefficients of above quadratic arrangement problem do not
satisfy the “smooth” condition. Thus, to make a more accurate estimate of

11



different coefficients, we extend Arora’s framework [1,2] by making sampling
and estimation for each given ranking separately.

The main idea is: first we make independent experiments for each given rank-
ings to get different sampling sets 11,75, - - -, Tx; then we put all the sampling
sets together and enumerate all possible placement h that assign the elements
in T = UE T, to intervals Iy, I, - - -, I;; finally we make use of the restriction
placement of h on T’s to estimate the coefficients €;,.’s of different rankings.

Our procedure of exhaustively sampling is as follows. Randomly picking with
replacement a multi-set Ty of O(logns/d?) elements (where ¢ is a sufficiently
small fraction of ¢ which we will determine later) from the set N, (s =
1,2,---, K) respectively, we estimate €. by the sum (n,/|Ts|)ws|{j € Ts
75(1) < 75(j) and g(j) > k}|. Thus, we chose randomly a multi-set T =
Ty U--- U Tk with size |T| = O(logn). Since the optimal placement is not
known in advance, we enumerate all possible function h : T — {1,2,---,t}
that assign elements in 7" to intervals Iy, I5, - - -, I;. For each such function, we
solve a linear program M, described below and round the (fractional) optimal
solution to construct a proper placement. Among all these placements, we pick
up one with maximum value. When the function h we considered is the same
as h* which is the restriction of an optimal placement ¢* to 7', the placement
g we get from the linear program M, will satisfy ¢(g) > ¢(g*) — €'n with high
probability, over the random choice of T.

Let h be a given function h : T — {1,2,---,t}. For simplicity, we will identify
h with its restrictions on Ty’s (s = 1,2,---, K) in the rest of this section.
For the partial ranking 75, we compute an estimate e}, of the value €;, when
assigning the element i € N,, to interval I}, (k =1,2,---,¢) in any placement
g whose restriction to 75 is h:

er = |T|w5|{]€T 1 75(1) < 75(j) and h(j) > k} |,

and set ef, = 0 for the element i ¢ N, (k=1,2,---,1).

Lemma 4.4 Pick uniformly at random with replacement a multi-set T of
O(logns/6?%) elements from N,,. Let g be a placement and h be the restrictions
of g on Ts. Then with high probability (over the choice of sample Ty ),

Proof. Let X; be a random variable that equals wy, = 2/(ns — 1) if the [th
element sampled is j and 7,(2) < 75(j), g(j) > k; otherwise, X; = 0. Note that

> xi= Tl p[v ] -

] s

|T|

S

12



Divide each X; by w; to scale it to {0, 1}-variable. Applying Lemma 4.2 to the
sum of Xy, Xy, -+, Xjp| after scaling, with A = ¢|T;| and |Ts| = O(logn,/é?),
we have with high probability that

T
T|L :}| | el — € [< A =0|Ty|, e el —é |< dnsws < 30.
S S

O

Consider the following linear program Mj:

Max Z(z) = 5:1(2?:1 22:1 5L Tik)
E?:lxik:n/t k=1,2,---,t

My, Shoiwi =1 i=1,2,---.,n
s.t. ‘

s (1) <75 (j) LI>k

0< oy <1 i=1,2,---,n; k=1,2,-

Let 2" be the optimal solution for M},. We round 2%, using randomized round-
ing techniques of Raghavan and Thompson [16] to obtain a placement 7 and
corresponding proper placement 7" as follows: (1) for each element i, indepen-
dently take 7(i) = k with probability z; (2) construct a proper placement
r" from 7 by moving elements from intervals with more than n/t elements
assigned to them to intervals with less than n/t elements assigned to them
arbitrarily. We will discuss the relation between the optimal value Z(2") of
M,, and the value of corresponding placement r, ¢(r"). Let

Zs(x") = S5y i €5l Z(a") = Zf:l Zs(x");
¢s(7:) = ws|{(i7j) : Ts(i) < Ts(j) and F(Z) < 7:(])}|7 d)(F) = Zf:l st(f)'

Lemma 4.5 Let h be a function that assigns elements of T to intervals
I, I, -+, 1, and " be the proper placement constructed from the optimal
fractional solution =" of My,. Then

o(r") > Z(a") — 4Kén. (4.2)

Proof. First think of the placement 7 obtained after randomized rounding of

zh as a vector 7 such that Z; = 1 if and only if 7(7) = k. From the randomized

rounding procedure, we obtain that for the partial ranking 75 (s =1,---, K),

E [ﬁ ztj efkjik] = Z(a").

