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ABSTRACT
A rectilinear path between two points p, q ∈ R

2 is a path
connecting p and q with all its line segments horizontal
or vertical segments. Furthermore, a Manhattan path be-
tween p and q is a rectilinear path with its length exactly
dist(p, q) := |p.x− q.x| + |p.y − q.y|.

Given a set T of n points in R
2, a network G is said to be

a Manhattan network on T , if for all p, q ∈ T there exists a
Manhattan path between p and q with all its line segments
in G. For the given point set T , the Minimum Manhattan
Network (MMN) Problem is to find a Manhattan network
G on T with the minimum network length.

In this paper, we shall prove that the decision version of
MMN is strongly NP -complete, using the reduction from
the well-known 3-SAT problem, which requires a number of
gadgets. The gadgets have similar structures, but play dif-
ferent roles in simulating the 3-SAT formula. The reduction
has been implemented with a computer program.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Theory
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Minimum Manhattan Network, 3-SAT, NP-complete

1. INTRODUCTION

1.1 Problem Description
A rectilinear path between two points p, q ∈ R

2 is a path
connecting p and q with only horizontal or vertical line seg-
ments as edges in the path. Furthermore, a Manhattan path

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’09, June 8–10, 2009, Aarhus, Denmark.
Copyright 2009 ACM 978-1-60558-501-7/09/06 ...$5.00.

between p and q is a rectilinear path with its length exactly
equal to dist(p, q) := |p.x− q.x|+|p.y − q.y|, where p.x (q.x)
and p.y (q.y) are the x and y coordinates of p (q) on the grid,
i.e., the Manhattan distance between p and q.

Given a set T of n points in R
2, a network G is said

to be a Manhattan network on T , if for all p, q ∈ T there
exists a Manhattan path between p and q with all its line
segments in G. For a given network G, let the length of G,
expressed by L(G), be the total length of all line segments
in G. For a given point set T , the Minimum Manhattan
Network (MMN) Problem is to find a Manhattan network
G on T with minimum L(G).

From the problem description, it is easy to show that
there is a close relationship between the MMN and planar
t-spanners. For t ≥ 1, a planar graph G is said to be a
t-spanner of T if for all p, q ∈ T , there exists a path in G
connecting p and q of length at most t times the distance
between p and q. The MMN Problem for T is exactly the
problem to compute the shortest 1-spanner of T under the
L1-norm [3, 4].

1.2 Historical Review
Due to numerous applications in city planning, network

layout, distributed algorithms, and VLSI circuit design, the
MMN problem was firstly introduced in 1999 by J. Gud-
mundsson et al. [4]. In that paper, they proposed an O

(

n3)-
time 4-approximation algorithm, and an O(n log n)-time 8-
approximation algorithm. Especially, they highlighted three
open problems: (1) whether or not MMN is NP -hard; (2)
whether or not PTAS exists for MMN; and (3) whether or
not a 2-approximation algorithm exists for MMN.

After [4], much research was devoted to finding approxi-
mation algorithms for the MMN problem. Most combinato-
rial constructions [1, 2, 5, 9] rely on the decomposition of the
input, by partitioning the input into several blocks (ortho-
convex regions) that can be solved independently. R. Kato et
al. [7] presented an O(n3)-time 2-approximation algorithm.
Although the correctness proof of their algorithm is incom-
plete [3], the paper showed that checking the existence of
a Manhattan path for O(n) specific pairs of points, instead
of O(n2) pairs in T × T , would be sufficient for determining
whether the graph was a Manhattan network. Following this
idea, M. Benkert et al. [1, 2] proposed an O(n log n)-time
3-approximation algorithm. They also described a mixed-
integer programming (MIP) formulation of the MMN prob-
lem. After that, V. Chepoi et al. [3] used the notion Pareto
Envelope and nice strip-staircase decomposition to divide
the plane into several regions, which can be studied individ-



