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Abstract. Haplotyping under the Mendelian law of inheritance on pedigree 
genotype data is studied. Because genetic recombinations are rare, research has 
focused on Minimum Recombination Haplotype Inference (MRHI), i.e. finding 
the haplotype configuration consistent with the genotype data having the 
minimum number of recombinations. We focus here on the more realistic 
k-MRHI, which has the additional constraint that the number of recombinations 
on each parent-offspring pair is at most k.  

Although k-MRHI is NP-hard even for k = 1, we give an algorithm to solve 
k-MRHI efficiently by dynamic programming in O(nm03k+12m0) time on 
pedigrees with n nodes and at most m0 heterozygous loci in each node. 
Experiments on real and simulated data show that, in most cases, our algorithm 
gives the same haplotyping results but runs much faster than other popular 
algorithms. 

1   Introduction 

The modeling of human genetic variation is critical to the understanding of the 
genetic basis for complex diseases. Single nucleotide polymorphisms (SNPs [13]) 
are the most frequent form of variation. The Human Genome Project and other 
large-scale efforts have identified millions of SNP markers. Although each 
marker can be analyzed independently, it is more informative to analyze them in 
groups. Therefore, it is useful to analyze haplotypes (haploid genotypes), which 
are sequences of linked markers on a single chromosome. In diploid organisms, 
such as humans, chromosomes come in pairs, and experiments often yield 
genotype information, which blends haplotype information for chromosome pairs. 
Given that deriving haplotype information experimentally is time-consuming and 
expensive, there is increasing interest in inferring haplotype information, or 
haplotyping, computationally [4][7] from genotype information. 
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Haplotyping pedigree data is believed to be more reliable than haplotyping 
population data for unrelated individuals, and genetic research shows that 
recombinations are rare in human pedigree data [6]. The 
Minimum-Recombination Haplotype Inference (MRHI) problem, which is 
NP-hard [5], is to find a haplotype configuration with minimum number of 
recombinations given pedigree genotype data [8][9][12][15]. At times, however, 
the MRHI model might yield unrealistic results in which recombinations are 
concentrated in a few parent-offspring pairs. The k-MRHI problem is basically 
MRHI but with the additional constraint that the number of recombinations in 
each parent-offspring pair is bounded by a constant k.  

The k-MRHI problem is NP-hard even for k = 1, but can be solved by a dynamic 
programming (DP) algorithm similar to the algorithm in [5] for MRHI. By 
avoiding studying all 23m0 haplotype configurations in each parents-offspring trio, 
our algorithm takes O(nm0

42m0) time when k = 1, instead of O(nm02
3m0) [5] for the 

MRHI problem on pedigrees with n nodes and at most m0 heterozygous loci in 
each node. Not all nodes have m0 heterozygous loci, and the number of feasible 
haplotype configurations at a node is limited by that of its neighbors and thus can 
be much less than 2m0. This observation leads to the idea of choosing a good root 
node to speed up the algorithm.  

This paper’s main contributions are: (1) to define a more realistic problem for 
haplotype inference (k-MRHI), (2) to give a more efficient and practical DP 
algorithm for k-MRHI, and (3) to present an efficient algorithm to find a good root 
in the pedigree to improve the DP algorithm’s performance. 

2   Preliminaries 

Haplotypes and genotypes consist of linked genetic markers which are small 
DNA segments. The physical position of a marker on a chromosome is called a 
locus and its state is called an allele. The two alleles of a biallelic (2-state) SNP 
can be denoted by '0' and '1', and a haplotype h with m loci is presented as a string 
of length m over {0,1}m, and a genotype g as a string over {0,1,2}m. Haplotype 
pair <h1, h2> is consistent with genotype g if (a) the two alleles of h1 and h2 are the 
same at the same locus (a homozygous site), for example '0' (respectively '1'), then 
the corresponding locus of g should also be '0' (respectively '1'); otherwise, (b) the 
two alleles of h1 and h2 are different, then the corresponding site of g should be '2' 
(a heterozygous site).  

Figure 1(a) shows the pictorial representation of a pedigree with 13 nodes. A 
square represents a male node, a circle a female node, and a black dot a mating 
node. A pedigree can be formally defined as a weakly connected directed a cyclic 
graph P = (V, E), where V = M∪F∪N, with M stands for the male nodes, F the 
female nodes, N the mating nodes, and E = {(u, v)| u ∈ M∪F and v ∈ N, or 
alternatively u ∈ N and v ∈ M∪F}.  

