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Abstract. We study the effect of laxity, or slack time, on the online
scheduling of broadcasts with deadlines. The laxity of a request is de-
fined to be the ratio between its span (difference between release time
and deadline) and its processing time. All requests have a minimum
guaranteed laxity. We give different algorithms and lower bounds on the
competitive ratio for different ranges of values of laxity, which not only
represents a tradeoff between the laxity and the competitive ratio of the
system, but also bridges between interval scheduling and job scheduling
techniques and results. We also give an improved algorithm for general
instances in the case when requests can have different processing times.

1 Introduction

The application of broadcasting in networks has been receiving much attention
recently. Broadcasting has an advantage over point-to-point communication in
that it can satisfy the requests of different users, who are requesting the same
piece of information, simultaneously by a single broadcast. The advantage is
more clearly seen when most of the requests are asking for common information
like popular movies and weather information. Broadcasting is of even greater
importance with the growing popularity of wireless and satellite networks which
are inherently broadcasting in nature. There are some commercial systems that
make use of broadcasting technology. For example, in the DirecPC system [1],
clients make requests over phone lines and the server broadcasts the data via a
satellite. In this paper, we study algorithms for the online scheduling of broad-
casts with deadlines.

The Model. In the literature on broadcast scheduling, there are many different
research work based on different assumptions of the network model. Here, we
focus on the model in which the server holds a number of pages while requests
come in and ask for pages (pull-based model). At any time, the server is allowed
to broadcast only one page and all the requests asking for the same page can
be satisfied simultaneously. Note that the server is not allowed to break down a
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page into different parts and send them over the network simultaneously. Also,
we assume the receiver does not have any buffer to cache part of a page previously
broadcasted by the server. This is an online problem, meaning that the server
does not know the requests of the clients until they arrive, and the server have
to determine which page to broadcast without knowing future requests.

Past Work. Broadcast scheduling was first studied for the case where requests do
not have deadlines, and the objective is to minimize the maximum or the average
flow time (also called response time, the time between arrival and completion of
requests). Broadcast scheduling with deadlines is first studied in [11] and [12].
Each request is associated with a deadline, and the objective is to maximize
the total profit of satisfied requests (completed before their deadlines). The two
papers, however, considered different models in relation to how broadcasts can
be preempted.

The preemptivity of online scheduling in general (and broadcasting in par-
ticular) can be classified into three different models. (For example see [8].) In
the nonpreemptive model, a job that gets started must run to completion with-
out interruption. In the preemption-resume model, jobs can be preempted and
later resumed at the last point of execution. In the preemption-restart model,
a job can be preempted, but its partial progress will be lost; hence, it must
be restarted from the beginning if it is to be processed again later. In this
case preemptions can also be called abortions. Note that the nonpreemptive and
preemption-restart models are identical in the offline case.

While the preemption-resume and nonpreemptive models have been widely
studied, there seems to be comparatively few results for the online scheduling of
jobs in the preemption-restart model. Hoogeveen et al. [8] considered the case in
which jobs have no weights (i.e. the objective is to maximize the utilization of
processor), and Chrobak et al. [4] considered the case where in addition all jobs
have equal length.

These three models have also been considered in online broadcast schedul-
ing. Kalyanasundaram and Velauthapillai [11] considered the preemption-resume
model, and Kim and Chwa [12] considered the preemption-restart model. The
nonpreemptive broadcast model is also considered in a different context called
batching with incompatible job families [9]. We consider the preemption-restart
broadcasting model in this paper.

We distinguish between the case where all pages have the same length (the
unit-length case), and the case where pages can have different lengths (the
variable-length case). For the unit-length case, a 4.56-competitive algorithm is
given in [14], while a lower bound of 4 follows from an interval scheduling problem
[13]. For the variable-length case, there is a (e∆ + e + 1)-competitive algorithm
[14] where ∆ is the ratio of maximum to minimum page lengths and e ≈ 2.718.
There is also a lower bound of

√
∆ [2].