ually. Based on this idea, they proposed a 2-approximation
rounding algorithm by solving the linear programming relax-
ation of the MIP. In K. Nouioua’s Ph.D thesis [8], a primal-
dual based 2-approximation algorithm with running time of
O(n log n) was presented. Later, Z. Guo et al. [5] observed
that the same approximation ratio can also be achieved with
time complexity O(n2) using a combinatorial construction,
in particular using the dynamic programming speed-up tech-
nique of quadrangle inequality. Furthermore, Z. Guo et
al. [6] presented a simple 2-approximation algorithm for
constructing a Manhattan network with O(n log n) running
time. Compared with the previously best known combina-
torial construction [5], one highlight of [6] is that, it was
proved that a simple greedy strategy was able to construct
a 2-approximation MMN. S. Seibert et al. [9] proposed a 1.5-
approximation algorithm. However, their proof may be in-
correct [3]. Despite the wealth of publications on the MMN
problem, prior to our work it was open whether MMN is
NP -hard.

1.3 Our Approach and Results
In this paper, we shall prove that the decision version of

the MMN problem is strongly NP -complete, using the re-
duction from the well-known 3-SAT problem, which requires
a number of gadgets. The gadgets have similar structures,
but play different roles in simulating the 3-SAT formula.

The construction of the gadgets and the reduction rely on
the following ideas: (1) A horizontal or vertical line always
exists between two points having the same x-coordinate or y-
coordinate (Figure 1a). (2) There are many ways of connect-
ing two points with different x-coordinates and y-coordinates,
but we are only interested in the two ways which use ex-
actly one horizontal and one vertical line segment. These
two ways of connecting two points will be used to represent
the assignment of 1 and 0 to a boolean variable (Figure 1b).
(3) There are several ways of connecting line segments to
staircase points. These different ways of connecting stair-
case points form the bases of different gadgets with various
functions (Figure 1c).

(a) (b) (c)

Figure 1: Intuition behind our construction

Our reduction generates a point set T from any boolean
formula ψ. There are three types of edges in a Manhat-
tan network on T , which are generated based on the three
above-mentioned ideas, i.e. G = (T, EF ∪ES∪EC). EF con-
sists of all line segments [p, q] based on the first idea, with
p, q ∈ T, p.x = q.x or p.y = q.y. Basically EF contains those
line segments whose endpoints have the same x-coordinates
(or y-coordinates) and form the basic structure of all gad-
gets; ES are set of strip paths based on the second idea, and
each path usually consists of one vertical and one horizontal
line segment, connecting two points of different coordinates;
EC consists of line segments within the gadgets. Thus the
total length of EF and ES should be fixed and only depend
on ψ. What matters will be how strips are connected, i.e.

variables are assigned, and this will affect the total length
of EC . EC are line segments connecting one or two isolated
staircase points in each gadget to other points in the same
gadget based on the third idea. Let ℓα be the length sum of
these line segments in each gadget α, which will depend on
the assignments of those strips (variables) associated with
that gadget and this is used to enforce relationship of these
assignments in each gadget. The total length of EC can be
computed by

∑

α
ℓα and minimum if each ℓα can achieve

the minimum value. Unfortunately the values of ℓ are not
independent, an assignment of a strip that makes ℓα mini-
mum might not be minimum for ℓβ where β 6= α. For ease
of evaluation, we shall introduce a “potential cost” for each
strip depending on its assignment and define costα be the
sum of ℓα and potential cost of all strips associated with gad-
get α. We shall show that the value of EC will be bounded
by a certain value if and only if the assignments of all strips
(variables) give minimum value costα for each gadget α. Fur-
thermore, we can show that costα achieves minimum value
for each gadget α if and only if ψ is satisfiable. Thus there
exists a Manhattan network of overall length bounded by a
certain value if and only if ψ is satisfiable.

