
Greedy Online Frequency Allocation in Cellular Networks

Wun-Tat Chan∗ Francis Y. L. Chin† Deshi Ye‡ Yong Zhang§ Hong Zhu¶

Abstract

The online frequency allocation problem for cellular networks has been well studied in
these years. Given a mobile telephone network, whose geographical coverage area is divided
into cells, phone calls are served by assigning frequencies to them, and no two calls emanating
from the same or neighboring cells are assigned the same frequency. Assuming an online
setting that the calls arrive one by one, the problem is to minimize the span of the frequencies
used.

In this paper, we study the greedy approach for the online frequency allocation prob-
lem, which assigns the minimal available frequency to a new call so that the call does not
interfere with calls of the same cell or neighboring cells. If the calls have infinite duration,
the competitive ratio of greedy algorithm has a tight upper bound of 17/7, which closes the
gap of [17/7, 2.5) in [3]. If the calls have finite duration, i.e., each call may be terminated
at some time, the competitive ratio of the greedy algorithm has a tight upper bound of 3.
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1 Introduction

Wireless Communication based on Frequency Division Multiplexing (FDM) technology is widely
used in the area of mobile telephony. In the network of wireless communication, the geographic
area is divided into small cellular regions [8] or cells as shown in Fig. 1, each containing one
base station. Each base station serves the calls in its cell via radio frequencies, and base stations
communicate with each other through a high-speed wired network. To avoid radio interference,
the same frequency cannot be assigned to two different calls emanating from the same cell or
neighboring cells. Since the frequency spectrum is a scarce resource, we should reuse the same
frequency for different calls in the cells not close to each other. Efficient utilization of the
available spectrum is very important to the frequency allocation problem [1, 3, 4, 6, 7, 9, 10].

Frequency Allocation Problem. In this paper, we focus on the online version of the
frequency allocation problem, in which a sequence σ of calls arrive over time, where σ =
(C1, C2, . . . , Ck, . . . , ) and Ck represents the cell from which the k-th call emanates. Each call Ck

must be assigned upon its arrival, without information about future calls {Ci|i > k}, a frequency
A(Ck) ∈ Z+ where Z+ = {1, 2, . . .} of available frequencies, that is different from those of other
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A cell

Figure 1: a description of cellular network

calls in the same cell or neighboring cells, i.e., A(Ck) 6= A(Ci), where i < k and Ci is adjacent to
Ck or the same as Ck. The integer frequency once assigned to a call cannot be changed during
the survival of this call. The online frequency allocation problem for cellular network (FAC for
short) is to minimize the maximum assigned frequency, i.e. max{A(Ck)|k = 1, 2, . . . , n}. If all
the information of Ck is known in advance, we call this problem off-line frequency allocation
problem, which is NP-hard [9].

Two models of online frequency allocation problems will be investigated. The first model
is that all the calls have infinite duration [3]. We call this model frequency allocation without
deletion. The second model is that each call may be terminated at some time, i.e., each call is
characterized by two parameters: arrival time and termination time. However, the termination
time is not known when the call arrives online. We call this model frequency allocation with
deletion.

Performance Measures. We use competitive analysis [2] to measure the performances of
online algorithms. To serve all the calls in a given sequence σ, A(σ) denotes the highest
frequency used by the online algorithm A, and O(σ) denotes the highest frequency used by the
optimal off-line algorithm.

The competitive ratio of algorithm A is defined as

RA = sup
σ

A(σ)
O(σ)

.

Known Results. Previous results have mainly focused on the without-deletion model. A
simple strategy for frequency allocation problem is the fixed allocation assignment (FAA) [8],
in which cells are partitioned into independent sets and independent sets are each assigned a
separate set of frequencies. FAA gives an easy upper bound of 3 for FAC.