Laxity. The power of broadcasting lies in its ability to combine multiple requests
and serve them together by a single broadcast. For this to be effective, requests
should have a certain amount of laxity, where the laxity of a request is defined
to be the ratio of its span (the length of time interval between its deadline
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and release time) and its processing time (the length of the page it requests).
This allows the system to delay processing a request and to serve it together
with some other requests for the same page that arrives later. If a request has
no laxity, it must be scheduled immediately or else it is lost, and hence the
power of broadcasting is not utilized. In fact, in all of the above-mentioned
lower bounds, all requests are tight (with no laxity). To actually analyze the
effect of broadcasting, we assume all requests have a minimum laxity α > 1.
Intuitively, with larger laxity, the system will be able to schedule more requests
together. However a large laxity may be unsatisfactory to users. In this paper we
analyze the relation between the laxity of requests and the total profit obtained.

The issue of laxity has been considered in the unicast (i.e. non-broadcast)
context. It is also called slack, patience [7] or stretch factor [5]. Online job (uni-
cast) scheduling with laxity is widely studied, for example by Kalyanasunaram
and Pruhs [10] in the preemption-resume model, and by Goldman et al [6] and
Goldwasser [7] in the nonpreemptive model. The assumption of minimum laxity
has also been used in preemption-resume broadcast scheduling with deadlines
[11], and in nonpreemptive broadcast (or batching) problems [9].

Interestingly, the effect of laxity also allows this problem to bridge between
interval scheduling and job scheduling. In most previous results on broadcast
scheduling, the techniques used are similar to interval scheduling in which the
most important concern is whether a broadcast should be preempted. When a
broadcast is completed without being preempted, for example, the next broad-
cast is usually the one with the most pending requests. However our results
indicate that as laxity increases, the problem has more job scheduling flavor,
which involves selection of jobs based on both weights and deadlines. We will
bring techniques from job scheduling into this problem.

Our results. In this paper we consider the effect of laxity in the preemption-
restart broadcasting model. In Section 3 we first give an algorithm when the
laxity is smaller than 2. It adapts an abortion criteria which varies with laxity
and how much the current broadcast has been completed. It achieves a tradeoff
in the competitive ratios, with smaller competitive ratios for larger laxity. Next
we give a simple 2.618-competitive algorithm for the case where the laxity is
at least 2. It does not use preemption and thus also applies to the nonpreemp-
tive case. Unlike previous algorithms which only consider abortion conditions,
our algorithm also considers how to select broadcasts after another broadcast is
completed. In Section 4 we give lower bounds on the competitive ratio for differ-
ent ranges of laxity α: for example, 8/3 for 1 < α < 4/3, 12/5 for 4/3 < α < 1.4,
2 for 1.4 < α < 3/2, and max(1 + 1/�α�, 5/4) for α ≥ 2. For α < 2 we extend
the technique of Woeginger’s lower bound of interval scheduling, while for α ≥ 2
we make use of job scheduling results. The lower bound does not approach 1
even with arbitrarily large laxity. Finally in Section 5 we consider the variable
page length case, giving a (∆ + 2

√
∆ + 2)-competitive algorithm for general in-

stances, which improves the previous bound of e∆+e+1. This algorithm makes
use of a simple observation and its analysis is significantly simpler than earlier
algorithms. We also state a lower bound result with laxity.
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2 Notations

There are a number of pages in a server, each having a possibly different length.
Requests arrive to the server online, i.e. no information about the request is
known until it arrives. Each request j has a release time r(j), a deadline d(j),
the page p(j) that it requests, and a weight w(j). All r(j), d(j) and w(j) are real
numbers. We define the processing time of a request, l(j), to be the length of the
page it requests. A request j fully completed before its deadline gives a profit
of w(j) × l(j). For the unit length case we assume all pages have length 1, and
hence weights and profits are equivalent. Define α = minj{(d(j) − r(j))/l(j)} to
be the minimum laxity of all requests. We assume there is a pool that contains
all pending requests. Requests that cannot be completed by their deadlines even
if started immediately will be automatically removed from the pool.