Figure 1(b) shows the graph representation of the pedigree given in Figure 1(a). 
A nuclear family comprises a father, a mother, and their children (see subgraph in 
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the dotted square) and can also be represented by a mating node which connects 
them together. A parents-offspring trio, or just trio, consists of two parents and 
one of their children, and a parent-offspring pair (PO-pair) refers to a father and 
his child or a mother and her child. In this paper, we assume that the pedigree 
never forms a cycle if the directions of edges are ignored (no mating-loop). 

 

In the absence of genetic mutation, at each locus, the child must inherit one 
allele from its father and the other from its mother, i.e. the Mendelian law of 
inheritance. Usually, one haplotype of a child is inherited as a whole from one of 
the two haplotypes of a parent. However, recombinations may occur, where the 
two haplotypes of a parent get shuffled due to a crossover of a chromosome and 
one of the shuffled copies (recombinant) is passed on to the child. Genetic 
research shows that recombinations are rare in human genetics. The Minimum 
Recombinant Haplotype Inference (MRHI) problem [5] is to find the haplotype 
configuration such that the total number of recombinations in the whole pedigree 
is minimized.  

Since it is rare to have many recombinations within one PO-pair, we focus on 
the k-Recombination Haplotype Inference (k-MRHI) problem to find a haplotype 
configuration that is consistent with the genotypes at all nodes having the 
minimum number of recombinations and no more than k recombinations in each 
PO-pair.  

3   A Dynamic Programming Algorithm for k-MRHI 

3.1   The 1-MRHI Problem (k = 1) 

In [5], Doi et al. gives a proof for the NP-hardness of the MRHI problem, which 
trivially implies that the k-MRHI problem, even for k = 1, is also NP-hard. We 
shall focus on the 1-MRHI problem first and generalize to the k-MRHI problem 
later. 

Fig. 1. The pictorial representation and graph representation of a pedigree 
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We adopt a locus-based dynamic programming (DP) approach to solve the 
1-MRHI problem by assigning an arbitrary node R in the pedigree as the root and 
recursively finding num[R][s], where num[r][s] denotes the minimum number of 
recombinations required in the sub-tree rooted at r with the haplotype 
configuration s under the constraint that there is at most 1 recombination in each 
PO-pair of the sub-tree. If r has multiple mating nodes as its tree sons, we 
compute each mating node separately. Each child mating node of r, comprising 
father F, mother M and children C1, …, Cd. If r is a leaf node, num[r][s] = 0 for 
any haplotype configuration s; else, if r is M (or F, respectively) with haplotype 
configuration s, then: 
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where p denotes the haplotype configuration at node F and ci the haplotype 
configuration at Ci. numtrio(p, s, ci) returns the minimum number of 
recombinations required for a trio comprising F, M, and Ci with the haplotype 
configurations p, s and ci respectively, under the constraint that no PO-pair can 
have more than one recombination. If there does not have any feasible solution, 
then numtrio(p, s, ci) returns ∞.  

Similarly, if r is Cj with haplotype configuration s, then we have: 
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Note that the above algorithm is the same as that presented in [5], but a 
reduction in time complexity is possible because it is not necessary to consider all 
combinations of haplotype configurations in each trio, which number O(23m0) in 
total. In fact, many combinations of haplotype configurations will be infeasible, 
i.e. have more than one recombination per PO-pair.  

For example, assume the genotype of M is (2, 2, …, 2) of length m0 and with 
haplotype configuration s = <hs1, hs2> and hc1 in the haplotype c = <hc1, hc2> of Ci 
is inherited from s with no more than one recombination. There are m0+1 ways of 
forming hc1 by inheriting its first w alleles from the first w alleles in hs1 and the 
remaining (m0−w) alleles from hs2 with 0 ≤ w ≤ m0. Similarly, there are another 
m0+1 ways of forming hc1 from the first w alleles in hs2 and the remaining (m0−w) 
alleles from hs1. Let Ns be the set of feasible haplotype configurations c = 
<hc1,hc2> that can be inherited by child Ci from s of r with no more than one 
recombination. Thus, ⎜Ns⎟ ≤ 2(m0+1). As hc2 is inherited from the haplotype 
configuration q = <hq1, hq2> of F, let Nc be the set of feasible haplotype 
configurations of F which can produce the haplotype configuration c in C with no 
more than one recombination. Let N's,Ci

 = ∪c∈Ns
 Nc, which indicates the set of 

feasible haplotype configurations in F which can go together with haplotype s in 
M to produce Ci. Obviously, N's,Ci