Another intuitive approach is the greedy algorithm (Greedy), which assigns the minimal
available frequency to a new call so that the call does not interfere with calls of the same cell
or neighboring cells. Caragiannis et al [3] proved that the competitive ratio of Greedy for FAC
is at least 17/7 and at most 2.5.

In the with-deletion model, the general lower bound of competitive ratio is 2[5].

Our Contributions. In this paper, we analyze Greedy in both of the without-deletion and
with-deletion models. In the without-deletion model, we tighten the upper bound of Greedy to
17/7. In the with-deletion model, we prove that both the upper bound and the lower bound of
Greedy are 3. Thus, 3 is the best possible competitive ratio for Greedy in with-deletion model.
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2 Greedy in the Without-Deletion Model

In this section we give a tighter analysis of Greedy and show that Greedy is 17/7-competitive
for cellular networks, which matches the lower bound of Greedy as given in [3].

Theorem 1. Greedy for FAC has a competitive ratio of 17/7 in the without-deletion model.

Proof. Suppose the highest frequency h used by Greedy is assigned to a call from a cell n0 after
which no more calls are made. Let the six neighboring cells of n0 be ni for 1 ≤ i ≤ 6 in clockwise
order as shown in Figure 2. Let f∗ be the maximum number of calls from any three adjacent
cells. Let C(N) denote the total number of calls from N where N can be an individual cell or a
set of cells. Without loss of generality, we can assume that the three adjacent cells n0, n1, and
n2 together have C({n0, n1, n2}) = f∗ calls; otherwise, the adversary may initiate more calls
from n0 to get a larger h and thereby increase the competitive ratio.

Let C(n1) = i, C(n2) = i + j, and C(n0) = i + k, for some i, j ≥ 0 and k may be positive
or negative. Hence, we have f∗ = 3i + j + k. Consider another three adjacent cells, say n0, n2

and n3, C({n0, n2, n3}) ≤ f∗. Thus, we can assume C(n3) = i− c1 for some c1 ≥ 0. Similarly,
we can deduce the numbers of calls from other cells as follows.

C(n0) = i + k, C(n1) = i, C(n2) = i + j, C(n3) = i− c1

C(n4) = i + j − c2, C(n5) = i− c3, C(n6) = i + j − c4 (1)
for some i, j, c1, c4 ≥ 0, and c1 + c2, c2 + c3, c3 + c4 ≥ 0
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Figure 2: Cellular network for upper bound of Greedy

Let d be the number of distinct frequencies among the frequencies assigned to the calls from
n0 and all n0’s neighbors. Let r =

∑6
i=0 C(ni) − d = 7i + 3j + k −∑4

i=1 ci − d, i.e., r is the
total number of calls with “reused” frequencies in these seven cells. Recall that h is the highest
frequency used by Greedy and f∗ is the maximum number of calls from any three adjacent cells.
The competitive ratio of Greedy is at most h/f∗. In the following we prove that h/f∗ ≤ 17/7.
Since h = d =

∑6
i=0 C(ni) − r = 7i + 3j + k −∑4

i=1 ci − r and f∗ = 3i + j + k, it suffices to
prove that

7i + 3j + k −∑4
i=1 ci − r

3i + j + k
≤ 17

7
,
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or after rewriting the inequality,

2i + 10k + 7
4∑

i=1

ci + 7r ≥ 4j.

This inequality is proved in the following lemma.

Lemma 2. 2i + 10k + 7
∑4

i=1 ci + 7r ≥ 4j.

Proof. Let M denote the set of cells, excluding n0, that are neighbors of one of the cells ni for
1 ≤ i ≤ 6 but not the cells ni themselves. Assume the cells in M are labeled as mi for 0 ≤ i ≤ 11
in clockwise order, starting with m0 which is the neighbor of both n1 and n6 (Figure 2).