A broadcast of a page J serves all pending requests of J simultaneously. We
consider the preemption-restart model, in which a broadcast can be preempted
(aborted) at any time, but must be restarted from the beginning if it is to be
broadcast again. Let |J | =

∑
p(j)=J w(j) × l(j) denote the profit of a page J ,

i.e. the total profit of all pending requests j for the page J at a particular time.
This is the profit obtained of broadcasting J . Our objective is to maximize the
total profit of requests completed before their deadlines. We sometimes abuse
the terminology and use ‘page’, ‘broadcast (of a page)’, and ‘set of requests (for
a page)’ interchangeably. A schedule is specified by a sequence of broadcasts
J1, J2, . . . where each broadcast Ji starts at time s(Ji). If s(Ji)+ l(Ji) > s(Ji+1),
Ji is aborted by Ji+1, otherwise it is completed.

We measure the performance of online algorithms by their competitive ratios.
Let OPT denote the offline optimal algorithm. An online algorithm A is R-
competitive if, for any instance I, the profit A(I) obtained by A is at least 1/R
times the profit OPT (I) obtained by OPT .

3 Unit Length Pages: Upper Bounds

3.1 Minimum Laxity α < 2

We first consider the unit-length case where the minimum laxity is less than 2.
We only consider those α that are rational. Let α = 1 + p/m for integers p,m
where p < m and m is the minimum possible. Intuitively, our algorithm uses an
‘abortion ratio’ which increases with time while a page is being broadcast.

Algorithm MultiLevel. Let β > 1 be the unique positive real root of β−β1/m−1 =
0. Suppose a page J starts being broadcast at time t. Then for i = 1, 2, . . . ,m,
a new request for page J ′ arriving at [t + (i − 1)/m, t + i/m) (together with
pending requests for J ′ in the pool 1) will abort J if and only if |J ′| ≥ βi/m|J |.
1 It is possible that J ′ = J ; we also consider requests currently being served by

broadcast J to be in the pool if they can still be completed before their deadlines if
restarted.
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When a broadcast completes, the page with the maximum profit (for all pending
requests) will be broadcast next.

The following table lists the choice of β for different values of laxity and the
competitive ratios. Note that some of these ratios are larger than the 4.56 upper
bound for the case of arbitrary instances given in [14].

α 1.2 1.25 1.33 1.4 1.5 1.6 1.67 1.75 1.8
β 2.164 2.221 2.325 2.164 2.618 2.164 2.325 2.221 2.164
R 4.714 4.638 4.510 4.448 4.236 4.221 4.08 4.04 4.026

Theorem 1. For laxity 1 < α < 2 where α = 1 + p/m, MultiLevel is ( β
β−1 +

β2−α + 1)-competitive, where β is the root of β − β1/m − 1 = 0.

Proof. Let M denote the schedule produced by MultiLevel. Divide M into a
set of basic subschedules, where each basic subschedule consists of zero or more
aborted broadcasts followed by one completed broadcast. We charge the profits
obtained by OPT to the basic subschedules in M . If every basic subschedule
with a completed broadcast J receives charges at most R times that of |J |, then
the algorithm is R-competitive. The general idea of the proof is to consider, for
a fixed basic subschedule, the maximum-profit OPT schedule that is ‘consistent’
with the basic subschedule. For example, OPT cannot serve requests with profit
much higher than that being served by M at the same time, unless it is already
completed in M , because M will not ignore this request if it is still pending.

Without loss of generality we can assume all broadcasts made by M are
of one of the lengths (time units) 1/m, 2/m, . . . , 1, since otherwise lengthening
them to the closest length listed above will not decrease the profit obtained by
OPT . Since the last broadcast in a basic subschedule must be completed, it must
be of length 1. Note that all broadcasts of OPT must be of unit length since
they are completed. (We can assume OPT will not make aborted broadcasts.)

Let r = β1/m. We first consider the case that all basic subschedules sat-
isfy two assumptions: (1) All broadcasts except the last one are of length 1/m.
(2) For any two consecutive broadcasts J and J ′ in the basic subschedule,
|J | = |J ′|/r. We will remove these assumptions later. Consider a basic sub-
schedule. The maximum-profit OPT subschedule corresponding to this basic
subschedule occurs when the total number of broadcasts in the basic subsched-
ule is a multiple of m plus 2, with the OPT broadcasts as in Fig. 1. (The reason
of this will become clear later in the proof.) Hence, let the basic subschedule
be (J0, J1, . . . , Jm, . . . , Jkm, Jkm+1) for any k ≥ 0. For those requests that are
satisfied in an OPT broadcast started at time t and which are completed by M
before time t, we charge their profits to the basic subschedule in M where it is
completed. Let Oi be the set of requests in a broadcast started by OPT within
Ji that are not completed by M before s(Oi), i.e., they are still pending in M .

