Online Algorithms for 1-Space Bounded Multi
Dimensional Bin Packing and Hypercube Packing

Yong Zhang* Francis Y.L. Chin" Hing-Fung Ting? Xin Han®

Abstract

In this paper, we study 1-space bounded multi-dimensional bin packing and hy-
percube packing. A sequence of items arrive over time, each item is a d-dimensional
hyperbox (in bin packing) or hypercube (in hypercube packing), and the length of
each side is no more than 1. These items must be packed without overlapping into
d-dimensional hypercubes with unit length on each side. In d-dimensional space,
any two dimensions 7 and j define a space F;;. When an item arrives, we must pack
it into an active bin immediately without any knowledge of the future items, and
90°-rotation on any plane F;; is allowed.

The objective is to minimize the total number of bins used for packing all these
items in the sequence. In the 1-space bounded variant, there is only one active
bin for packing the current item. If the active bin does not have enough space to
pack the item, it must be closed and a new active bin is opened. For d-dimensional
bin packing, an online algorithm with competitive ratio 4¢ is given. Moreover, we
consider d-dimensional hypercube packing, and give a 2% '-competitive algorithm.
These two results are the first study on 1-space bounded multi dimensional bin
packing and hypercube packing.

1 Introduction

Bin packing is a very fundamental problem in computer science, and has been well studied
for more than thirty years. Given a sequence of items, we pack them into unit-size bins
without overlapping. The objective is to minimize the number of bins for all items in the
sequence.

*Department of Computer Science, The University of Hong Kong, Hong Kong. yzhang@cs.hku.hk,
Research supported by NSFC (11171086)

"Department of Computer Science, The University of Hong Kong, Hong Kong. chin@cs.hku.hk,
Research supported by HK RGC grant HKU-7117/09E

‘Department of Computer Science, The University of Hong Kong, Hong Kong. hfting@cs.hku.hk,
Research supported by HK RGC grant HKU-7171/08E

§School of Software, Dalian University of Technology, China. hanxin.mail@gmail.com, Research sup-
ported by NSFC(11101065)

We focus on the online version of bin packing, where the items arrive over time, when
packing the current item, we have no information of the future items. The positions of the
packed items in the bin are fixed and cannot be repacked. To measure the performance of
online bin packing, we study a general used method called asymptotic competitive ratio.
Consider an online algorithm A and an optimal offline algorithm O PT. For any sequence
S of items, let A(S) be the cost (number of bins used) incurred by algorithm A and
OPT(S) be the corresponding optimal cost incurred by algorithm OPT'. The asymptotic
competitive ratio for algorithm A is:

i A(S) _
=]}Lrglo sgp{m\OPT(S) = k}.

RY

In the online bin packing, there are two models: bounded space model and unbounded
space model. If we do not impose a limit on the number of bins available for packing the
items (called active bins), we call it unbounded space. Otherwise, if the number of active
bins is bounded by a constant, and each item can only be packed into one of the active
bins, we call it bounded space, which is more realistic in many applications. If none of
the active bins has enough space to pack the arrival item, one of the active bins must be
closed and a new active bin will be opened to pack that item.

In this paper, we consider I-space bounded multi-dimensional bin packing and hyper-
cube packing. In the 1-space bounded variant, the number of active bins is only one. If an
item cannot be packed into the active bin, we have to close it and open a new bin to pack
this item. In the 1-space bounded d-dimensional bin packing problem (d > 2), each item
is a d-dimensional hyperbox such that the length on each side is no more than 1, while in
the d-dimensional hypercube packing, each item is a d-dimensional hypercube with side
length no more than 1. The items must be packed into d-dimensional hypercubes with
side length 1. Any two dimensions ¢ and j define a plane P;;. 90°-rotation of the item in
any plane Pj; is allowed in 1-space bounded bin packing, otherwise, the competitive ratio
is unbounded [14].

To understand this problem clearly, we give an example for the 1-space bounded 2-
dimensional bin packing. In Figure 1(a), there are four items to be packed into unit square
bins, and the arrival order is A, B, C' and D. After the packing position of A is fixed,
we have two choices to pack B: rotation and without rotation. If we pack B without
rotation in the same bin with A as shown in Figure 1(b), when item C' arrives, we have
to open a new bin since the current active bin does not have enough space for packing C'.
In the optimal solution, these four items can be packed into one bin (Figure 1(c)), since
item B, C' and D can be rotated and the free space in the bin can accommodate all of
them in their order of arrival.