1=1 k=1
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Let X;; be the random variable taking the value e}, if 7;; = 1 and 0 otherwise.
Scaling X;;’s to the interval [0, 1] (ef, = O(1)), and applying Lemma 4.2 to
the sum of the scaled variables X;;, we have with high probability,

n

‘ Z zt: 5T — Zo(2") ‘g O <\/ns log ns> . (4.3)

1=1 k=1

Next we consider the difference between 3", 3¢ | €%, 7 and the partial place-
ment value ¢4(7). Let

fs = oo > wEy and fii= Y > wsx?l.

i (3) <75 (4) L:I>k Jims(3)<7s (j) L:I>k

By the definition of 7, we have E[f;] = f;.. Let Yj; be the random variable
taking the value w; if 7j; = 1 and 0 otherwise. Applying Lemma 4.2 to the
sum of random variables Yj;/w,, we obtain with high probability that f; >

s —O(y/logn,/ny). Also since 2" is a feasible solution to My, |f5 —e3.| < 30,

we have
i > fi — O(flogno/ny) > ¢, — 35 — O(\logny/n).  (4.4)

Combining the formulas (4.3), (4.4) and Y0 Sk, T = ns,

bs(7) = i1 22:1 fzskak > i Etk:l[efk — 30— O(V log ns /1) it
= i 22:1 eikTik — Dimi 22:1[35 + O(\/ log ns/ns)| i (4.5)
> Z,(z") — 36n, — O(v/nslogny).

Therefore,

O(F) = Yol ¢s(7) > X351 [Zs(a") — 30n, — O(Vng Tog ny)]

(4.6)
> Z(a") — 3K6n — O(y/nlogn).

From the construction of 7, we have ||{i: 7(i) € It}| — n/t| < O(y/nlogn),
with high probability. Thus, we move at most O(y/nlogn) elements to obtain
the proper placement r” from 7. This changes the value of the placement at
most O(y/nlogn). It follows (4.6) that

o(r") > Z(2") — 3Kén — O(y/nlogn) > Z(z") — 4K én.

The last inequality holds because K and § are both constant, and O(y/nlogn) <
Kon for large n. O
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Lemma 4.6 Let g* be the optimal placement, h* be the restriction of g* to the
sample T and r* be the proper placement constructed from the optimal solution
x* of Mp~. Then

¢(r') = ¢(g") — e'n.

Proof. It follows from Lemma 4.4 that with high probability, ¢* is a feasible
solution to M-, hence,

Z(x") = Z(g%) = ¢(g") — 3K0n,

where the second inequality is obtained by substituting the lower bound on
the estimates ef), in (4.1). Also from Lemma 4.5, ¢(r*) > Z(z*) — 4Kdn, we
have that

o) = 6(g") — TKon.
By choosing § = ¢ /7K, the result follows. O

In this procedure, we enumerate all possible function h: T'— {1,2,---,t} and
choose a placement with maximum value among all placement r" constructed.
Since r* is a candidate for our chosen placement r”, and we choose the place-
ment with maximum value which is no less than the value of r*, therefore, we
obtain the desired result of Theorem 4.1.

The PTAS described above uses randomization in picking the sample set of
elements 7" and in rounding the optimal solution to linear program M, For
the procedure of rounding the optimal solution z" of linear program M,,
we can derandomize it in a standard way using the method of conditional
probabilities [15]. As discussed in [1] (also in [11]), the procedure of sampling
the set of elements 75 can be substituted by an alternative way of picking
random walks of length || on a constant degree expander graph. Since there
are only polynomial many random walks of length |T,| = O(logn/é*) on
this expander, the procedure of sampling the total set 1" can be substituted
by picking polynomial many random walks of length O(logn/6?). Thus, we
can derandomize the algorithm by exhaustively going through all possibilities,
i.e., tITl = ¢OUog n/8%) = pOo1/e) placements of the elements in the sample. The
running time of our algorithm is nO0/e),

5 Dynamic Ranking Problems

In meta search applications, the rank aggregation problem is often dynamic.
Partial rank lists from the voters arrive and become available to the aggrega-
tion function a block at a time. To simplify our discussion, we consider a model
where the rank list of each voter arrives one candidate by one candidate in
the decreasing order of their ranks. The arrival times of rank lists of different
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voters are not coordinated and are in arbitrary orders. That is, the rank list
of Voter 1 may all arrive before any information is known of Voter 2’s rank
list; or they may also arrive alternatively, one from Voter 1’s list and one from
Voter 2’s list. Such uncertainty is a matter of fact in today asynchronous com-
munication networks on which the Internet is based. Note that information
from some voters may not arrive at all. Still the user request of an aggregated
rank list is to be met.