 ≤ 4(m0+1)2. 
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As each haplotype configuration in F should be able to produce any of the 
children C1, …, Cd,  the set of feasible haplotype configurations in F is N's = ∩

i
 

N's,Ci
. Equation (1) can be rewritten as: 
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As for Equation (2), if r is Cj and its haplotype configuration s = <hs1, hs2>, let 
Ns,F and Ns,M be the sets of feasible haplotype configurations in F and M, which 
can produce Cj with haplotype configuration s. As ⎜Ns,F⎟ ≤ 2(m0+1) and ⎜Ns,M⎟ ≤ 
2(m0+1), let Np,Ci

 (Nq,Ci
) be the set of feasible haplotype configurations on another 

child Ci with haplotype configuration p in F (q in M) and N�p,q 
= Np,Ci

 ∩ Nq,Ci
 be 

the set of feasible haplotype configurations for each child Ci which can 
concurrently appear with the haplotype configuration s of child Cj. Note that N� p,q 
≤ 2(m0+1) and Equation (2) can be rewritten as  
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Theorem 1. The 1-MRHI problem can be solved in O(nm0
42m0) time and O(n2m0) 

space for a pedigree with n nodes and at most m0 heterozygous loci in each node. 

Proof. Since we need O(m0) time to compute numtrio for each haplotype 
configuration combination in a trio and there are 8(m0+1)3 haplotype 
configuration combinations in each trio, it takes O(m0

42m0) time to process each 
trio. With at most n trios in the pedigree, time complexity is O(nm0

42m0). Space 
complexity is O(n2m0) based on the size of num.                               ▊ 

3.2   The k-MRHI Problem 

Here we generalize the DP algorithm for the general k-MRHI problem by 
modifying the definition of neighboring haplotype configurations set from Ns to 
Ns

(k): the set of haplotype configuration c = <hc1, hc2> from s with no more than k 
recombinations. So we have ⎪Ns

(k)⎪= O(m0
k). Similarly, we modify the definition 

of N's
(k) = ∩i N's,Ci

(k) with N's,C to N's,C
(k) in Equation (3) and the definition of Ns,F 

and Ns,M to Ns,F
(k) and Ns,M

(k), Np,Ci to Np,Ci

(k), and N� p,q to N�p,q 

(k) in Equation (4).  

Theorem 2. The k-MRHI problem can be solved in O(nm0
3k+12m0) time for a 

pedigree with n nodes and at most m0 heterozygous loci in each node. 

4   Root Selection for Better Performance 

For 1-MRHI, the feasible haplotype configuration combinations in each trio may 
be much less than O(m0

32m0) in practice because: (1) not all nodes have m0 
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heterozygous loci; and (2) the number of feasible haplotype configurations av of a 
node v is also bounded by the number of feasible haplotype configurations avr of 
v's neighbor vr, i.e., av ≤ 2(µv+1)avr, where µv is the number of heterozygous loci 
in v.  

If v is M (or F, respectively), αCi
 = min{2µCi, 2(µCi

 +1)αv} (i = 1, …, k) and αF 
= mini{2µF, 2(µF +1)αCi

}. If v is Ci, then αF = min{2µF, 2(µF +1)αv}, αM = 
min{2µM, 2(µM +1)αv} and αCi

 = min{2µCi, 2(µCi
 +1) αF, 2(µCi

 +1) αM} (i = 1, …, 
k). Thus, the number of feasible haplotype configuration combinations, ti in trio Ti 
can be computed consequently, assuming an arbitrary node (node R) as the root of 
the searching tree. The total number of feasible haplotype configuration 
combinations in all trios in the pedigree is tR = Σiti, which can be computed in a 
tree traversal. 

Theorem 3. Let m0 be the number of heterozygous loci and tR be the total number 
of feasible haplotype configuration combinations for all trios in the pedigree with 
node R as root. Then the node which gives min(tR) can be found in O(n2m0) time 
and the 1-MRHI problem can be solved in O(m0 min(tR)) time. 

The diameter of pedigree graphs in many practical instances is usually small. For 
example, the 452 families in the CEPH database [1][2][3] consist of only three 
generations. Suppose any node can be reached within l steps from R. We 
enumerate all 2µR feasible haplotype configurations of the root, and no more than 
2µR × 2(m0+1) feasible haplotype configurations for each of its neighboring nodes, 
and so on, and at most 2µR × 2l

m0
l at the most distant node.  