Related works:
Both the offline and online version of the bin packing problem have been well studied.
The offline bin packing is NP-Hard [15]. For one-dimensional bin packing, Simchi-
Levi gave a 1.5-approximation algorithm [29]. Johnson and Gary [20] gave an asymptotic

2

A
B C ﬂ

(a) four items arrive in order A, B, C, and D

A B A
c
D
B

(b) non-optimal packing into two bins (c) optimal packing into one bin

Figure 1: Example of optimal packing and non-optimal packing

71/60-approximation algorithm. An AFPTAS was given by Karmarkar and Karp [26].
For two-dimensional bin packing. Chung et. al. [5] presented an approximation algorithm
with an asymptotic performance ratio of 2.125. Caprara [4] improved the upper bound to
1.69103. Bansal et al. [2] devised a randomized algorithm with an asymptotic performance
ratio of at most 1.525. As for the offline lower bound of the approximation ratio, Bansal
et al. [1] showed that the two-dimensional bin packing problem does not admit any
asymptotic polynomial time approximation scheme.

The online bin packing has been studied for more than thirty years. For one-dimensional
online bin packing, Johnson et al. [21] showed that the First Fit algorithm (FF) has an
asymptotic competitive ratio of 1.7. Yao [32] improved the algorithm to obtain a bet-
ter upper bound of 5/3. Lee et al. [22] introduced the class of Harmonic algorithms,
and showed that an asymptotic competitive ratio of 1.63597 is achievable. Ramanan et
al. [27] further improved the upper bound to 1.61217. The best known upper bound is
1.58889, which was given by Seiden [28]. As for the lower bound of the competitive ratio
of one dimensional bin packing, Yao [32] showed that no online algorithm can have an
asymptotic competitive ratio less than 1.5. The best known lower bound is 1.54014 [31].
For two-dimensional online bin packing, Coppersmith and Raghan [6] gave the first online
algorithm with asymptotic competitive ratio 3.25. Csirik et al. [7] improved the upper
bound to 3.0625. Based on the techniques of the Improved Harmonic, Han et.al [16]
improved the upper bound to 2.7834. Seiden and van Stee [30] showed an upper bound of
2.66013 by implementing the Super Harmonic Algorithm. The best known upper bound
of the competitive ratio for two dimensional bin packing is 2.5545, which was given by
Han et. al [17]. The best known lower bound is 1.907 [3].

For bounded space online bin packing, Harmonic algorithm by Lee et al. [22] can be
applied for one dimensional case, the competitive ratio is 1.69103 when the number of
active bins goes to infinity. Csirik and Johnson [8] presented an 1.7-competitive algorithm
(K-Bounded Best Fit algorithms (BBFk)) for one dimensional bin packing using K
active bins, where K > 2. For multi-dimensional case, Epstein et al. [13] gave a 1.69103%-
competitive algorithm using (2M — 1)¢ active bins, where M > 10 is an integer such that

M >1/(1—(1—¢)Y@+2)) —1 &> 0 and d is the dimension of the bin packing problem.
For the I-space bounded variant, Fujita [14] first gave an O((loglogm)?)-competitive
algorithm, where m is the width of the square bin and the size of each item is a X b (a, b
are integers and a,b < m). Chin et al. proposed an 8.84-competitive packing strategy [9],
then they further improved the upper bound to 5.155 [33], they also gave the lower bound
3 for 1-space bounded two dimensional bin packing.

For a special case where the items are squares (or hypercubes), there are also many
results [10-12, 18,19, 23-25]. For bounded space online square packing, Epstein and van
Stee [11] gave a 2.3692-competitive algorithm, they also proved that the lower bound of
the competitive ratio is at least 2.36343. For bounded space d-dimensional hypercube
packing, an O(d/log d)-competitive algorithm was given [11], however, to achieve this
bound, the number of active bins is very large. Moreover, they proved that the asymp-
totic competitive ratio of bounded space hypercube packing is lower bounded by (log d).
Januszewski and Lassak [19] proved that any sequence of square items with a total area of
at most 5/16 can be packed into a unit bin. Han et al. [18] studied a variant in which any
packed item can be removed so as to guarantee a good competitive ratio and presented
a packing algorithm that is 3-competitive. Note that in the above two studies, there is
only one bin to pack the square items.

