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Abstract

Transcoding is an important technology which
adapts the same multimedia object to diverse mo-
bile appliances; thus, users’ requests for a speci-
fied version of a multimedia object could be served
by a more detailed version cached according to
transcoding. Therefore, it is of particularly theoret-
ical and practical necessity to determine the proper
versions to be cached at a node such that the speci-
fied objective is achieved. In this paper, we address
the problem of multimedia object placement. The
performance objective is to minimize the total ac-
cess cost by considering both transmission cost and
transcoding cost. We present an optimal dynamic
programming-based solution for this problem. The
performance of the proposed solutions is evaluated
with a set of carefully designed simulation experi-
ments for various performance metrics over a wide
range of system parameters. The simulation results
show that our solution consistently and significantly
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outperforms comparison solutions in terms of all the
performance metrics considered.

Key words: Web caching, multimedia, object
placement, transcoding, transparent data access, op-
timization.

1 Introduction

The World Wide Web has become the most success-
ful application on the Internet since it provides a
simple way to access a wide range of information
and services. However, due to the dramatic growth
in demand, considerable access latency is often ex-
perienced in retrieving web objects from the Inter-
net, and popular web sites are suffering from over-
load. An efficient way to overcome such deficien-
cies is web caching, by which multiple copies of the
same object are stored in geographically dispersed
caches. An overview of web caching can be found
in [3,7]. As many mobile appliances are divergent in
size, weight, I/O capabilities, network connectivity,
and computing power, differentiated devices should
be employed to satisfy their diverse requirements.
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In addition, different presentation preferences from
users make this problem more serious. Transcoding,
used to transform a multimedia object from one form
to another, frequently through trading off object fi-
delity for size, is a technology that can meet these
needs [1,4–6].

Due to the limited cache capacity, it is impossi-
ble to store all the versions of a multimedia object
at a node. This, it is significant to determine what
versions should be cached if the number versions is
given so that the total access cost is minimized. In
this paper, we address the problem of multimedia
object placement, i.e., determining exactly what ver-
sions should be cached at a node such that the total
access cost is minimized. The main contributions of
this paper are summarized as follows.

• We present a model for the problem of multi-
media object placement, formulated as an op-
timization problem. In our model, multimedia
object placement decisions are made based on
both transcoding and transmission cost.

• We propose an optimal dynamic programming-
based solution to compute the optimal versions
to be cached at a node.

• We give an extensive and detailed analysis on
the proposed solution and show that our solu-
tion is optimal and low-cost.

The rest of this paper is organized as follows. Sec-
tion 2 introduces web object transcoding. Section 3
presents an optimal solution for the problem of mul-
timedia object placement. Section 4 summarizes our
work and concludes the paper.

2 Web Object Transcoding

Transcoding is used to transform a multimedia ob-
ject from one form to another, frequently trading off

object fidelity for size for the prevailing operating
environments. The relationship among different ver-
sions of a multimedia object can be expressed by
a weighted transcoding graph [2]. An example of
such a graph is shown in Fig. 1. In Fig. 1, we can

Figure 1: A Weighted Transcoding Graph

see that the original versionA1 can be transcoded to
each of the less detailed versionsA2, A3, A4, and
A5. It should be noted that not everyAi can be
transcoded toAj since it is possible thatAi does not
contain enough content information for the transcod-
ing from Ai to Aj . In the example, transcoding can
not be executed betweenA4 andA5 due to insuffi-
cient content information. The transcoding cost of
a multimedia object fromAi to Aj is denoted by
t(Ai, Aj). Obviously, t(Ai, Ai) = 0. The num-
ber beside each edge in Fig. 1 is the transcod-
ing cost from one version to another. For example,
t(A1, A2) = 6, and t(A3, A4) = 8. If a version
cannot be transcoded from another version, we con-
sider the transcoding cost as infinity. For instance,
t(A2, A1) = ∞, andt(A4, A5) = ∞. If versionAj

