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Abstract. We study the online frequency allocation problem for wire-
less linear (highway) cellular networks, where the geographical coverage
area is divided into cells aligned in a line. Calls arrive over time and
are served by assigning frequencies to them, and no two calls emanating
from the same cell or neighboring cells are assigned the same frequency.
The objective is to minimize the span of frequencies used.
In this paper we consider the problem with or without the assumption
that calls have infinite duration. If there is the assumption, we propose
an algorithm with absolute competitive ratio of 3/2 and asymptotic com-
petitive ratio of 1.382. The lower bounds are also given: the absolute one
is 3/2 and the asymptotic one is 4/3. Thus, our algorithm with absolute
ratio of 3/2 is best possible. We also prove that the Greedy algorithm
is 3/2-competitive in both the absolute and asymptotic cases. For the
problem without the assumption, i.e. calls may terminate at arbitrary
time, we give the lower bounds for the competitive ratios: the absolute
one is 5/3 and the asymptotic one is 14/9. We propose an optimal online
algorithm with both competitive ratio of 5/3, which is better than the
Greedy algorithm, with both competitive ratios 2.

1 Introduction

Reducing channel interference and using frequencies effectively are fundamental
problems in wireless networks based on Frequency Division Multiplexing (FDM)
technology. In FDM networks, service areas are usually divided into cellular
regions or hexagonal cells [7], each containing one base station. Base stations can
allocate radio frequencies to serve the phone calls in their cells. The allocation
strategy is to choose different frequencies for calls in the same cell or in the
neighboring cells, so as to avoid interference.
? This research is supported by an Hong Kong RGC Grant
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We consider the problems of online frequency allocation in linear (or highway)
cellular networks where the cells are aligned in a line as shown in Fig. 1. Linear
cellular networks can be used to cover the traffic on highways or long strips of
busy metropolitan areas. There are many studies on using frequencies effectively
so as to minimize interference and to reduce call blocking in linear networks [1,
2, 6, 8]. In this paper we study the performances of different strategies, which are
to minimize the span of frequencies used to serve all calls without interference.

Ci−2 Ci−1 Ci
Ci+1 Ci+2

Fig. 1. Linear cellular network

A formal definition of our problem is described as follows. Given a lin-
ear cellular network, in which a sequence σ of calls arrive over time, where
σ = (Ct1 , Ct2 , . . . , Ctk

, . . . , ) and Ctk
represents the cell from which the k-th call

emanates. Each call Ctk
must be assigned upon its arrival, without information

about future calls {Cti |i > k}, a frequency from the integer set Z+ = {1, 2, . . .}
of available frequencies, that is different from those of other calls in the same cell
or neighboring cells. Let A(Ctk

) ∈ Z+ denote the integer frequency assigned to
the k-th call. Then A(Ctk

) 6= A(Cti
), where i < k and Cti

is adjacent to Ctk
or

the same as Ctk
. The integer frequency once assigned to a call cannot be changed

during the survival of this call. The online frequency allocation problem for linear
cellular network (FAL for short) is to minimize the maximum assigned frequency,
i.e., max{A(Ctk

)|k = 1, 2, . . . , n}. If all the information of Ctk
is known in ad-

vance, we call this problem off-line frequency allocation problem. In this paper,
we focus on the online version of FAL.

Two models of online frequency allocation problems will be investigated. The
first model is that all calls have infinite duration [4]. We call this model frequency
allocation without deletion. The second model is that each call may terminate
at arbitrary time, i.e., each call is characterized by two parameters: arrival time
and termination time. However, the termination time is not known even when
the call arrives online. We call this model frequency allocation with deletion.

Performance Measures. We use competitive analysis [3] to measure the
performance of online algorithms. For any sequence σ of calls, let σt denote the
subsequence of calls served up to and at time t. Let A(σt) denote the cost of an
online algorithm A, i.e., the span of frequencies used by A at time t, and O(σt)
the cost of the optimal off-line algorithm, which has the knowledge of the whole
sequence σ in advance.