The remaining part of this paper is organized as follows. In Section 2, we show
the 49-competitive algorithm for 1-space bounded d-dimensional bin packing. In Section
3, a 2¢*lcompetitive algorithm is given for 1-space bounded d-dimensional hypercube
packing.

2 1-Space Bounded d-dimensional Bin Packing

Let d be the highest dimension of the item and hypercube, each item a is associated with
a vector (aq,as, ..., aq), where a; (1 <14 < d) is the length in the i-th dimension of item a.

In d-dimensional space, any two dimensions ¢ and j define a space F;;. For 1-space
bounded multi-dimensional bin packing problem, rotation 90° in any plane P;; is allowed.
Otherwise, the performance ratio is unbounded. Consider an example of a sequence with
2n items: {A,B, A, B,...}, where A = (1/n,1,1,...,1) and B = (1,1/n,1,1,...,1). If
rotation is not allowed, any two adjacent items cannot be packed into the same bin by
any online algorithm, thus, the number of used bins is 2n. In the optimal packing, all
A items can be packed into one bin, all B items can be packed into another bin, only
two bins is enough to pack all these items. In this way, the performance ratio is n. If
rotation is allowed, the first half part of items in the sequence can be packed into one bin
by rotate B items 90° in the plane Pj5. Similarly, the second half of items can be packed
into another bin. Since rotation 90° in any plane P;; is allowed, we may assume that the
lengths in dimensions of any item a is non-increasing, i.e., a; > a; (i < j) for each item.

Denote the size of an item a = (aq,as,...,aq) to be H?:l a;. We say a (k+ 1)-

dimensional hyperbox b = (b1, b, ..., bg11) is a (k + 1, h)-hyperbox if by = ... = by = 1,
bk = 1/2 and bk+1 = h.

Let o; and 7; (2 < i < d) be the average occupancy ratio in the worst case and
competitive ratio for packing i-dimensional items by our algorithm, respectively. Our
target is to design an algorithm with competitive ratio as smaller as possible. Since any
algorithm cannot pack items with total sizes more than 1 into one bin, we set r; = 1/0;.
The target can be done by designing algorithm with the average occupancy ratio as larger
as possible. According to the algorithm, o; (r;) until o4 (r4) can be recursively computed.
We say an item is large w.r.t. its (i +1)-th dimension if [[;_, a; > 0;, and small w.r.t. its
(i+1)-th dimension otherwise. For a small item a w.r.t. its (k+1)-th dimension, we have

1k —1/k
=

ap1 <ap <o r, '". From Table 1 and Lemma 1 in the later part of this paper, we

have r,i/k > 2, thus, a1 < ap < 1/2. A small items a w.r.t. its (k + 1)-th dimension

can be packed into a (k + 1, h)-hyperbox such that h/2 < ayqy < h and h = 277 - o,lc/k
(for some j =0,1,2,...).

2.1 Packing strategy

Roughly speaking, items are recursively packed by the strategy from higher dimension
to lower dimension. For an incoming item a, if it is large w.r.t. the d-th dimension, we
pack it in a top-down order along the d-th dimension. Otherwise, it is small w.r.t. the
d-th dimension, we first pack it into a (d, h)-hyperbox, then pack this (d, h)-hyperbox
into the bin in a bottom-up manner. Since the length of (d — 1)-th dimension of the
(d, h)-hyperbox is 1/2, the lower part along dimension d is partitioned into the “left” side
and the “right” side: the “left” side is the area such that the (d — 1)-th dimension is
in the range [0,1/2], while the “right” side is in the range [1/2,1]. When packing the
(d, h)-hyperbox into the bin, we try to balance the heights of the left and right sides.
When packing small item into (d, h)-hyperbox, we have no need to consider the length
of the d-th dimension. In another word, packing small item into (d, h)-hyperbox can be
regarded as packing (d — 1)-dimensional item into a bin, therefore, the dimension of the
packing problem is decreased by one. By implementing this idea, we can recursively pack
items from higher dimension into lower dimension.