Consider the last broadcast Okm+1 made by OPT . It consists of two parts:
O1

km+1 which are those requests arriving on or before s(Jkm+1) + 1 − p/m, and
O2

km+1 which are those requests arriving after this time. For O1
km+1 we have

|O1
km+1| < rm−p|Jkm+1| since otherwise they would abort Jkm+1. For O2

km+1,
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Fig. 1. A basic subschedule with k = 3, m = 4. Each rectangle represents an aborted
or completed broadcast, and the height of a rectangle represents its profit. Empty
rectangles are those of MultiLevel, shaded rectangles are those of OPT .

they must still be pending in M after Jkm+1 completes due to their laxity, and
hence the broadcast after Jkm+1 must have profit at least as large as |O2

km+1|.
We charge their profits to the next basic subschedule. Similarly, this basic sub-
schedule may also receive a charge of profit at most |J0| from the previous basic
subschedule. For Oi where i = 0,m, 2m, . . . , km, we have |Oi| < r|Ji|. Finally,
requests in Jkm+1 may be satisfied in OPT in some future time, and their profits,
which are at most |Jkm+1| in total, are also charged to this basic subschedule.
Without loss of generality we normalize the profits so that |Jkm+1| = 1. Then
the total OPT profits charged to this basic subschedule is at most

|J0| + r(|J0| + |Jm| + |J2m| + · · · + |Jkm|) + rm−p|Jkm+1| + |Jkm+1|
≤ 1/rkm+1 + r(1/rkm+1 + · · · + 1/r) + rm−p + 1

=
1

rkm+1 +
1 − 1/rkm+m

1 − 1/rm
+ rm−p + 1

=
1

rkm+1 − 1
rkm+m(1 − 1/rm)

+
1

1 − 1/rm
+ rm−p + 1

=
1
βk

(
1

β1/m
− 1

β − 1

)

+
β

β − 1
+ β1−p/m + 1.

By choosing β1/m = β − 1, the first term in the above expression is zero, i.e.,
the expression is invariant of the value of k. In this case the competitive ratio is

R ≤ β

β − 1
+ β1−p/m + 1 =

β

β − 1
+ β2−α + 1.

We now remove assumptions (1) and (2). For any basic subschedule that
does not satisfy the assumptions, we apply the following transformations to all
broadcasts except the last one. First, for any two consecutive broadcasts J, J ′ in
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a basic subschedule, if � is the length of J served in the schedule (not the length
of the page), we increase the profit of J to |J ′|/β� if it is not already so. The
schedule remains valid (all abortion ratios are satisfied) and the profits of OPT
will not decrease, since the maximum possible profits of OPT broadcasts at any
time (w.r.t. the basic subschedule) will not be decreased. Next, a broadcast of
length i/m and profit |J | for i > 1 is transformed to i broadcasts of length 1/m,
with profits |J |, r|J |, r2|J |, . . . , ri−1|J |. Again the schedule remains valid, and
the maximum possible OPT profits are not decreased. The transformed sched-
ule satisfies the two assumptions, and the transformation can only increase the
competitive ratio. ��

3.2 Minimum Laxity α ≥ 2

Next we consider the case when the laxity is at least 2, i.e. the span of a request
is at least twice its length. In this case we use a simple algorithm that never
aborts, but is more careful in selecting a page to broadcast after a broadcast
completes:

Algorithm EH. When a broadcast completes at time t, set H to be the page
with the maximum profit among pending requests, E to be the page with the
maximum profit among those pending requests with deadlines before t+2. Note
that although E is chosen based on those requests with early deadlines, it may
also contain requests with late deadlines. Let E′ denote the subset of requests
for page E with deadlines before t + 2. Let β = (

√
5 + 1)/2. If |H| ≥ β|E′|,

broadcast H, else broadcast E. A page being broadcast is never aborted.