Let A(σ) = maxtA(σt) and O(σ) = maxtO(σt). The (absolute) competitive
ratio of A is defined as RA = supσ A(σ)/O(σ). Meanwhile, when the number of
calls emanating from the cells is large, the asymptotic competitive ratio of A is
defined as

R∞A = lim sup
n→∞

max
σ

{A(σ)
O(σ)

| O(σ) = n

}
.
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Clearly, for any online algorithm A, we have R∞A ≤ RA.

Related and Our Contributions. To our best knowledge, this is the first
study on the online frequency allocation problem in linear cellular networks with
the objective to minimize the span of frequencies used. It is easy to check that
the off-line version can be solved in polynomial time. However, in many practical
scenarios, the information of calls is not completely known until they arrive. The
online problem is more suitable to model the mobile telephone networks problem.

A simple strategy for the online FAL problem is by fixed allocation assign-
ment [7], in which cells are partitioned into independent sets with no neighboring
cells in the same set. Each set is assigned a separate set of frequencies. The fixed
allocation assignment algorithm gives an easy upper bound of 2 for the online
FAL problem.

Another intuitive approach is by the greedy algorithm (Greedy) which as-
signs the minimum available frequency to a new call such that the call does not
interfere with calls of the same or neighboring cells. We show that, Greedy is
3/2-competitive in the without deletion model, and 2-competitive in the with
deletion model.

In this paper, new algorithms are proposed for both models. In the with-
out deletion model, we present the algorithm Hybrid, which combines the idea
of Greedy and fixed allocation strategy, and yields the absolute and asymp-
totic competitive ratios of 3/2 and 1.382, respectively. Contrasting with the
lower bounds shown, 3/2 for the absolute case and 4/3 for the asymptotic case,
Hybrid is also best possible in the absolute case and better than Greedy in the
asymptotic case.

In the with deletion model, we propose the algorithm Borrow with both
absolute and asymptotic competitive ratios 5/3. We also prove the lower bounds,
which is 5/3 for the absolute case and 14/9 for the asymptotic case. Thus,
Borrow is best possible in the absolute case, and also better than Greedy in
the asymptotic case.

The rest of this paper is organized as follows. In Section 2, we analyze the
performance of Greedy. Section 3 and Section 4 study respectively the without
deletion and the with deletion models, in which upper and lower bounds are
presented. Owing to the space limitation, the proofs of Lemma 1 and part of the
proofs for Theorems 2 and 5 are omitted but they will be given in the full paper.

2 The Greedy Algorithm

We first consider the without deletion model and prove an upper bound of 3/2
for the Greedy. The proved ratio applies to both absolute and asymptotic cases.
Greedy is in fact optimal in the absolute case because no online algorithm can
achieve an absolute competitive ratio less than 3/2 (Theorem 6) in that case.
Then, we show that Greedy is 2-competitive in both absolute and asymptotic
cases of the with deletion model, and that is the best that Greedy can do.
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A B C D E F

Fig. 2. A line cellular network with cells A, B, C, D, E and F.

Theorem 1. In the without deletion model, the competitive ratio of Greedy for
frequency allocation problem in linear cellular network is 3/2.

Proof. Consider the network in Fig. 2. Suppose Greedy assigns the highest fre-
quency to a call from cell C, and no more calls arrive after that. Let B and D
be the left and right neighboring cells of C. Let fX denote the set of frequencies
used in cell X at the time when the highest frequency is assigned.

By the definition of Greedy, when the highest frequency, say h, is assigned to
a call in C, the frequencies from 1 to h−1 must have been assigned to calls of C
or its neighboring cells B and D. Thus, the span of frequencies used by Greedy
is h = |fB ∪ fC ∪ fD|.

Without loss of generality, assume the highest frequency among B and D ap-
pears in B. Since fC and fD cannot have common frequencies, those frequencies
in fD − fB must all appear in A. Therefore, |fA ∪ fB | ≥ |fB ∪ fD|.

It is clear that the optimal span of frequencies used, say s∗, must be at least
the maximum number of calls (frequencies used) from any two adjacent cells.
Thus, we have s∗ ≥ max{|fA ∪ fB |, |fB ∪ fC |, |fC ∪ fD|} ≥ max{|fB ∪ fD|, |fB ∪
fC |, |fC ∪ fD|}. Therefore, the competitive ratio of Greedy is at most

|fB ∪ fC ∪ fD|
max{|fB ∪ fD|, |fB ∪ fC |, |fC ∪ fD|} ≤ 3/2.

ut

Theorem 2. In the with deletion model, the upper and lower bounds of the
competitive ratio of Greedy are both 2 for the online frequency allocation problem
in linear cellular networks.