Let si denote the total number of calls from cells in M which are the neighbors of ni.
Precisely, si = C({m2i−2,m2i−1,m2i}). Note that the indices are in modulo 12, e.g., s6 =
C({m10,m11,m0}). We can deduce the value si for 1 ≤ i ≤ 6 as follows. For example, where s4

is considered, we have C(m6) ≤ f∗ − C({n3, n4}) = i + k + c1 + c2 because m6, n3 and n4

are three adjacent cells and similarly C({m7,m8}) ≤ f∗ − C(n4) = 2i + k + c2. Thus s4 =
C({m6,m7,m8}) ≤ 3i+2k+2c2 + c1. On the other hand, we have C(m8) ≤ f∗−C({n4, n5}) =
i + k + c2 + c3 and C({m6,m7}) ≤ f∗ −C(n4) = 2i + k + c2, and hence s4 ≤ 3i + 2k + 2c2 + c3.
Since s4 has to satisfy both inequalities, we have s4 ≤ 3i + 2k + 2c2 + min(c1, c3). Similarly, we
can deduce the inequalities for other si as follows.

s1 ≤ 3i + j + 2k, s2 ≤ 3i + 2k,

s3 ≤ 3i + j + 2k + 2c1, s4 ≤ 3i + 2k + 2c2 + min(c1, c3), (2)
s5 ≤ 3i + j + 2k + 2c3 + min(c2, c4), s6 ≤ 3i + 2k + 2c4 + min(0, c3).

Let H(N) denote the highest frequency assigned to calls from N where N can be an
individual cell or a set of cells. In the following, we study the six different cases where
H({n1, n2, . . . , n6}) = H(ni) for 1 ≤ i ≤ 6. In each case, we show that 2i+10k+7

∑4
i=1 ci+7r ≥

4j.

Case 1: H({n1, n2, . . . , n6}) = H(n1): By the greedy algorithm, when frequency H(n1)
is assigned to a call from n1, all the frequencies less than H(n1) must have been assigned to calls
from n1 or neighbors of n1. Those frequencies in n3, n4, and n5 but not duplicated in n1, n2 and
n6 must be assigned to calls from m0,m1 or m2, which are the other neighbors of n1. Hence,
we have (from Eq. (1) and (2))

C({n3, n4, n5})− r ≤ s1 = 3i + j + 2k

⇒ 3i + j − c1 − c2 − c3 − r ≤ 3i + j + 2k (3)
⇒ 2k + c1 + c2 + c3 + r ≥ 0.

We further consider three sub-cases: H({n2, n4, n6}) = H(n2), H({n2, n4, n6}) = H(n4),
and H({n2, n4, n6}) = H(n6).

For H({n2, n4, n6}) = H(n2), the frequencies in n4 and n6 but not duplicated in n1, n2 and n3

must be assigned to calls from m2,m3 or m4. Thus we have C({n4, n6})− r ≤ s2, which
implies that 2i + 2j − c2 − c4 − r ≤ 3i + 2k (from Eq. (1) and (2)), i.e.,

i + 2k + c2 + c4 + r ≥ 2j. (4)

4



As a result, 2i + 10k + 7
∑4

i=1 ci + 7r ≥ 2(i + 2k + c2 + c4 + r) + 3(2k + c1 + c2 + c3 + r) +
4c1 + 2(c2 + c3) + 2(c3 + c4) + 3c4 + 2r ≥ 4j because the first term is at least 4j (from Eq.
(4)) and all the other terms are non-negative (from Eq. (1) and (3)).

For H({n2, n4, n6}) = H(n4), the frequencies in n2 and n6 but not duplicated in n3, n4 and n5

must be assigned to calls from m6,m7 or m8. Thus we have C({n2, n6})− r ≤ s4, which
implies that 2i + 2j − c4 − r ≤ 3i + 2k + 2c2 + min(c1, c3) (from Eq. (1) and (2)), i.e.,

i + 2k + 2c2 + c4 + min(c1, c3) + r ≥ 2j. (5)

As a result, 2i + 10k + 7
∑4

i=1 ci + 7r ≥ 2(i + 2k + 2c2 + c4 + min(c1, c3) + r) + 3(2k + c1 +
c2 + c3 + r) + 4c1 + 2(c3 −min(c1, c3)) + 2(c3 + c4) + 3c4 + 2r ≥ 4j because the first term
is at least 4j (from Eq. (5)) and all the other terms are non-negative (from Eq. (1) and
(3)).