Theorem 2. For α ≥ 2, EH is (
√

5 + 3)/2 ≈ 2.618-competitive.

Proof. We charge the profits obtained by OPT to the broadcasts in EH. Consider
a completed broadcast J in EH. Let O be the single page started being broadcast
by OPT when EH is broadcasting J . For requests in O that are completed by
EH in or before J , we charge their profits to those earlier broadcasts made by
EH. Below we only consider requests in O that are still pending in EH. We
separate O into two parts: O1 which are those requests in O having deadlines
before s(J) + 2, and O2 which are the remaining requests. We distinguish the
following cases.

Case 1: J = H 	= E. For O1, they must be released before s(J) by the laxity
assumption. We have |O1| ≤ |E′| since E is chosen to be the highest-profit page
among those requests with deadlines before s(J) + 2. So |O1| ≤ |E′| ≤ |J |/β by
the choice of EH. For O2, since they remain pending in EH when J completes,
we charge their profits to the next broadcast after J . Similarly, this J receives a
charge C from the previous broadcast, where |C| ≤ |J |. Also, requests in J may
be satisfied later by OPT , which we also charge their profits to this J in EH.
Thus the total profits charged to J is at most |C|+|O1|+|J | ≤ |J |+|J |/β+|J | =
(2 + 1/β)|J |.

Case 2: J = E. Similar to Case 1 we have |O1| ≤ |E′| and O2 is charged
to the next broadcast. J also receives a charge C from the previous broadcast,
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where |C| ≤ |H| ≤ β|E′| ≤ β|E|. Requests in E′ cannot be started by OPT
after s(J) + 1 since their deadlines is earlier than s(J) + 2, so J may receive a
‘future’ charge only from requests in E − E′. Thus the total charge to J is at
most |C| + |O1| + |E − E′| ≤ β|E| + |E′| + |E − E′| = (1 + β)|J |.

By setting β = (
√

5 + 1)/2, the total charge to a broadcast J in any case is
at most

√
5+3
2 |J |. Hence the algorithm is (

√
5 + 3)/2-competitive. ��

Remark: Note that EH is a non-preemptive algorithm. Since OPT does not use
abortions, EH also applies with the same competitive ratio in the nonpreemptive
case. This nonpreemptive broadcast problem is also studied in [9] where a 3-
competitive algorithm is given.

4 Unit Length Pages: Lower Bounds

4.1 Minimum Laxity α < 3/2

We first describe our lower bounds for the unit-length case when the minimum
laxity α is smaller than 3/2. Let R = 4 − ε for some arbitrarily small ε > 0.
Define lax = α − 1. Choose a small positive number d 
 1 − lax, and another
small positive δ. Define δi = δ/2i. These are small constants we need to use
later. We divide the proof into two steps.

(1) Description of instance construction. The proof is based on a modification
of Woeginger’s lower bound construction for interval scheduling [13]. In the fol-
lowing each request is asking for a different page. For 0 < v ≤ w and d, δ > 0,
define SET(v, w, d, δ) to be a set of requests {j1, j2, . . . , jq} with the following
properties:

– The weights w(ji) of the requests fulfill w(j1) = v, w(jq) = w and w(ji) <
w(ji+1) ≤ w(ji) + δ for 1 ≤ i ≤ q − 1.

– The release time r(ji) and deadline d(ji) of the requests fulfill 0 = r(j1) <
r(j2) < · · · < r(jq) < d, 1 + lax = d(j1) < d(j2) < · · · < d(jq) < 1 + lax + d.

– All requests have length 1 and laxity α.

Since d(jq) − r(j1) < 1 + lax + d < 2, any algorithm can complete at most
one request in each set.