As a consequence of our reduction, it is easy to show that
MMN is strongly NP -complete and there does not exist FP-
TAS algorithm for this problem unless P = NP . This also
answers the first problem of J. Gudmundsson et al. [4],
which was open for more than ten years.

Section 2 gives the basic notations and concepts, followed
by our reduction in Section 3. Section 4 is devoted to the
correctness proof for the reduction.

2. PRELIMINARIES
Denote R(p, q) as a closed rectangle where p, q ∈ R

2 are
its two opposite corners. BV (p, q) is defined as the vertical
closed band bounded by p, q, i.e.

{

(x, y) | min{p.x, q.x} ≤ x ≤ max{p.x, q.x}, y ∈ R

}

,

whereas BH(p, q) denotes the horizontal closed band bounded
by p, q, i.e.

{

(x, y) | min{p.y, q.y} ≤ y ≤ max{p.y, q.y}, x ∈ R

}

.

Formally, for p, q ∈ T, p.x < q.x, p.y < q.y, we call R(p, q)
a vertical strip if there does not exist any point of T in
the region BV (p, q) except on the vertical lines {(x, y)|x =
p.x, y ≤ p.y} and {(x, y)|x = q.x, y ≥ q.y} (represented by
the dashed lines in Figure 2). The length of a vertical strip
R(p, q) is defined as |p.y − q.y|, and the width of a vertical
strip is defined by |p.x − q.x|. Horizontal strip is defined
similarly as shown in Figure 2. For any strip R(p, q), we call
a Manhattan path connecting p and q a strip path of R(p, q).
Moreover, for each strip we choose one Manhattan path and
these paths compose set ES, called strip path collection. The
strip path collection ES is said to be nice if, for each strip
R(p, q), the strip path connecting p and q in ES lies on
∂R(p, q), i.e., the boundary of R(p, q).

In our construction, each strip can be employed to express
the value of a boolean variable, which is indicated by which
side of the strip the path (network) includes. Specifically,
from the definition of vertical strip, we can assume that
the strip path of R(p, q) would not contain any vertical line
segment whose x-coordinate does not equal to p.x or q.x [10],
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Figure 2: The rectangle is a vertical/horizontal strip
R(p, q). Any point in T within BV (p, q) or BH(p, q) can
only be placed on the dashed lines, e.g., point t.

thus has only one horizontal line segment (switch segment).
For a nice strip path collection ES, there are two ways of
connecting p and q using a strip path in ES, which can be
used to express the value of variable v in boolean formula ψ.
The nice property of a strip path is also used to transport
the value of v from one end into the other. As shown in
Figure 3, the solid line segments represent v = 1 and the
dashed line segments for v = 0. In our reduction, we first
assume that all strip paths are nice and, in Section 4, we
shall show how to deal with other cases of strip paths.

1 0

1

0

Figure 3: For each strip, two kinds of Manhattan
paths are used to represent the assignment of vari-
able v. The solid line segments represent v = 1, and
the dashed line segments represent v = 0.

3. REDUCTION

3.1 Reduction Overview
We begin with a high-level overview of our reduction. The

main task is to convert any given boolean formula ψ with
n variables and m clauses into a point set T such that ψ
is satisfiable if and only if the length of MMN G on T ,
expressed by L(G), is bounded by a polynomial-time com-
putable value.

As shown in Figure 4, each line segment, denoting one
strip, is used to represent a literal (with vertical line for the
vertical strip and horizontal line for horizontal strip), each
circled node represents one of the gadgets, and each dotted-
line square represents one of the clauses in ψ. Specifically,
the two adjacent vertical lines numbered by 2i − 1, 2i, 1 ≤
i ≤ n, which might be segmented by the SPLITTER gadgets,
are used to represent two literals xi and ¬xi respectively.
The upper end of each vertical line is initiated by a DUMMY

gadget whereas the lower end of each vertical line is con-
nected to a NEGATOR gadget or a TURN gadget so as to ensure
that, in the network, the connection using 0 or 1 vertical line