Note that in our algorithm, small items can be only packed into a (k + 1, h)-hyperbox
with A < 2a,1. Let 0,,, be the average occupancy ratio for packing small items into
(k 4+ 1, h)-hyper-box, we have the following fact.

Fact 1. 0}, = 0}/2.

Proof. Since the length of the k-th dimension is no more than 1/2, any small item a can
be packed into the corresponding (k+ 1, h)-hyperbox such that, h/2 < a1 < h. Packing
small items can be regarded as packing general items into k-dimensional bin by doubling
the length in the k-th dimension of the small item. Thus, the average occupancy ratio

is preserved in the first k£ dimensions. In the (k + 1)-th dimension, the length is at least
h/2. Thus, 0}, = ox/2. O

Now we give our algorithm for packing d-dimensional items with d > 3. In case of
d = 2, we use our previous 5.15-competitive algorithm. Note that the occupation ratios
o; and competitive ratios r; are all computed by analyzing the algorithm, thus, when
packing an incoming item, these ratios are all known in advance.

Algorithm for Packing d-dimensional item a:
1: if a is large w.r.t. the d-th dimension. then

2: Pack it by a top-down order such that a,; alongs the d-th dimension.

3: if overlap happens then

4: Close this bin then open a new bin for packing this item.

5: end if

6: else if a is small w.r.t. the d-th dimension. then

7: if there exists (d, h)-hyperbox with enough space for the item then

8: Pack it into the (d, h)-hyperbox.

9: else

10: Open a new (d, h)-hyperbox for this item.

11: Pack the (d, h)-hyperbox by a bottom-up order in the d-th dimension,
12: such that the heights of the “left” part and the “right” part are balanced.
13: if overlap happens then

14: Close this bin then open a new bin for packing this (d, h)-hyperbox.
15: end if

16: end if

17: end if

To understand the algorithm clearly, we give an example to show how to pack an
incoming item. In the current packing shown in Figure 2, there are some large items
packed in the upper part of the k-th dimension, some small items packed in the (k, h)-
hyperboxes which located in the lower part of the k-th dimension such that the “left”
and “right” part are balanced. When a large item comes, if it cannot be packed between
the upper and lower part without overlapping, we will open a new bin. When a small
item comes, we will first try to pack it into some existed (k,h)-hyperbox, if no such
(k, h)-hyperbox, we open a new (k, h)-hyperbox then pack it into the right part.

The above algorithm recursively packing items from higher dimension to lower dimen-
sion, until dimension 3. We implement the algorithm in [33] for packing 2-dimensional
items because that the performance ratio ro = 5.15 is better than implementing the above
algorithm in dimension 2.

A central axle

=]
§e
2
3
E
T
=
<&
4l
Y
“left” part : “right” part
(k — 1)-th dimension 3
N /7

large item (k, h)-hyperbox for small items

Figure 2: Packing k-dimensional items into k-dimensional hypercube.

2.2 Analysis of the strategy

When packing items which are small w.r.t. the k-dimension into (k, h)-hyperbox, we say
the (k, h)-hyperboxes with the same height h are of the same type. From Fact 1, the
average occupancy ratio o, = og_1/2. Thus, for each kind of (k, h)-hyperbox, except the
last one, the average occupancy ratio is at least og_1/2.

Fact/(2.)The total lengths in dimension k of the last hyperbozes of each type is at most
2- 0,1C f -,

Proof. From previous definition h; = 277 -oi/_(lf - (7 =0,1,2,...), the length in dimension

k of each type of (k, h;)-hyperbox is fixed. Thus, the total length is at most Zj h; <
2. /D) -

Consider a packing configuration shown in Figure 2, suppose the length in k-dimension
of the upper part is y, the lengths in k-dimension of the “left” and “right” parts are g,
and y, respectively. W.l.o.g., y; > y5. The current occupancy in this bin is at least
1/(k—1
(i +y2—2-0/47) 0,
2