For H({n2, n4, n6}) = H(n6), the frequencies in n2 and n4 but not duplicated in n1, n5 and n6

must be assigned to calls from m10,m11 or m0. Thus we have C({n2, n4})− r ≤ s6, which
implies that 2i + 2j − c2 − r ≤ 3i + 2k + 2c4 + min(0, c3) (from Eq. (1) and (2)), i.e.,

i + 2k + c2 + 2c4 + min(0, c3) + r ≥ 2j. (6)

As a result, 2i + 10k + 7
∑4

i=1 ci + 7r ≥ 2(i + 2k + c2 + 2c4 + min(0, c3) + r) + 3(2k + c1 +
c2 + c3 + r) + 4c1 + 2(c2 + c3) + 2(c3 −min(0, c3)) + 3c4 ≥ 4j because the first term is at
least 4j (from Eq. (6)) and all the other terms are non-negative (from Eq. (1) and (3)).

Thus, the lemma is proved for this case when H({n1, n2, . . . , n6}) = H(n1).

Case 2: H({n1, n2, . . . , n6}) = H(n2). Similar to the previous case, we can deduce that
C({n4, n5, n6})− r ≤ s2, i.e.,

2k + c2 + c3 + c4 + r ≥ 2j.

Hence, 2i+10k+7
∑4

i=1 ci+7r ≥ 2i+5(2k+c2+c3+c4+r)+5c1+2(c1+c2)+2(c3+c4)+2r ≥ 4j
because the second term is at least 10j and all the other terms are non-negative.

For each of the remaining cases: we can also prove that 2i + 10k + 7
∑4

i=1 ci + 7r ≥ 4j.
The details are given in the appendix.

3 Greedy in the With-Deletion Model

In this section, we analyze Greedy in the with-deletion model, i.e., each call may be terminated
at some time. We prove that the upper bound and lower bound of Greedy are both 3. Thus,
the best possible competitive ratio is 3 for Greedy in the with-deletion model.

Theorem 3. Greedy for FAC is 3-competitive in the with-deletion model.

Proof. Consider Fig. 3(a), assume the highest frequency f appears in cell n0. Let x be the
number of frequencies in cell n0, y be the number of distinct frequencies in cells n1 to n6. Since
Greedy is to choose the smallest frequency without interference with the neighboring frequencies,
those frequencies less than f must all appear in n0 or ni,(1 ≤ i ≤ 6). Therefore, we can say that
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Figure 3: Upper bound and Lower bound of Greedy in cellular network

f = x + y. In this configuration, optimal allocation uses at least x + y/3 frequencies. Hence,
the competitive ratio is at most

x + y

x + y/3
< 3.

The following is to prove by induction that 3-competitive is best possible for Greedy.
Consider Fig. 3(b), define tri-group to be the set of three cells which are “one edge” away

from each other, e.g., cell sets {a, f, h} and {b, g, i}.
We prove the following hypothesis by induction. When the highest frequency 3n + 1 is

assigned to a call in cell x, all frequencies from 1 to 3n would have been used in a tri-group,
e.g., {u, v, w}, around x, s.t. C(u) = C(v) = C(w) = n. As for the optimal off-line algorithm,
n + 1 frequencies could be sufficient to take up all these calls.

Base Step n = 1. When one call appears at cells c, d and i, Greedy uses the frequency 1 to
these calls. Then the frequency 2 will be assigned to a call at cells a and cell g, and the
frequency 3 to a call at cell b. Delete the call in cell c. At last, the frequency 4 has to be
assigned to a call at cell f , since the frequencies 1, 2 and 3 are all around f .