Fix an online algorithm A. At t = 0, SET(v0, w0, d0, δ0) = SET(1, R, d, δ)
arrives. Define LST0 = lax+d; this is the latest time that A must fix its decision
and start broadcasting a page, or else it will fail to meet the deadline of any
request. Let t0 ≤ LST0 be the earliest time such that during the time interval
[t0, LST0], A is broadcasting the same page. That means A fixed its decision
at time t0. Without loss of generality we can assume that A will not switch to
broadcast other requests in the same set after this time. Let b0 be the page being
broadcast by A at time LST0. If w(b0) = 1, no more request arrives. Otherwise,
a shifted copy of SET(v1, w1, d1, δ1) arrives, where v1 = w(b0), w1 = Rv1 − v1,
d1 
 d is smaller than the time between d(b0) and d(a0), and a0 is the request
immediately preceding b0 in the set. The first and last request in this set arrive
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at times r1 and r′1 respectively, where t0 + 1 − lax − d1 < r1 < r′1 < t0 + 1 − lax.
Define LST1 to be the latest time when A must fix its decision on which request
in the second set to broadcast. It is given by LST1 = r′1 + lax.

The numbers are defined so that they have the following two properties:

– r1 > LST0: this is because r1 > t0 + 1 − lax − d1 ≥ 1 − lax − d1, and
LST0 = lax + d, as long as d1 < 1 − 2lax − d the property holds. Since
lax < 1/2, d and d1 can always be chosen small enough.

– LST1 < t0 + 1: this is because LST1 = r′1 + lax < (t0 + 1 − lax) + lax.

The first property ensures that the adversary can decide the weights of the
requests in the new set after A fixed its choice of broadcast. The second property
ensures that A cannot serve a request in both sets. Hence, if A completes the
broadcast of page b0, it cannot serve any more requests, and no more requests
are released. Otherwise, A aborts b0 and starts a new page in the new set. Then
the same process repeats.

In general, suppose A is broadcasting a page in the (i+1)th SET(vi, wi, di, δi).
Let LSTi be the latest time A must fix its decision to broadcast a page in this
set; it is given by LSTi = r′i + lax. Let ti be the earliest time such that in
[ti, LSTi], A is broadcasting the same page. Call this page bi. If w(bi) = vi, no
more requests are released. Otherwise, a new (i+2)th SET(vi+1, wi+1, di+1, δi+1)
is released, where vi+1 = w(bi), wi+1 = max(Rvi+1 −

∑i+1
j=1 vj , vi), di+1 is the

time between d(bi) and d(ai), and ai is the request immediately preceding bi.The
first and last request in this new set arrive at times ri+1 and r′i+1 respectively,
where ti + 1 − lax − di+1 < ri+1 < r′i+1 < ti + 1 − lax (see Fig. 2).

Again we have the following two properties:

– ri+1 > LSTi: since ri+1 > ti + 1 − lax − di+1 ≥ ri + 1 − lax − di+1, and
LSTi ≤ ri + di + lax, as long as di+1 < 1 − 2lax − di this property holds.

– LSTi+1 < ti + 1: this is because LSTi+1 < (ti + 1 − lax) + lax = ti + 1.

ti
bi

ai

lax

lax i+1LSTdi+1

1 laxri

laxd ir’ iLST
i

Fig. 2. SET(vi, wi, di, δi) and SET(vi+1, wi+1, di+1, δi+1)
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A either completes bi and no more requests are released, or aborts and broad-
casts a page in the new set, and then the same process repeats. In the beginning,
we have wi = Rvi −

∑i
j=1 vj > vi, and vi < vi+1 ≤ wi, so that the vi’s form

an increasing sequence satisfying the recurrence vi+1 ≤ Rvi −
∑i

j=1 vj , and it
is shown in [13] that this sequence cannot be an infinite increasing sequence for
R < 4. Therefore, eventually we have wi = vi > Rvi −

∑i
j=1 vi after a finite

number of steps. At this final step the set contains only one request with profit
vi. No matter how A chooses, it obtains a profit of vi. We conclude that A can
only serve one request in total.