Y Ok—1+

The first term is the occupancy of large items, the second term is the occupancy of
small items. Since in the lower part, the length in (k — 1)-dimension of each hyperbox is
1/2, we divide 2 in the second term. By Fact 1, we know the occupancy in this bin is at

least

1/(f—1)) . Op_1

(y1+y2_2'0k_
4

If we only count the occupancy in one bin, the performance ratio is unbounded. For
example, a bin contains a very small item, the next item is very large and cannot be
packed together with the small one. We have to open a new bin for the later item. In this
case, the occupancy in the previous bin is very small. This example gives us an heuristic
to amortize the occupancies of adjacent two bins: if we have to open a new bin due to
an item, this items has contribution to two bins, one is the bin it packed and the other is
the previous bin it cannot be packed.

To amortize the occupancy of adjacent two bins, item from the upper part compensate
half occupancy to the previous bin; item from the lower part compensate the part which
is larger than the ratio o_1/4 to the previous bin.

Now we study two cases of opening a new bin.

Y- Oop—1+

e a large item with length ¢’ in dimension k cannot be packed into this bin.

By amortized analysis, the occupancy in this bin is at least

1/(k—1
4101 (Wity:—2 Ok/f(l)) " Ok—1 + Y ok
2 4 2
1/(k—1
_ W) o i +y—2-0/%") 0
2 4
1/(k—1
(I —y1) ok (Y1 +y2—2- Ok:/—(l)) © Op—1
> +
2 4
k/(k—1
= Okt Ok/—(l) (Y2 — 1) - ok—1
2 2 4
k/(k—1 k/(k—1
> Ok—1 B Ok/—(l) B Ok/—(l)
-2 2 4
k/(k—1
_ Ok—1 _ 3- Ok/—(l)
2 4

e a small item with length 3/ in dimension & cannot be packed into this bin.

— if (y)* < y/"i%, this small item has no contribution to the previous bin. In

this case, ¥’ < (0p_1/4)"* 1), The amortized occupancy is at least

Y- Op—1 " (y1 + 92 — 2(0k—1)1/(k_1)> Og—1

2 4

S Yo n (y2 — (op—1) V) - 0p
- 2 2
(Yt ye)-or B (0—1)M D)

2 2
o (d=y) o (0—1)*/ "1

2 2
_ Op—1 (Okfl)k/(k_l) Yy - op1
T2 2 2
S Ok—1 (Ok—l)k/(kfl) _ (Ok—1/4)1/(k71) " Op—1
- 2 2 2

— if (y)* > y/"i%, this small item has contribution (y')* — yl"i% to the previous

bin. In this case, y' > (0_1/4)"/*~V. The amortized occupancy is at least

Y- Op—1 Y1+ Y2 — 2(01@—1)1/(]“71) $ Op—1 Yy op—1
() + (y/)k _

2 * 4 4

y-op-1 , (yo— (0p—1) V) 04y ne Y Ok
> _

(y+y2) - op1 (o) e Y op
> (1 — y/) * Ok—1 (Okfl)k/(k_l) Nk y/ * Of—1
_ Ok1 (0p—1)" D) +) — 3y - op

2 2 4

S Okl (Ok,l)k/(k_l) B (0k71/4)1/(k—1) COp_1
-2 2 2

the last inequality holds since k > 3 and (0p_y/4)Y* =D < o < 0,/*D < 1/2.

When k£ = 3, the above three formula are equivalent, when k& > 3, the last two formulas
are less. In this paper, the dimension we focused is at least 3, thus, we can say that the
amortized occupancy ratio for packing k-dimensional items is at least

or1 (o)M=Y (op_y AV ED Lo

_ B _ 1
%=y 2 2 (1)

Since 1, = 1/0, we have

1 1 1 1

- o - 2
e 2:Tk1 9. r’,ji(f_l) 27 g (4 Tkil)l/(kfl) (2)

In Table 1, we give the performance ratio 7 for some lower dimensions (k = 2 to 6).

We also compute r,i/ k, which will help us to give the upper bound for the performance
ratio.

k 2 3 4 5 6

re | 5.15 | 30.86 | 127.969 | 518.156 | 2086.38

r 2269 | 3.13 3.36 3.49 3.57

Table 1: the performance ratio for £k =2 to 6

/k

. . . 1 . .
We can see that the performance ratio is increased very fast, but r,/" is increased

slowly.