can be transcoded from versionAi through version
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Ak with i < k < j, thent(Ai, Aj) ≤ t(Ai, Ak) +
t(Ak, Aj) (triangularity property) because version
Ak is always an option if the transcoding cost
t(Ai, Aj) is too large. For example,t(A1, A4) <
min{t(A1, A2)+t(A2, A4), t(A1, A3)+t(A3, A4)}.
Φ(Ai) is the set of all the versions that can be
transcoded fromAi, including Ai. For exam-
ple, Φ(A1) = {A1, A2, A3, A4, A5}, Φ(A2) =
{A2, A4, A5}, andΦ(A4) = {A4}.

3 Dynamic Programming-Based
Solution

For a multimedia objectO, we assume that it hasm
versions:A1, A2, · · · , Am. For each version of ob-
ject O, we associate the link from the client to the
server a nonnegative costL, which is defined as the
cost of sending a request for versionAk and the rel-
evant response over this link. Letfj be access fre-
quency of versionAj from the node.

Before we formulate the problem, we can make
the following assumptions.

• Assumption1. The transcoding graph is a linear
array and the transcoding cost between any two
adjacent versions is constant, i.e.,t(Ai, Aj) =
j−1∑

k=i

t(Ak, Ak+1) = (j − i)+T , wherex+ = x

if x ≥ 0 elsex+ = ∞.

• Assumption2. (δ − 1)T ≤ L, andδT > L for
some positive integerδ.

If there does not existδ such thatAssumption3
can be satisfied, i.e.,L À T or T À L. Obviously,
these are two special cases. IfL À T , then version
Ad1 should be cached so that no transmission cost
is not necessary to incur, whered1 = min{j|fj >
0, 1 ≤ j ≤ m}. If T À L, then versionAd2 should
be cached, whered2 = max{j|fj > 0, 1 ≤ j ≤ m}.

First, we begin by computing the access cost of
caching only one versionAk at nodev with 1 ≤ k ≤
m. Intuitively, all the requests for versionAi with
i < k will be handled by serverv0, while some of
the requests forAi with i ≥ k, depending on the
transcoding cost and the transmission cost, will be
taken care of by transcoding from versionAk. Thus,
the total access cost of caching only versionAk at
nodev is computed as follows:

C(Ak) =
k−1∑

i=1

f1,iL+
m∑

i=k

f1,i min{(i−k)T, L} (1)

Since versionAk is cached at nodev, we can see
(with Assumption2) that δ is such a parameter that
the request for versionAi will be served by the local
node if0 < i−k < δ, and the request for versionAi

will be served by the server ifi− k ≥ δ.

Based on Equation (1),C(Ak) can be further de-
fined as follows:

C(Ak) =





k−1∑

i=1

f1,iL +
k+δ−1∑

i=k

f1,i(i− k)T

+
m∑

i=k+δ

f1,iL if k + δ ≤ m

k−1∑

i=1

f1,iL +
m∑

i=k

f1,i(i− k)T if k + δ > m

(2)

It is easy to see thatC(A1) can be calculated in
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O(m) time. As

C(Ak+1) =





C(Ak) + f1,kL−
k+δ−1∑

i=k+1

f1,iT

+f1,k+δ((δ − 1)T − L)
if k + δ ≤ m

C(Ak) + f1,kL−
m∑

i=k+1

f1,iT

if k + δ > m

= C(Ak) + E(k)

where

E(k) =





f1,kL−
k+δ−1∑

i=k+1

f1,iT + f1,k+δ((δ − 1)T − L)

if k + δ ≤ m

f1,kL−
m∑

i=k+1

f1,iT if k + δ > m

and

E(k + 1) =





E(k)− f1,kL + f1,k+1(L + T )
−f1,k+δ(δT − L) + f1,k+δ+1(δ − 1)T
−f1,k+δ+1L if k + δ < m

E(k)− f1,kL + f1,k+1(L + T )
−f1,k+δ(δT − L) if k + δ = m

E(k)− f1,kL + f1,k+1(L + T )
if k + δ > m

Thus, eachC(A2), C(A3), · · · , C(Am) can be
done in constant time; Therefore, the MOP problem
can be solved inO(m) time. Regarding to the time
complexity of solving the MOP problem, we have
the following theorem.