(2) Profits by the optimal offline algorithm. We now consider the OPT schedule
for the instance. Ideally, we want OPT to schedule a request in each set (as in
the original construction in [13]), but it may not be possible due to the earlier
arrival of the sets (in the original construction a new set only arrives just before
the deadlines of the previous set). Recall bi is the request chosen by A in the
(i+1)-th set, and ai is the request that just precedes bi. Suppose A completes a
broadcast of page bi−1 in the i-th set, of profit vi, while attempted to broadcast
but aborted b0, b1, . . . , bi−2 in all earlier sets. OPT broadcasts a0, a1, . . . , ai−1
together with wi, assuming that is feasible. (If A is forced to serve the single
request in the last set the analysis is similar.) Then similar to [13] the total
profit by OPT is at least (4 − 2ε)vi, so OPT obtains a profit arbitrarily close
to 4 times what A obtains. Below we consider how OPT schedules a subset of
these requests.

We resort to figures and defer the formal proof to the full paper. For any
two consecutive sets, OPT can serve ai in the first set together with any request
in second set. However, for any three consecutive sets, OPT can only choose
requests from two sets (see Fig. 3).

If α < 4/3, we can partition the sets into groups of three, and choose the heav-
ier two requests from each group without interfering other groups. (see Fig. 3).
Thus OPT obtains a 2/3 of the profits of those requests.

For 4/3 ≤ α < 3/2, this is not always possible, but we can divide the sets
into larger groups and apply the same idea. For example, when α = 1.4, we
divide the sets into groups of five, and it is always possible to serve requests
in the second, fourth and fifth set (see Fig. 3). Although we are not selecting

0.4 1

1/3
0 0.6 1.4 2.4 3.4

(b)

time time

(a)

1/3

1

Fig. 3. Each rectangle represents a set. (a) when lax < 1/3, choose two sets out of
every three. (b) when lax < 0.4, choose three sets out of every five.
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the heaviest three requests, we can still guarantee a 3/5 fraction of profits, by
the following simple observation: for any 0 ≤ v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5, we have

v2+v4+v5
v1+v2+v3+v4+v5

≥ 3
5 . Hence, we have a lower bound of 4 × 3/5 = 2.4. Similarly

we can obtain a lower bound of 16/7 when α < 10/7, and a lower bound of 2
when α < 3/2. In general we have:

Theorem 3. For any integer k ≥ 1 and α < 1 + k/(2k + 1) < 3/2, no deter-
ministic algorithm is better than 4(k + 1)/(2k + 1)-competitive.

4.2 Minimum Laxity α ≥ 2

Next we consider the case where the minimum laxity is at least 2.

Theorem 4. For α ≥ 2, no deterministic algorithm is better than (1 + 1/�α�)-
competitive.

Proof. We only consider the case where α is an integer; otherwise we round it up
to the nearest integer to obtain the result. All requests in this proof have weight
1 and laxity exactly α. At time 0, α requests each asking for a different page
arrive. Without loss of generality assume the online algorithm A broadcasts a
page J . Just before it finishes (at time 1 − ε) another request for J arrives. No
matter A aborts the current broadcast or not, it can satisfy at most α requests.
OPT can broadcast J at time 1 and some other page at time 0, satisfying all
α + 1 requests. ��

In [3] we considered an s-uniform unit job scheduling problem in which each
job arrives at integer time, is of unit length, has span exactly s (an integer) and no
broadcasting is allowed. We gave a lower bound of 5

4 − Θ( 1
s ) for the competitive

ratio of this problem.2 Since the case of broadcast with laxity at least α is a
generalized case of unicast with laxity exactly s, where s ≥ α, which are s-
uniform instances, the lower bound carries to the broadcast problem. (Since all
time parameters are integers and jobs are of unit length, the ability of abortion
in broadcasting needs not be used.) For s sufficiently large the lower bound is
arbitrarily close to 5/4. We therefore have:

Theorem 5. For any laxity α, no deterministic or randomized algorithm can
be better than 5/4-competitive.

The theorem implies that even with arbitrarily large laxity, the competitive-
ness cannot approach 1. This bound is stronger than that in Theorem 4 for
sufficiently large α.

5 Variable Length Pages

Without laxity assumptions, there is a (e∆ + e + 1)-competitive algorithm [14]
for the variable-length case, where ∆ = �maximum page length/minimum page
2 The conference version does not contain this result.
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length�, and e ≈ 2.718 is the base of the natural logarithm. In this section we
give an improved algorithm ACE (for ‘Another Completes Earlier’), which makes
use of a simple observation: if the broadcast of a page for a newer request has
the same or larger profit and an earlier completion time than the page currently
being broadcast, we should abort the current page in favour of the newer page.