Lemma 1. 3.5 < /¥ <4 if k> 6 and 3.5 </t < 4.

Proof. Let xy = r;/k, from Equation (2), we have

11 1 1 1 1 -
zk 2$’,§j 2aF | 2ak AY(-1) T 23:2:% x|

When z;,_; > 3.5, the above formula is larger than 1/4%. Thus, we can say that z;, < 4
if Tl—1 2 3.5.

af 2l 2ab | 22h 4l/GD)
_ 1 (1 1 1)
a xl]z:} 2 2T 2$k_141/(k_1)
< 1 (1 1 1)
3.55-1Y2 Qxp y 2xp_ 141D
1
3.5k

The last inequality holds if x;_; < 4. Thus, we can say that z; > 3.5 if z;,_; < 4.
Combine the above two statements and zg = 3.57, this lemma can be proved by
induction. O

From Lemma 1, we conclude that zj is in the range (3.5,4) when k > 6. Therefore,

Theorem 2. The competitive ratio of the algorithm for 1-space bounded d-dimensional
bin packing is 4¢.

10

3 1-Space Bounded d-Dimensional Hypercube Pack-
ing

In this section, we consider a special case of the multi-dimensional bin packing, where
each item is a hypercube with side length no more than 1. Since the lengths of each side
of a hypercube are same, this kind of items can be packed regularly inside a bin. We will
first describe the packing strategy for hypercubes, then give the performance analysis to
show the competitive ratio of this strategy is 2¢+1.

3.1 Packing strategy

Our packing strategy for hypercubes is based on the following two observations.

1. In d-dimensional hypercube packing, an item with side length 2771 < 2 < 27 can
be packed into a hypercube with side length 27¢, and the occupation ratio in this
hypercube is at least 277

2. d-dimensional hypercube can be regularly partitioned: a hypercube with side length
27" can be partitioned into 2¢ smaller hypercubes with side length 2771,

In our packing strategy, we will find a hypercube with proper size for each incoming
item. If a hypercube inside the bin is assigned to pack an item, this hypercube cannot
be used for other item. According to the first observation, the occupation ratio in this
hypercube is guaranteed. To pack an item into a hypercube with proper size, we may
partition the bin regularly according to the method from the second observation.

By implementing the partition mentioned above, we can define the packing configu-
ration of the active bin as follows. Define 2~ -hypercube to be the hypercube with side
length 27°. Let B = (bg, by, bs, ...) denote the current packing configuration of an active
bin, where b; denotes the number of empty 2~*-hypercubes. If b; = 0 for all j > 7, we will
ignore b; (j > i) in B.

Initially, the whole bin is empty, in such configuration, B = (1). Suppose an item
with side length 1/3 comes, to pack this item, the bin will be partitioned into 2¢ 1/2-
hypercubes and use one 1/2-hypercube to pack this item. After that, the configuration
will be changed to B = (0,29 — 1).

Next, we will describe the packing strategy based on the current configuration B and
the coming item with side length . W.Lo.g., suppose 2771 < 2 < 27¢,

Procedure Hypercube Packing for an item with side length 277! < z < 27¢
If [b; > 0]
Select one 2~ ‘-hypercube for packing this item.
Modify B by decrease b; by one.
Otherwise, if [there exist b; > 0 for some j < i.]

11

Let j be the largest integer such that b; > 0 and j < ¢.
Let k = 7.
Repeat
Partition one 27*-hypercube into 2¢ 27%~!'_hypercubes.
k=Fk+ 1.
Until k£ = 1.
Using one 2~ %-hypercube to pack the coming item,
Modify the configuration B by b; = b; — 1, by = 2% — 1 for j < £ < 4.
Otherwise
This item cannot be packed into this active bin.
Close this bin then open a new bin for packing this item.
Let k£ = 0.
Repeat
Partition one 2 *-hypercube into 2¢ 27%~!_hypercubes.
=k+1.
Until £ =1.
Using one 2~ %-hypercube to pack the coming item,
After packing, by = 0,0, = ...b; = 2¢ — 1.
end Hypercube Packing

3.2 Performance analysis

Lemma 3. In a configuration B, 0 < b; < 2% —1 and all empty 2~ -hypercubes are within
a 27 hypercube.