Theorem 1 Based on the cost function as
given in Equation (1), the MOP problem for
{A1, A2, · · · , Am} by caching only one version
(i.e.,n = 1) can be solved inO(m) time.

Proof Since the cost function as given in Equa-
tion (2) is equivalent to the cost function as given
in Equation (1) and the MOP problem based on the
cost function as given in Equation (2) can be solved
in O(m) time, the MOP problem based on the cost
function as given in Equation (1) can also be solved
in O(m) time. Hence, the theorem is proven.¤

The second step is to extend the above solution to
compute the optimal solution for caching two ver-
sions,Ak1 andAk2 , at the same time at nodev.

Suppose thatAk1 and Ak2 are the two optimal
versions to be cached. The key observation here is
that Ak1 is also an optimal solution for the prob-
lem with {A1, A2, · · · , Ak2−1} if k1 < k2, because
the requests for{Ak2 , Ak2+1, · · · , Am} can only be
served byAk2 . Regarding to this observation, we
have the following lemma.

Lemma 1 Assume thatAbp and Abq are the opti-
mal solutions for the problem of caching only one
version from the set of{A1, A2, · · · , Ap−1} and
{A1, A2, · · · , Aq−1} respectively, then we havebp ≤
bq if p < q.

Proof Without loss of generality, it is suffi-
cient for us to prove thatbp ≤ bp+1 where
1 ≤ bp ≤ p − 1 and 1 ≤ bp+1 ≤ p. The
proof is by contradiction. Assume that we have
bp > bp+1. As Abp is the optimal version to
be cached, we haveC1,p(Abp) < C1,p(Abp+1).
Let C1,p(Ai) denote the access cost of cachingAi

for the MOP problem with{A1, A2, · · · , Ap−1}.
From the definition of the access cost functionC1,p

as given in Equation (1), addingAp to the set
{A1, A2, · · · , Ap−1} will increase bothC1,p(Abp)
and C1,p(Abp+1) by f1,p min{(p − bp)T, L} and
f1,p min{(p − bp+1)T,L} respectively. The in-
crease toC1,p(Abp+1) is no less than that to
C1,p(Abp) becausebp > bp+1. So we have
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Figure 2: Relationship betweenC(Ak) andC(Ak+1)

C1,p+1(Abp) < C1,p+1(Abp+1), which contradicts
the fact thatC1,p+1(Abp+1) is the minimum ac-
cess cost of cachingAbp+1 for the problem with
{A1, A2, · · · , Ap−1, Ap}. Hence the lemma is
proven.¤

Based on Lemma 1, we can see that the feasi-
ble range of the optimal solution for the problem
with {A1, A2, · · · , Aq} can be reduced if the optimal
version for the problem with{A1, A2, · · · , Ap} has
been obtained. So is the other case when the optimal
solution for the problem with{A1, A2, · · · , Aq} is
known, the feasible range of the optimal solution for
the problem with{A1, A2, · · · , Ap} is also reduced.
Therefore, we can findAbp and computeC1,p(Ap)
by divide and conquer.

Let D
(k)
p,q denote the minimum access cost of

cachingk versions for the MOP problem withq − p
versions, i.e.,Ap, Ap+1, · · · , Aq−1, where1 ≤ p <

q ≤ m. Thus,D(1)
1,p = C1,p(Abp) andD

(1)
1,m+1 =

min
1≤k≤m

{C1,m+1(Ak)}. Based on Lemma 1, we have

the following theorem on the time complexity of
computingD(1)

1,p for 1 < p ≤ m.

Theorem 2 All the p MOP problems for
{A1, A2, · · · , Ap} where1 ≤ p ≤ m, i.e.,D(1)

1,p for
1 < p ≤ m, can be computed inO(m log m) time.