Proof. The upper bound proof is simple. Consider the network in Fig. 2. When
the highest frequency, say h, appears in cell C, h is at most the total number of
calls from C and its neighboring cells, B and D. The span of frequencies used
by the optimal algorithm is at least the maximum among the numbers of calls
from B and C and those from C and D. Thus, the upper bound of 2 follows.
The lower bound proof is omitted in this paper. ut

3 FAL without Deletion

We propose a generic online algorithm Hybrid for FAL in the without deletion
model. Hybrid consists of two integer parameters, α ≥ 1 and β ≥ 0. We prove
that Hybrid is 3/2-competitive in the absolute case for any α ≥ 1 and β ≥ 0.
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Moreover, with a proper ratio between the values of α and β, the asymptotic
competitive ratio of Hybrid is at most 1.382, which is better than Greedy in
the asymptotic case.

Conceptually, we divide the frequencies into groups, each of which consists
of ∆ = 3α + β frequencies. A frequency f is said to be in group i if ∆i < f ≤
∆(i + 1). Hybrid partitions the set of all frequencies {1, 2, . . .} into 3 disjoint
subsets. The first subset F0 consists of α + β frequencies from each group, while
each of the remaining 2 subsets F1 and F2 has α frequencies. The details of
Hybrid are as follows:

Preprocessing Step: The cells of the linear cellular network are partitioned
into two sets S1 and S2, e.g., cells C2k+1 ∈ S1 and cells C2k ∈ S2, so that the cells
in these two sets are interleaving each other. As mentioned above, the frequencies
{1, 2, . . .} are partitioned into 3 disjoint subsets F0, F1 and F2. Precisely, the
frequencies of group i for each i ≥ 0 are distributed to the three subsets as
follows.

F0 ← {i∆ + 3j + 1 | j = 0, 1, . . . , α− 1} ∪ {i∆ + 3α + j | j = 1, . . . , β}
F1 ← {i∆ + 3j + 2 | j = 0, 1, . . . , α− 1}
F2 ← {i∆ + 3j + 3 | j = 0, 1, . . . , α− 1}
Frequency Assignment Step: Suppose a new call emanates from a cell C,

which belongs to Si, we assign a frequency x to the call either from Fi or F0

according to the following scheme:

min{x|x ∈ F0∪Fi, s.t. x is not assigned to cell C or any of its neighboring cells}

3.1 Asymptotic Competitive Ratio

We show that the asymptotic competitive ratio of Hybrid is (5−√5)/2 ≈ 1.382
when α/β = (

√
5+1)/2 and no online algorithm has an asymptotic competitive

ratio less than 4/3.
Lemma 1 lower bounds the number of frequencies required by the optimal off-

line algorithm, i.e., the total number of calls emanating from any two neighboring
cells, which helps lead to a bound for the competitive ratio.

Lemma 1. For a linear cellular network, if a cell A assigns a frequency from
group k, then for α/β ≥ (1 +

√
5)/2, the total number of calls from cell A and

one of its neighbor is at least (2α + β)k.

Theorem 3. In the without deletion model, the asymptotic competitive ratio of
Hybrid for FAL approaches (5−√5)/2 ≈ 1.382 when α/β → (

√
5 + 1)/2.

Proof. If the highest frequency used by Hybrid, say h, is of group k, we have
h ≤ (3α+β)(k+1). Suppose the frequency h is assigned in a cell C. By Lemma 1,
C and one of its neighbors together have at least (2α + β)k calls when α/β ≥
(1 +

√
5)/2, in which the optimal algorithm has to settle with at least the same

amount of frequencies. Therefore, the asymptotic competitive ratio of Hybrid

is almost limk→∞
(3α+β)(k+1)

(2α+β)k = (5−√5)/2 when α/β → (
√

5 + 1)/2. ut
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Next, we give a lower bound on the asymptotic competitive ratio for FAL in
the without deletion model.