Proof. From the packing strategy, only when a 2~ ‘-hypercube will be used and b; = 0,
we partition a larger hypercube to create 2¢ 2~ '-hypercubes. After the partition, one
27" hypercube will be used, either for packing an item, or for partitioning to smaller
hypercubes. Thus, b; is at most 2¢ — 1.

When these 2¢ 2~ -hypercubes are created, they are within a 27*"!-hypercube. Only
when these 2¢ hypercubes are all used up, we will open another 2¢ 2-*-hypercubes. There-
fore, at any time, all empty 2~ ‘-hypercubes are within a 2-“*'-hypercube. O

Lemma 4. In a configuration B, for any i > 0, the total size of empty 277 -hypercubes
(4 > 1) is no more than the size of a 2~ -hypercube.

Proof. Suppose in the configuration B, i < j; < j2 < ... < jy such that b;, > 0 (1 <
x < (). From Lemma 3, we have b;, <2?— 1. In d-dimensional space, the ratio between
the sizes of a 277-hypercube and a 277~ !-hypercube is 2¢. Thus, the total size of these
2~J=_hypercubes is no more than the size of a 27*-hypercube. O

Theorem 5. The competitive ratio of the packing strateqy for hypercubes is 2%+

12

Proof. From the packing strategy, the occupation ratio of any used 2~ ‘-hypercube is
at least 2¢. Thus, For an active bin with configuration B = (bg, by, by, ...), the total
occupation in this bin is at least

(1= b-279%) .27

Jj=0

Suppose at this time, an item comes and we have to open a new bin according to the
packing strategy. This happens when the item with side length 277! < 2 < 27% and
b; = 0 for all j <i in the configuration B. The size of this item is x¢ > 2744,

From Lemma 4, the total sizes of the empty hypercubes is no more than the size of a
2~ -hypercube. The average occupation in these two bins is at least

(1= Suiby 279 -2 4 2700
. >

Suppose the packing strategy uses ¢ bins for a sequence of items, and the occupation
in the i-th bin is ¢;. Thus, the total occupation is

L -1

_a C;i + Cit1 —d—-1
Zci_5+§+Z(T)>(£—1)-2

i=1 i=1

The above value is a lower bound of the used bins from the optimal offline algorithm.
Thus, the competitive ratio of the packing strategy is at most

-
((—1)- 241

In the bin packing problem, we are interested in the asymptotic competitive ratio,
according to the above analysis, this ratio is 2¢+1.
m

References

[1] N. Bansal, J.R. Correa, C. Kenyon and M. Sviridenko. Bin Packing in Multiple
Dimensions: In-approximability Results and Approximation Schemes. Mathematics
of Operations Research, 31(1): 31-49, 2006.

[2] N. Bansal, A. Caprara and M. Sviridenko. Improved approximation algorithm for
multidimensional bin packing problems, FOCS 2006: 697-708.

[3] D. Blitz, A. van Vliet, and G. J. Woeginger. Lower bounds on the asymptotic
worst-case ratio of on-line bin packing algorithms. unpublished manuscript, 1996.

[4] A. Caprara. Packing 2-dimensional bins in harmony. FOCS 2002: 490-499.

13

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

F.R.K. Chung, M.R. Garey, D.S. Johnson. On packing two-dimensional bins. SITAM
J. Algebraic Discrete Methods, 3(1):66-76, 1982.

D. Coppersmith and P. Raghavan. Multidimensional on-line bin packing: Algorithms
and worst case analysis. Oper. Res. Lett., 8:17-20, 1989.

J. Csirik, J. Frenk and M. Labbe. Two-dimensional rectangle packing: on-line meth-
ods and results. Discrete Applied Mathematics 45(3): 197-204, 1993.

J. Csirik and D.S. Johnson. Bounded Space On-Line Bin Packing: Best is Better
than First. Algorithmica (2001) 31: 115-138.