In this step, Greedy uses 4 frequencies while the optimal off-line assignment uses only two
frequencies, and each cell of tri-group {b, g, i} contains one frequency.

Induction Step Suppose the hypothesis is true for n = k. Now we prove that it is also correct
for n = k + 1.

By the induction hypothesis, Greedy can force the frequency 3k + 1 to a call C1 in cell
d and another call C2 in cell g. Terminate all other calls except C1 and C2. From the
hypothesis, Greedy can assign the frequencies 1 to 3k to appear in tri-group {a, f, h},
and each cell contains k frequencies. Then a call C3 arrives at e, Greedy must use the
frequency 3k + 2. Then terminate all other calls except C3 in e and C2 in g. After that,
Greedy forces the frequencies 1 to 3k to appear in tri-group {b, g, i}, s.t. C(b) = C(i) = k
and C(g) = k + 1(including the call C2). Now a call C4 arrives at f , Greedy must use the
frequency 3k + 3 to this call. Then terminate all other calls except C4 in f . By similar
description, Greedy can assign the frequency 3k + 1 to a call C5 in h and the frequency
3k +2 to a call C6 in l. Then force the frequencies 1 to 3k to appear in tri-group {f, h, l},
s.t. C(f) = C(h) = C(l) = 3k + 1. Finally, one call C7 arrives at i, Greedy must use the
frequency 3k + 4.
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With the induction hypothesis on the above sequence, the optimal off-line algorithm can
assign frequencies k + 1, k + 2, k + 2, k + 1, k + 1, k + 1 and k + 2 to the calls C1 to C7

respectively.

Thus, to satisfy the call sequence described above, Greedy must use 3k + 4 frequencies,
while the optimal off-line assignment uses only k + 2 frequencies. Therefore, the compet-
itive ratio of Greedy in cellular network is at least

3n− 2
n

−→ 3.
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Handbook of Wireless Networks and Mobile Computing, pages 71–94. John Wiley & Sons,
2002.

7



Appendix

Remaining proof of Lemma 2

We continue for the remaining cases, i.e., H({n1, n2, . . . , n6}) = H(ni) for 3 ≤ i ≤ 6.

Case 3: H({n1, n2, . . . , n6}) = H(n3). Similar to Case 1, we have

C({n1, n5, n6})− r ≤ s3 = 3i + j + 2k + 2c1

⇒ 3i + j − c3 − c4 − r ≤ 3i + j + 2k + 2c1

⇒ 2k + 2c1 + c3 + c4 + r ≥ 0.

We further consider three sub-cases: H({n2, n4, n6}) = H(n2), H({n2, n4, n6}) = H(n4),
and H({n2, n4, n6}) = H(n6).

For H({n2, n4, n6}) = H(n2), as in case 1, we have i + 2k + c2 + c4 + r ≥ 2j. As a result,
2i + 10k + 7

∑4
i=1 ci + 7r ≥ 2(i + 2k + c2 + c4 + r) + 3(2k + 2c1 + c3 + c4 + r) + (c1 + c2) +

4(c2 + c3) + 2c4 + 2r ≥ 4j because the first term is at least 4j and all the other terms are
non-negative.

For H({n2, n4, n6}) = H(n4), as in case 1, we have i + 2k + 2c2 + c4 + min(c1, c3) + r ≥ 2j. As
a result, 2i + 10k + 7

∑4
i=1 ci + 7r ≥ 2(i + 2k + 2c2 + c4 + min(c1, c3) + r) + 3(2k + 2c1 +

c3 + c4 + r) + (c1 + c3 − 2min(c1, c3)) + 3(c2 + c3) + 2c4 + 2r ≥ 4j because the first term
is at least 4j and all the other terms are non-negative.