Theorem 4. No online algorithm for FAL in the without deletion model has an
asymptotic competitive ratio less than 4/3.

Proof. Consider the network in Fig. 2 with cells A, B, C, and D in a row. The
adversary initiates n calls from each of cells A and D. For any online algorithm S,
S assigns n frequencies to each of A and D. Suppose in each of the two sets of
frequencies, xn (0 ≤ x ≤ 1) of the frequencies do not appear in the other set.
Thus, the number of distinct frequencies (span of frequencies used) over the 2n
frequencies assigned is (2 − x)n. If x ≤ 2/3, the adversary stops and we have
R∞S ≥ 2− x ≥ 4/3.

On the other hand, consider the case where x > 2/3. The adversary makes n
new calls in each of B and C. S must use at least xn new frequencies in each of
B and C. By now, S has used at least (2+x)n distinct frequencies. However, the
optimal algorithm can satisfy all these calls by 2n distinct frequencies. Therefore,
R∞S ≥ (2 + x)/2 ≥ 4/3. ut

3.2 Absolute Competitive Ratio

We show that the absolute competitive ratio of Hybrid is 3/2 for all α ≥ 1 and
β ≥ 0. We also give a matching lower bound proof for the problem, which shows
that Hybrid, as well as Greedy, are both optimal.

Theorem 5. In the without deletion model, the absolute competitive ratio of
Hybrid algorithm for FAL is at most 3/2.

Proof. We can prove that Hybrid is 3/2-competitive for all α ≥ 1 and β ≥ 0.
For simplicity, we only prove the competitive ratio for the case α = 1 and β = 0.
The general proof will be given in the full paper.

Suppose the highest frequency used by Hybrid, say h, is of group k and
assigned by a cell C of S2 (which is worse than the case of S1, which uses
frequencies from F1 that has smaller frequency values). We have h either 3k + 1
from F0 or 3k + 3 from F2. Consider the former case. C must have assigned
k frequencies from F2 before assigning h. Let 3i + 1 for i ≤ k be the highest
frequency from F0 assigned to a neighboring cell of C, say B. B has at least
i + 1 frequencies, where one is from F0 and i from F1. On the other hand, C
has at least k − i frequencies from F0. Altogether, B and C consist of at least
k + i + 1 + k − i, i.e., 2k + 1, distinct frequencies/calls. The optimal algorithm
must use at least the same amount of distinct frequencies. Thus the competitive
ratio of Hybrid is at most (3k + 1)/(2k + 1) ≤ 3/2.

For the latter case, following the same argument, C has at least 2k − i + 1
distinct frequencies and B, the neighbor of C which has the highest frequency
from F0, has at least i+1 distinct frequencies. Then, the optimal algorithm must
use at least 2k + 2 distinct frequencies. The competitive ratio of Hybrid is at
most (3k + 3)/(2k + 2) = 3/2. ut
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Next, we give the lower bound of absolute competitive ratio for FAL in the
without deletion model.

Theorem 6. No online algorithm for FAL in the without deletion model has an
absolute competitive ratio less than 3/2.

Proof. The proof is simple. Consider the network in Fig. 2 with cells A, B, C,
and D in a row. The adversary begins with one call from each of A and D. For
any online algorithm, if it assigns two different frequencies to these two calls, the
adversary stops. The competitive ratio of the online algorithm is 2. Otherwise,
the same frequency is assigned to both calls. One new call arrives at each of B
and C. The online algorithm must use two new frequencies for the two calls.
Thus, at least three different frequencies are used, while the optimal algorithm
can use only two. Therefore, the absolute competitive ratio is at least 3/2. ut

4 FAL with Deletion

In this section we study the online frequency allocation problem in the linear
cellular network in which the calls may terminate in arbitrary time. We call this
the with deletion model. It is noted that the without deletion model considered
above is a special case of the with deletion model. We present a new online
algorithm Borrow with competitive ratio at most 5/3. A matching lower bound
for problem is given for the absolute case which shows that our algorithm is best
possible. For the asymptotic case, we show that no online algorithm has the
competitive ratio less than 14/9, which leaves only a small gap between the
upper and lower bounds.