Naturally, a data structure problem pops up itself here: update the aggregated
rank list when a piece (or a block) of new data (in the form of partial rank
lists) arrive. The problem would require different data structures for different
aggregation functions. For concreteness and illustration purpose, we discuss
the solution for the Borda’s rule. Recall that the Borda’s rule is a positional
method where each candidate in a rank list is assigned a score equal to the
number of candidates that ranked below it, and its total score is the sum of
its scores in all the rank lists. The final rank is in the decreasing order of
candidate’s total scores. For simplicity, we consider candidates of the same
total score tied for the position. Another issue for our application is how to
assign scores to candidates whose scores are not yet known. There are various
methods dealing with it, we should adopt one that assign the same score to
all candidates not yet appeared in a voter’s partial rank list, at the same
total value as they have. For a given collection of partial lists, the above
definition specifies an aggregation value for the candidates and results in a
rank list for them. However, each time a partial list gets updated with its next
candidate becomes known, the aggregated value of all the candidate’s that has
not appeared in the partial list will change that may result in a change of the
aggregated rank list.

In addition to the data structure problem, there are other related problems.
The aggregated rank of some candidates may become fixed, no matter what the
not-yet-known partial lists of some voters. To determine this subset of candi-
dates is interesting for some applications. Sometimes we may not be interested
in the ranks of all candidates but the top few (and not even their orders but
the fact that they are identified to be among the top few). The computational
problem can be easy for some aggregation functions and difficult for others.
Note that, we may be interested in making a minimum number of the total
size of the partial lists of the voters to determine the top few since that queries
over the Internet are costly. However, in the worst case, we may have to go
through all the lists even to determine the top element in a aggregate ranking
list for many aggregation method, e.g., for the Borda rule.

Proposition 5.1 To determine the top element of the aggregated ranking list
for m lists of n candidates according to the Borda’s rule, we may have to go
through all the elements (but the last one) for all the lists.

16



Obviously, such extreme cases are rare and may represent issues deserve fur-
ther studies in information retrieval. For example, if the candidate lists are
obtained by keyword searches on different search engines, such worst case
outcome may represent cases of a high level of ambiguity in the language.
Therefore, we introduce the following definitions:

Definition 5.2 Consider m lists of n candidates, if the k-th ranked element
wn the aggregated list, according to a aggregation rule, can be determined by ex-
amination of a total of O(mk) elements in the m candidate lists, the collection
of m lists is called a coherent collection for the aggregation rule.

A study of coherent collections for social choice rules would be an interest-
ing research topic. A more relaxed defition could allow the number of items
examined to be up to O(mf(k)) for a moderately growing function f(k). In
comparison, we may define a non-coherent collection of candidate lists to be
one such that it is necessary to examine 2(mg(n)) elements, for a non-trivial
increasing function g(n), to determine the top k ranked element in the aggre-
gated list.

6 Remarks and Discussion

The application of rank aggregation methods to meta search has attracted
research attention recently [10,19]. Considering the distinct features in the
context of meta-search on the web, we have developed a new rank aggrega-
tion method based on the criterion of Coherence. We have proposed not only
a practical heuristic algorithm with the solution satisfying the weighted ex-
tended Condorcet criterion, but also a theoretical polynomial time approxima-
tion scheme (PTAS) for the Coherence aggregation problems. Our algorithm
extends and exploits the general framework of Arora, et al., [1,2], for design
and analysis of polynomial time approximation schemes.

Our work combines the normalized Kendall-7 distance and the size of over-
lap between ranking lists in rank aggregation context. Other metrics in social
choice theory are also worth of further exploration with the algorithmic ap-
proach.

Note that, the work of Dwork, et al., [10], first seriously applies algorithmic
method to the study of rank aggregation and their approximation algorithm
of ratio two for full ranking Kendall-7 distance minimization relies on its deep
relationship with Spearman’s footrule distance, developed in Statistics [8].
Our work extends their proposed normalized Kendall-7 distance for partial
rankings and obtains a polynomial time approximation scheme.
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There are other models where ranking lists are weighted differently. Com-
pared with traditional voting problem where each voter is treated equally in
the aggregation procedure, each voter in weighted case will make different
contribution to the final aggregation result. The weight for each voter (search
engine) could be computed according to its quality (performance). Some ap-
proaches have been proposed to evaluate the quality of the web search engine,
such as statistical approach in [18] where some statistical information such
as query term frequency is kept to predict the quality of the search engine,
and learning based approach in [9,12] where users past retrieval experiences
on these search engines are utilized to predict the quality of them.

Dynamic models for the rank aggregation problem is important for the ap-
plications to information retrieval over the Internet. A practical issue related
to meta search is that the delays between submitting a query and obtaining
candidate lists from different search engines may not be even [6]. It would be
interesting to include this factor into consideration.
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