Francis Y.L. Chin, Hing-Fung Ting, and Yong Zhang. 1-Space Bounded Algorithms
for 2-Dimensional Bin Packing. To appear in International Journal of Foundation of
Computer Science.

Leah Epstein, Rob van Stee. Online square and cube packing. Acta Inf. 41(9):
595-606 (2005)

Leah Epstein, Rob van Stee. Bounds for online bounded space hypercube packing.
Discrete Optimization 4(2007): 185-197.

C.E. Ferreira, E.K. Miyazawa, and Y. Wakabayashi. Packing squares into squares.
Pesquisa Operacional, 1999, 19: 223-237.

Leah Epstein, Rob van Stee. Optimal Online Algorithms for Multidimensional Pack-
ing Problems. STAM Jouranl on Computing, 35(2), 431-448, 2005.

S. Fujita. On-Line Grid-Packing with a Single Active Grid. Information Processing
Letters 85(2003) 199-204.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide for the
Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

X. Han, S. Fujita and H. Guo. A Two-Dimensional Harmonic Algorithm with Per-
formance Ratio 2.7834. IPSJ SIG Notes, No.93 pp 43-50, 2001.

Xin Han, Francis Chin, Hing-Fung Ting, Guochuan Zhang, Yong Zhang. A New
Upper Bound on 2D Online Bin Packing. To appear in ACM Transactions on Algo-
rithms.

Xin Han, Kazuo Iwama and Guochuan Zhang Online removable square packing.
Theory of Computing Systems, pp. 38-55, vol 43(1), July, 2008

J. Januszewski and M. Lassak. On-line packing sequences of cubes in the unit cube.
Geometriae Dedicata 1997, 67: 285-293.

14

[20]

[21]

[22]

23]

[24]

[25]

[26]

[31]

[32]

[33]

D.S. Johnson, and M.R. Garey. A 71/60 theorem for bin-packing. J. Complexity 1,
65-106, 1985.

D.S. Johnson, A.J. Demers, J.D. Ullman, M.R. Garey, R.L. Graham. Worst-Case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal
on Computing 3(4), 299-325 (1974).

C. C. Lee and D. T. Lee. A simple on-line bin packing algorithm. J. Assoc. Comput.
Mach., 32:562-572, 1985.

J.Y.-T. Leung, T.W. Tam, C.S. Wong, G.H. Young, and F.Y.L.. Chin. Packing
squares into a square. J. Parallel Distrib. Comput. 1990, 10: 271-275.

Y. Kohayakawa, F.K. Miyazawa, P. Raghavan, and Y. Wakabayashi. Multidimen-
sionalcube packing. Algorithmica, 40(3) 173-187,2004.

A .Meir and L. Moser. On packing of squares and cubes. Journal of combinatorial
theory, 1968, 5: 126-134.

N. Karmarkar, and R.M. Karp. An efficient approximation scheme for the one-
dimensional bin packing problem. In Proc. 23rd Ann. IEEE Symp. on Foundations
of Comput. Sci., IEEE Computer Society, 312-320, 1982.

P.V.Ramanan, D.J. Brown, C.C. Lee, D.T. Lee, On-line bin packing in linear time.
Journal of Algorithms, 10, 305-326 (1989).

S.S. Seiden, On the online bin packing problem, J. ACM 49, 640-671, 2002

D. Simchi-Levi. (1994), New worst-case results for the bin-packing problem. Naval
Res. Logistics 41, 579-585, 1994.

S. Seiden and R. van Stee. New bounds for multi-dimensional packing. Algorithmica
36 (2003), 261-293.

A. van Vliet. An improved lower bound for on-line bin packing algorithms. Infor-
mation Processing Letters, 43:277-284, 1992.

A.C.-C. Yao, New Algorithms for Bin Packing. Journal of the ACM 27, 207-227,
(1980).

Yong Zhang, Jingchi Chen, Francis Y.L. Chin, Xin Han, Hing-Fung Ting, and Yung
H. Tsin. Improved Online Algorithms for 1-Space Bounded 2-Dimensional Bin Pack-
ing. In Proc. of the 21th Annual International Symposium on Algorithms and Com-
putation (ISAAC 2010), LNCS 6507, 242-253.

15