4.1 Online Algorithm with Borrowing

The main idea of our algorithm is to reuse (“borrow”) an existing frequency even
if the frequency is not the smallest possible (i.e., Greedy). Consider Fig. 1. When
a call emanates in cell Ci, we try to borrow existing frequencies from Ci−2 or
Ci+2, which does not create interference. If none can be borrowed from Ci−2 or
Ci+2, the call is satisfied by Greedy. In case there are more than one frequencies
that can be borrowed, we select the frequency according to the following priority.

1. The frequency appears in both Ci−2 and Ci+2. If there are more than one
of these, pick one arbitrarily.

2. The frequency appears in either Ci−2 or Ci+2 which currently has more
frequencies that do not appear in Ci. If there are more than one of these,
pick one arbitrarily.

3. Pick one arbitrarily.

Theorem 7. In the with deletion model, the competitive ratio of Borrow is at
most 5/3 for FAL.
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Proof. Consider the network in Fig. 2 with cells A, B, C, D and E in a row.
Suppose the highest frequency, say h, is assigned to a call from D. Note that
without loss of generality, frequency h is assigned by the greedy approach. Hence,
at the time when frequency h is assigned, all frequencies from 1 to h must appear
in either C, D or E. We also consider another time instance, which is the latest
time before frequency h is assigned, that either C or E assigns a frequency, say
h′, that does not exist in C or E. Without loss of generality, we assume that it is
the cell C to assign the frequency h′. There are only two cases, either C assigns
the frequency h′ by the greedy approach or frequency h′ is borrowed from A.
For these two cases, we analyze the competitive ratio of Borrow.

By the greedy approach. Suppose when frequency h is assigned by D,
the number of frequencies being used in C, D, E are y + r1, x and y + r2,
respectively, where y is the number of common frequencies among cells C and
E. Since frequency h is assigned by the greedy approach, we have h = x + y +
r1 + r2, which is the number of distinct frequencies used in the three cells. In
fact, for any algorithm to satisfies all calls from these cells, one has to use at
least x + y + max{r1, r2} distinct frequencies.

Suppose when frequency h′ is assigned by C, the number of frequencies being
used in C and E are y′ + r′1 and y′ + r′2, respectively, where y′ is the number
of common frequencies among C and E. Note that as there are r′2 frequencies
in E that C did not borrow, the r′2 frequencies must be used in B. Hence, the
number of frequencies, and thus the number of calls, from cells B and C is at
least y + r1 + r2. By the definition of frequency h′, at the time frequency h′ is
assigned, the number of distinct frequencies among C and E, i.e., y′ + r′1 + r′2,
must be at least y + r1 + r2. Any algorithm to satisfy the calls from B and C
has to use at least y′ + r′1 + r′2 ≥ y + r1 + r2 frequencies.

As a result the competitive ratio of Borrow is at most

x + y + r1 + r2

max{x + y + max{r1, r2}, y + r1 + r2} ≤
3
2
.

By borrowing. Similar to the previous case, suppose when frequency h is
assigned by D, the number of frequencies being used in C, D, E are y + r1, x
and y + r2, respectively, where y is the number of common frequencies among
C and E. For any algorithm to satisfies all calls from these cells, one has to use
at least x + y + max{r1, r2} distinct frequencies. Suppose when frequency h′ is
assigned by C, the number of frequencies being used in C and E are y′+ r′1 and
y′ + r′2, respectively, where y′ is the number of common frequencies among C
and E.

In this case, frequency h′ assigned by C is borrowed from A but not E. There
are two subcases by the algorithm: either all the r′2 frequencies in E which could
be assigned to C are already in B (i.e., E has no candidate for C to borrow) or
the number of frequencies in A is at least that in E. For the former subcase, we
have the number of frequencies in B and C at least y′ + r′1 + r′2, and hence the
analysis follows the previous case which yields a competitive ratio at most 3/2.
For the latter subcase, we have the number of frequencies in A but not in C at
least that of frequencies in E but not in C, which is r′2. In addition, what those
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frequencies that A could have but not in C are one frequency that is borrowed to
C, and also the frequencies that are neither in C nor E and with frequency value
less than h. There are at most x of them. That implies that r′2 ≤ x. Therefore,
the competitive ratio of our algorithm is at most

x + y + r1 + r2

max{x + y + max{r1, r2}, y′ + r′1}
with the constraints that r′2 ≤ x and y+r1+r2 ≤ y′+r′1+r′2. By the constraints,
we have y′ + r′1 ≥ y + r1 + r2 − x. Together with the fact that max{r1, r2} ≥
(r1 + r2)/2, we can prove that the ratio is at most 5/3. ut