Proof Assume that there exists an integerθ such
that m = 2θ. Based on Theorem 1, we can com-
pute D

(1)

1, 1
2
m

in O(m) time. Assume thatAb m
2

is

the optimal solution for the problem of caching only
one version with{A1, A2, · · · , Am

2
−1}, then we can

find the optimal solution for the problem of caching
only one version for{A1, A2, · · · , Am

4
} in O(m)

time. Similarly, D
(1)

1, 3m
4

can also be computed by

solving the problem of caching only one version
with {A1, A2, · · · , A 3m

4
−1}. As we have already

computedC1, m
2
(Ay) wherey = min(bm

2
, m

2 − 1),
we can base on this result to computeC1, 3m

4
(Ay)

for {A1, A2, · · · , A 3m
4
−1} (by adding at most

m
4 terms to C1, m

2
(Am

2
−1). We then compute

C1, 3m
4

(Ay), C1, 3m
4

(Ay+1), · · · , C1, 3m
4

(A 3m
4
−1) in at

most O(3m
4 − y) time. So it takes at most

O(m) time to computeD
(1)
1, m

4
and D

(1)

1, 3m
4

. Ac-

5



Figure 3: Decomposition Process of Theorem

cording to the similar decomposition,D(1)
1, m

8
,

D
(1)

1, 3m
8

, D
(1)

1, 5m
8

, and D
(1)

1, 7m
8

can all be solved in

O(m) time. To be precise, letAz1 , Az2 , Az3

be the optimal versions for{A1, A2, · · · , Am
4
−1},

{A1, A2, · · · , Am
2
−1}, and {A1, A2, · · · , A 3m

4
−1}

respectively. The first step is to computeC1, m
8
(A1),

and thenC1, 3m
8

(Az1), C1, 5m
8

(Az2), andC1, 7m
8

(Az3)
from C1, m

4
(Az1), C1, m

2
(Az2), and C1, 3m

4
(Az3) re-

spectively. As the computation of each item takes
O(m

8 ) time, this step takesO(m) time in to-
tal. Then we can search the optimal solutions
for {A1, A2, · · · , Am

8
−1}, {A1, A2, · · · , A 3m

8
−1},

{A1, A2, · · · , A 5m
8
−1}, {A1, A2, · · · , A 7m

8
−1} in

the ranges(1,min{z1,
m
8 − 1}), (z1, min{z2,

3m
8 −

1}), (z2,min{z3,
5m
8 −1}), and(z3,

7m
8 −1) respec-

tively. Since each step takes constant time, all these
searches take no more thanO(m) time in total. Af-
ter repeating this processlog m times, we can finish
computingD(1)

1,p for 1 < p ≤ m. This process can be
viewed from Figure 3. Hence, the theorem is proven.
¤

Now we can accomplish the problem of caching
two versions in the following three steps.

• Step 1: EvaluateD
(1)
1,p for 1 < p ≤ m,
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whereD
(1)
1,p denotes the minimum access cost

of caching only one version for the MOP prob-
lem withp−1 versions, i.e.,A1, A2, · · · , Ap−1.

In particular,D(1)
1,m+1 = min

1≤k≤m
{C1,m+1(Ak)}.

• Step 2: Evaluate Dp for 2 ≤ p ≤ m,
where Dp is the access cost for versions
Ap, Ap+1, · · · , Am if Ap is cached at nodev.
Dp is defined as follows:

Dp =





p+δ−1∑

i=p

f1,i(i− p)T +
m∑

i=p+δ

f1,iL

if p + δ ≤ m
m∑

i=p

f1,i(i− p)T if p + δ > m

• Step3: ComputeD(2)
1,m, whereD

(2)
1,m is the min-

imum access cost of caching two versions for
the problem with{A1, A2, · · · , Am}. D

(2)
1,m is

calculated as follows:

D
(2)
1,m = min

2≤p≤m
{D(1)

1,p + Dp)}

The following theorem shows thatD(2)
1,m is the

minimum access cost of caching two versions the
MOP problem.