Theorem 4. The 1-MRHI problem can be solved in min(O(nm0
42m0), 

O(n2l+µRm0
l+1)) time for a pedigree with n nodes and at most m0 heterozygous loci 

in each node, where l is the maximum path length from the root to the leaves and 
µR is the number of heterozygous loci in root R. 

5   Experimental Results 

We implemented the above DP algorithm in C++, and all experiments were 
conducted on a Pentium IV PC with 1.7GHz CPU and 256MB RAM. 

5.1   Real Data 

We examined real data set Epsiodic Ataxia (EA) by Litt et al.[10] which involves 
a family containing 29 people typed at 9 polymorphic markers on chromosome 
12p. Both the locus-based algorithm [5] and the 1-MRHI algorithm run fast (t < 1 
sec.) on this data set but the results are different. The locus-based algorithm gives 
a feasible solution with 5 recombinations in total but with a double recombination 
in one haplotype of member “100”. The 1-MRHI algorithm finds a more credible 
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solution that has 6 recombinations in total, but with at most 1 recombination for 
each haplotype in the pedigree. 

Another two real data sets are three generations families like those in the CEPH 
database [1][2][3] (ftp://genome.wi.mit.edu/distribution/mpg/hapmap/ hap_ 
struct/ popA/ (Gabriel et al.)): family 1331 on chromosome 7a, and family 1346 
on chromosome 2a. After removing loci with missing alleles, family 1331 is a 
pedigree with 8 members on 32 loci, and family 1346 is a pedigree with 8 
members on 55 loci. Both the locus-based and the 1-MRHI algorithm give the 
same answer for family 1331, but take 522.4s and 8.7s, respectively. As for family 
1346, the locus-based algorithm fails because of not enough resources while the 
1-MRHI algorithm finds a solution in 31 minutes.  

5.2   Simulated Data 

We compared our algorithm, with the locus-based algorithm [5] and PHASE [14], 
in terms of running time t and accuracy ratio ρ (in recovering the correct 
haplotype configurations for the whole pedigree). We used three different tree 
pedigree structures in the experiment: (1) a tree with 13 nodes (Figure 1), (2) a 
tree with 29 nodes (Figure 8 in [8]), and (3) a typical family with 21 nodes from 
the CEPH database [1][2][3]. 

Table 1. Comparison of performances of different haplotyping programs on simulation 

data 

m = 15 m = 30 
Locus-base PHASE [13] 1-MRHI 1-MRHI (n,r) 

t (sec.) ρ t (sec.) ρ* t (sec.) ρ t (sec.) ρ 
(13, 0.0) 255.7 1.00 688.2 .87 1.68 1.00 202.8 1.00 
(29, 0.0) 576.3 1.00 1772.8 .91 12.33 1.00 839.6 1.00 
(21, 0.0) 234.4 1.00 592.4 .95 1.02 1.00 44.0 1.00 
(13, 0.1) 287.7 .93 972.3 .85 1.73 .91 241.1 .92 
(29, 0.1) 542.8 .90 2210.2 .90 10.45 .90 1042.8 .94 
(21, 0.1) 243.2 .91 1504.2 .93 0.52 .94 33.7 .96 
(13, 0.2) 294.2 .85 1221.4 .85 3.17 .89 1032.4 .86 
(29, 0.2) 613.5 .81 3022.2 .89 11.70 .84 916.1 .84 
(21, 0.2) 244.1 .90 2106.7 .93 1.22 .95 47.4 .92 

1  Average performance is obtained from 100 independent executions of each program and for 
each parameter setting. n stands for the number of nodes, m for the number of marker loci, r for 
the recombination rate, t(sec.) for the average running time, and ρ for the accuracy ratio. 

2  The locus-based algorithm and PHASE cannot be applied where m ≥ 30 due to space and time 
limitations, respectively. 

*  Accuracy ratio of PHASE is defined as the ratio of correctly resolved genotypes to all 
genotypes. 
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For each pedigree, genotypes with 15 and 30 biallelic marker loci are 
considered. The two alleles at each locus of a founder are independently sampled 
with a fixed frequency of 0.5. The recombination rate is set to r = 0, 0.1, 0.2 
between generations, and the number of recombinations is no more than one in 
each PO-pair.  

As seen from Table 1, 1-MRHI runs quickest and can be applied to larger 
instances. All three algorithms can recover the correct haplotype configurations 
with high probability. The accuracy ratio decreases with the increase in the 
number of recombinations. Since we have limited the number of recombinations 
within each PO-pair to no more than one, the locus-based algorithm performs 
worse than the 1-MRHI algorithm as expected. 
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