4.2 Lower Bound

Theorem 8. There is no online algorithm for FAL, in the with deletion model,
with an absolute competitive ratio less than 5/3 or an asymptotic competitive
ratio less than 14/9.

Proof. For the absolute competitive ratio, we give an adversary that any online
algorithm will use at least five distinct frequency (with span of at least five),
while the optimal algorithm uses only three.

Consider the network Fig. 2 with cells A, B, C, D, E and F in a row. The
adversary has three calls emanate from each of A, C and F . In order for an
algorithm to use less than five distinct frequency, either the sets of frequency in
A and C differ by one frequency or the two sets are the same. In the following,
we analyze these two cases to show that no online algorithm has an absolute
competitive ratio less than 5/3.

– If the sets of frequencies in A and C differ by one frequency, without loss
of generality, we can assume that the set of frequencies in A is {1, 2, 3} and
that in C is {1, 2, 4}. In that case, the adversary terminates frequency 1 in
A and frequency 2 in C, and make a call from B in which the fifth distinct
frequency, say 5, has to be used. It is easy to see that the optimal can make
use of three distinct frequencies only, and hence the competitive ratio is at
least 5/3.

– If the sets of frequencies in A and C is the same, without loss of generality,
we can assume that both sets of frequency are {1, 2, 3}. Moreover, if less than
five distinct frequencies are used, the sets of frequency in F must be in the
form {1, 2, 3, 4} − {i} for a fixed i with 1 ≤ i ≤ 4. The aim of the adversary
is to make a call in B such that frequency i must be assigned to serve the
call. This can be done by terminating all calls in A except one and all calls
in C except one, such that the remaining calls in A and C use a different
frequency and none of the two frequencies are frequency i. Note that this
can always be done since originally there are three calls in each of A and C.
After frequency i is assigned by B, all calls in A and C are terminated and
two new calls are made from B and three new calls are made from D. Since
frequency i is used in B but not in F , the three frequencies assigned by D
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cannot be the same to both of those in B and F . Then, applying the same
argument as in the previous case, we can show that the online algorithm
must use at least five distinct frequencies while the optimal algorithm can
use only three. Hence, the competitive ratio is at least 5/3.

For the asymptotic competitive ratio, the adversary makes n calls from each
of the A, C and F . Let fX denote the set of frequencies in cell X. For any online
algorithm, let γ be the minimum between the numbers of common frequencies in
A and F , and C and F , i.e., γ = min{|fA∩fF |, |fC ∩fF |}. The online algorithm
uses at least 2n− γ distinct frequencies.

The adversary then terminates some calls in A and C such that fA ∩ fC = ∅
and fA∪fC ⊆ fF and |fA| = |fC | = γ/2. After that, n−γ/2 new calls are made
from B, in which at least γ/2 of the frequencies assigned will not be in F . Then,
all calls from A and C are terminated, γ/2 and n new calls are made from B
and D, respectively. Since at least γ/2 of the frequencies in B are not in F and
vice versa, D has at least γ/4 frequencies either not in B or F and vice versa,
and without loss of generality assume that it is F . The adversary terminates
some calls in D and F such that fD ∩ fF = ∅ and |fD| = |fF | = n/2 + γ/8.
Then, n/2 − γ/8 new calls are made from E in which the frequencies assigned
must be different from those currently in D and F . The online algorithm must
use at least 3n/2 + γ/8 distinct different to satisfy all the calls in D, E and
F . Including the case where γ is defined, the online algorithm uses at least
max{2n−γ, 3n/2+γ/8} ≥ 14n/9 distinct frequencies. As the optimal algorithm
can use only n frequencies to satisfy all calls, the competitive ratio of the online
algorithm is at least 14/9. ut
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