Theorem 3 D
(2)
1,m is the minimum access cost of

caching two versions for the MOP problem.

Proof Assume thatD(2)
1,m = D

(1)
1,p∗ + Dp∗ =

min
2≤p≤m

{D(1)
1,p + Dp)}. It is obvious from the compu-

tation ofD(2)
1,m thatbp∗ andAp∗ are the two versions

which achieve the minimum access cost of caching
two versions, whereD(1)

1,p∗ = C1,p∗(bp∗). Hence, the
theorem is proven.¤

The following theorem shows the time complexity
of computingD(2)

1,m.

Theorem 4 D
(2)
1,m can be computed inO(m log m)

time.

Proof SinceStep1 can be computed inO(m log m)
time (Theorem 2) andSteps2 and 3 both take
O(m) time, the total time for computingD(2)

1,m is
O(m log m). Hence, the theorem is proven.¤

After we have calculatedD(1)
1,p for 1 ≤ p ≤ m

in Step1, we can obtainD(2)
1,p for all 2 ≤ p ≤ m

in anotherO(m log m) time by divide and conquer,

whereD
(2)
1,p is the minimum access cost of caching

only two versions for the problem withp−1 versions,
i.e., A1, A2, · · · , Ap−1. The main idea is similar to

Lemma 1 in the finding ofD(1)
1,p. Assume thatAbp1

andAbp2
with 1 ≤ bp1 < bp2 < p are the two optimal

versions cached in nodev for A1, A2, · · · , Ap−1 to

achieve the optimal access costD
(2)
1,p. Similarly,Abq1

andAbq2
with 1 ≤ bq1 < bq2 < q are the two opti-

mal versions cached in nodev for A1, A2, · · · , Aq−1

to achieve the optimal access costD
(2)
1,q . We can

show with a similar argument with Lemma 1 that
bp2 ≤ bq2 if p < q and this property limits the range
of searching for the optimal solutions. As in The-
orem 2, the two optimal solutions inD(2)

1, m
2

can be

found inO(m) time after knowing the optimal ver-

sions ofD(1)
1,p for 1 < p ≤ m; thenD

(2)
1, m

4
andD

(2)

1, 3m
4

in anotherO(m) time; thenD
(2)
2, m

8
, D

(2)

1, 3m
8

,D(2)

1, 5m
8

,

and D
(2)

1, 7m
8

in anotherO(m) time until D
(2)
1,p for

2 < p ≤ m are found afterlog m times. There-
fore, the minimum access cost of caching three ver-
sions, denoted byD(3)

1,m, can be computed similarly,

i.e., D
(3)
1,m = min

3≤p≤m
{D(2)

1,p + Dp)}, with at most

O(m log m) time (similar to Theorem 5). Using the
same idea, we can solve the problem of cachingK
versions inO(Km log m) time.
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Let D
(K)
1,m denote the minimum access cost

of caching K versions from m versions, i.e.,
A1, A2, · · · , Am, then we have the following theo-
rem on the time complexity of computingD(K)

1,m .

Theorem 5 D
(K)
1,m can be computed in

O(Km log m) time.

Proof Based on the above analysis, we have
D

(K)
1,m = min

K≤p≤m
{D(K−1)

1,p + Dp)}. SinceDp can

all be computed inO(m) time and we have showed

that D
(1)
1,p can be computed inO(m log m) time,

we can easily prove thatD(K)
1,m can be computed in

O(Km log m) time by induction. Note that in the

induction step,D(K−1)
1,p for K − 1 < p ≤ m is com-

puted inO((K − 1)m log m) time. Hence, the theo-
rem is proven.¤

4 Conclusion

Transcoding is attracting increasing research inter-
est in the environment of mobile appliances. In this
paper, we addressed the problem of multimedia ob-
ject placement. We studied this problem with the ob-
jective of minimizing total access cost by combining
both transmission cost and transcoding cost.
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