Algorithm ACE. Let β = 1 +
√

∆. Let J be the page currently being broadcast.
A new request for page J ′ (together with all pending requests for J ′ in the
pool) will abort J if either one of the following holds: (1) |J ′| ≥ β|J |, or (2)
|J ′| ≥ |J | and the completion time of J ′ (if we start J ′ now) is earlier than
the completion time of J (if we continue to broadcast J). When a broadcast
completes, broadcast a page with the maximum profit among pending requests.

Theorem 6. ACE is (∆ + 2
√

∆ + 2)-competitive.

Proof. (Sketch) Without loss of generality assume the shortest page is of length
1 and the longest is of length ∆. Let A be the schedule produced by ACE. As
before we divide the schedule into a set of basic subschedules, and we focus on
a single basic subschedule. We can assume that all abortions in A are due to
condition (1) of the algorithm, and further we assume that all broadcasts made
in A are ∆ units long (we omit the details in this version of the paper).

Consider a basic subschedule (J1, . . . , Jk). We have |Ji| ≤ |Jk|/βk−i since
all abortions are due to condition (1). Consider the broadcasts started by OPT
within the broadcast of Ji. There can be at most ∆ such broadcasts. If the re-
quests in these broadcasts are completed in A before they are started in OPT ,
we charge their profits to those earlier broadcasts in A. Now consider those re-
quests that are not completed in A before. For any OPT broadcast O completed
before Ji is completed or aborted, we have |O| < |Ji| since otherwise they would
abort Ji in A. For an OPT broadcast O that is completed after Ji is completed
or aborted, we have |O| < β|Ji| or else it would also abort |Ji| in A. In this case
no more OPT broadcasts after this O are charged to this Ji.

Therefore, in the worst case, OPT schedules at most (∆−1) length-1 broad-
casts each of profit at most |Ji|, followed by a length-1 broadcast of profit at
most β|Ji|. Therefore, the total OPT profit corresponding to Ji is at most
(∆−1+β)|Ji|. Summing over all Ji’s, and considering that Jk may be served in
OPT later and will be charged to this basic subschedule, we have that the total
OPT profits charged to this basic subschedule is at most

k∑

i=1

(∆−1+β)|Ji|+|Jk| ≤ (∆−1+β)
k∑

i=1

|Jk|
βk−i

+|Jk| <

(
β(∆ − 1 + β)

β − 1
+ 1

)

|Jk|.

Hence the competitive ratio is β(∆−1+β)
β−1 + 1. By setting β = 1 +

√
∆, this ratio

is minimized and is equal to ∆ + 2
√

∆ + 2. ��

In the variable-length case, without assumptions on laxity, there is a lower
bound of

√
∆ on the competitive ratio. Here we note that laxity may not help

much in this case.
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Note that laxity is related to resource augmentation using a faster proces-
sor, as discussed in [10]. If the online algorithm has a speed-s processor, then
the laxity of all jobs become at least s (for the online algorithm). Thus any
algorithm for laxity-s instances can be applied. Since OPT does not have this
laxity advantage, the competitive ratio in this case will be even smaller (or the
same) compared with the case where both the offline and online algorithm re-
ceive jobs with laxity (which is the standard case). Therefore the existence of
an R-competitive online algorithm for laxity-s instances implies an s-speed R-
competitive algorithm for general instances. On the other hand, a lower bound
of R on s-speed online algorithm on general instances implies the same lower
bound on laxity-s instances.

In [12] it was shown that using resource augmentation does not drastically
improve the competitive ratio: no deterministic online algorithm with a constant
speedup (can broadcast a constant number of pages more than the offline algo-
rithm) can be constant competitive. In fact, the proof shows something stronger,
that no deterministic online algorithm can be better than O(

√
∆)-competitive

with constant speedup.
Therefore, the lower bound for faster processor implies a lower bound of

competitiveness with laxity:

Theorem 7. For constant α, any deterministic online algorithm has competi-
tive ratio Ω(

√
∆).
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