For H({n2, n4, n6}) = H(n6), as in case 1, we have i + 2k + c2 + 2c4 + min(0, c3) + r ≥ 2j. As
a result, 2i + 10k + 7

∑4
i=1 ci + 7r ≥ 2(i + 2k + c2 + 2c4 + min(0, c3) + r) + 3(2k + 2c1 +

c3 + c4 + r) + (c1 + c2) + 4(c2 + c3) − 2min(0, c3) + 2r ≥ 4j because the first term is at
least 4j and all the other terms are non-negative.

Case 4: H({n1, n2, . . . , n6}) = H(n4). Similar to the previous cases, we can deduce that
C({n1, n2, n6})− r ≤ s4 = 3i + 2k + 2c2 + min{c1, c3}, i.e.,

2k + 2c2 + c4 + min(c1, c3) + r ≥ 2j.

We further consider three sub-cases: H({n1, n3, n5}) = H(n1), H({n1, n3, n5}) = H(n3),
and H({n1, n3, n5}) = H(n5).

For H({n1, n3, n5}) = H(n1), the frequencies in n3 and n5 but not duplicated in n1, n2 and n6

must be assigned to calls from m0,m1 or m2. Thus we have C({n3, n5})− r ≤ s1, which
implies that 2i− c1 − c3 − r ≤ 3i + j + 2k, i.e.,

i + 2k + c1 + c3 + r ≥ −j.

As a result, 2i + 10k + 7
∑4

i=1 ci + 7r ≥ 3(2k + 2c2 + c4 + min(c1, c3) + r) + 2(i + 2k + c1 +
c3 + r) + 2c1 + 3(c1 −min(c1, c3)) + (c2 + c3) + 4(c3 + c4) + 2r ≥ 4j because the first term
is at least 6j, the second term is at least −2j and all the other terms are non-negative.
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For H({n1, n3, n5}) = H(n3), the frequencies in n1 and n5 but not duplicated in n2, n3 and n4

must be assigned to calls from m4,m5 or m6. Thus we have C({n1, n5})− r ≤ s3, which
implies that 2i− c3 − r ≤ 3i + j + 2k + 2c1, i.e.,

i + 2k + 2c1 + c3 + r ≥ −j.

As a result, 2i+10k +7
∑4

i=1 ci +7r ≥ 3(2k +2c2 + c4 +min(c1, c3)+ r)+2(i+2k +2c1 +
c3 + r) + 3(c1 −min(c1, c3)) + (c2 + c3) + 4(c3 + c4) + 2r ≥ 4j because the first term is at
least 6j, the second term is at least −2j and all the other terms are non-negative.

For H({n1, n3, n5}) = H(n5), the frequencies in n1 and n3 but not duplicated in n4, n5 and n6

must be assigned to calls from m8,m9 or m10. Thus we have C({n1, n3})− r ≤ s5, which
implies that 2i− c1 − r ≤ 3i + j + 2k + 2c3 + min(c2, c4), i.e.,

i + 2k + c1 + 2c3 + min(c2, c4) + r ≥ −j.

As a result, 2i+10k+7
∑4

i=1 ci+7r ≥ 3(2k+2c2+c4+min(c1, c3)+r)+2(i+2k+c1+2c3+
min(c2, c4) + r) + 4c1 + (c1 + c2) + 2c4 + 3(c3−min(c1, c3)) + 2(c4−min(c2, c4)) + 2r ≥ 4j
because the first term is at least 6j, the second term is at least −2j and all the other
terms are non-negative.

Case 5: H({n1, n2, . . . , n6}) = H(n5). Similar to the previous cases, we can deduce that
C({n1, n2, n3})− r ≤ s5 = 3i + j + 2k + 2c3 + min(c2, c4), i.e.,

2k + c1 + 2c3 + min(c2, c4) + r ≥ 0.

We further consider three sub-cases: H({n2, n4, n6}) = H(n2), H({n2, n4, n6}) = H(n4),
and H({n2, n4, n6}) = H(n6).

For H({n2, n4, n6}) = H(n2), as in the previous cases, we have i + 2k + c2 + c4 + r ≥ 2j. As a
result, 2i + 10k + 7

∑4
i=1 ci + 7r ≥ 2(i + 2k + c2 + c4 + r) + 3(2k + c1 + 2c3 + min(c2, c4) +

r) + 4(c1 + c2) + (c2 + c3) + 3(c4 −min(c2, c4)) + 2c4 + 2r ≥ 4j because the first term is
at least 4j and all the other terms are non-negative.

For H({n2, n4, n6}) = H(n4), as in the previous cases, we have i+2k+2c2+c4+min(c1, c3)+r ≥
2j. As a result, 2i+10k+7

∑4
i=1 ci+7r ≥ 2(i+2k+2c2+c4+min(c1, c3)+r)+3(2k+c1+

2c3+min(c2, c4)+r)+2(c1−min(c1, c3))+2c1+3(c2−min(c2, c4))+(c3+c4)+4c4+2r ≥ 4j
because the first term is at least 4j and all the other terms are non-negative.

For H({n2, n4, n6}) = H(n6), as in the previous cases, we have i+2k+c2+2c4+min(0, c3)+r ≥
2j. As a result, 2i+10k+7

∑4
i=1 ci+7r ≥ 2(i+2k+c2+2c4+min(0, c3)+r)+3(2k+c1+2c3+

min(c2, c4)+r)+2(c1−min(0, c3))+2(c1+c2)+3(c2−min(c2, c4))+(c3+c4)+2c4+2r ≥ 4j
because the first term is at least 4j and all the other terms are non-negative.

Case 6: H({n1, n2, . . . , n6}) = H(n6). Similar to the previous cases, we can deduce that
C({n2, n3, n4})− r ≤ s6 = 3i + 2k + 2c4 + min(0, c3), i.e.,

2k + c1 + c2 + 2c4 + min(0, c3) + r ≥ 2j.

We further consider three sub-cases: H({n1, n3, n5}) = H(n1), H({n1, n3, n5}) = H(n3),
and H({n1, n3, n5}) = H(n5).
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For H({n1, n3, n5}) = H(n1), as in the previous cases, we have i + 2k + c1 + c3 + r ≥ −j.

As a result, 2i + 10k + 7
∑4

i=1 ci + 7r ≥ 3(2k + c1 + c2 + 2c4 + min(0, c3) + r) + 2(i + 2k +
c1 +c3 +r)+2(c1 +c2)+2(c2 +c3)+3(c3−min(0, c3))+c4 +2r ≥ 4j because the first term
is at least 6j, the second term is at least −2j and all the other terms are non-negative.

For H({n1, n3, n5}) = H(n3), as in the previous cases, we have i + 2k + 2c1 + c3 + r ≥ −j.

As a result, 2i + 10k + 7
∑4

i=1 ci + 7r ≥ 3(2k + c1 + c2 + 2c4 + min(0, c3) + r) + 2(i + 2k +
2c1 + c3 + r) + 4(c2 + c3) + (c3 + c4)− 3min(0, c3) + 2r ≥ 4j because the first term is at
least 6j, the second term is at least −2j and all the other terms are non-negative.

For H({n1, n3, n5}) = H(n5), as in the previous cases, we have i+2k+c1+2c3+min(c2, c4)+r ≥
−j.

As a result, 2i+10k+7
∑4

i=1 ci +7r ≥ 3(2k+c1 +c2 +2c4 +min(0, c3)+r)+2(i+2k+c1 +
2c3 + min(c2, c4) + r) + 2(c1 + c2) + 2(c2 −min(c2, c4)) + 3(c3 −min(0, c3)) + c4 + 2r ≥ 4j
because the first term is at least 6j, the second term is at least −2j and all the other
terms are non-negative.
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