segment (corresponding to the assignment of a variable) can
be swapped or maintained. These vertical lines (strips) and
their associated gadgets are placed in such a way that they
will not interfere with each other. The assignments of the
variables have to be transported, through the SPLITTER gad-
get, to the CLAUSE gadget. The CLAUSE gadget is connected
to three line segments, which correspond to three literals,
and has a connection of lowest length in all assignments
except one (23 − 1 assignments); this corresponds to the sit-
uation that the clauses will be satisfied for all but one of the
assignments. The m dotted-line squares, each of which rep-
resents an individual clause and consists of five gadgets, are
placed at the right-part of the network, again without inter-
fering with each other and with other parts of the network.
The NEGATOR gadget together with CLAUSE gadget is needed
to ensure that the connection will achieve the lowest length
if the clause is satisfiable. In other words, the Manhattan
network will have the minimum length if and only if there
exists an assignment to the variables such that the resultant
assignment to every clause is satisfied. In order to construct
the desired network, the strips involving in the construction
have two different widths—standard width 20 and narrow
width 10, and gadget ADAPTOR is for connecting a strip with
narrow width to a strip of standard width.

3.2 Gadget Design
Our construction relies on six different gadgets, NEGA-

TOR, TURN, SPLITTER, CLAUSE, ADAPTOR, and DUMMY, and
the gadgets are placed in such a way that there exists a strip,
either horizontal or vertical, between two gadgets (Figure 4).
Generally speaking, each gadget (Figure 5) consists of three
pairs of points, a pair of black points b1, b2 at the opposite
corners of the gadget, a pair of white points w1, w2 and a
pair of grey points g1, g2 which might be degenerated into
one grey point. The positions of points inside each gadget
are as follows:

b1.x < w1.x < g1.x ≤ g2.x < w2.x < b2.x

b1.y < w2.y < g2.y ≤ g1.y < w1.y < b2.y

b1

b2

w1

w2

g1

g2

x1 x2 x3

y
1

y
2

y
3

Figure 5: Configuration of gadgets. Generally
speaking, each gadget consists of two black points,
two white points and two grey ones. In the degen-
erated case, two grey points may coincide and the
gadget only consists of five points. The grey regions
represent three strips.

Two grey points are very close to the white points with
distance ǫ under the L1-norm, ǫ ≤ 1

2nG
, where nG is the
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Figure 4: A schematic view of the construction. Each line segment represents a strip, and each circled node
represents a gadget. On the left side of this figure, vertical strips are employed to represent the assignment
of n variables in ψ, whereas on the right side of the figure, each square, consisting of five gadgets, corresponds
to a clause. This graph corresponds to the input boolean formula ψ = (x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

number of gadgets and will be determined later. Notice
that two grey points may coincide in the degenerated case.
We shall assume that the length of the connection between
w1 and g1, and similarly w2 and g2, is very small, much
smaller than 1, and they can be ignored as long as the total
length of MMN is within a certain value. For the following
discussion of gadgets, the gadgets are placed in such a way
that b1 of a gadget and b2 of another will form a strip. Note
that b1 will be always located at the lower left corner of
the strip and b2 the right upper corner. Depending on their
relative positions, horizontal or vertical strips will be formed
according to the schematic diagram of Figure 4. Moreover,
each side of the strip will lie on the boundary of one gadget
at one end and inside the other gadget at the other end
(Figure 19). It is always advantageous to have the strip
path be assigned inside the gadget, as this will shorten the
connection length within the gadget. That is the intuitive
reason (formal proof in Section 4) why the strip paths are
always nice. Should the path cross over to the other side of
the strip in the middle, it will be on the outside boundary of
both gadgets, which will result in a larger connection lengths
within both gadgets.

Let B be a big rectangle with sides parallel to the axes,
and enclosing all the gadgets and strips. Assume the four
boundary edges ∂B of B are on line x = x1, x = x2, y =
y1, y = y2 respectively (x1 < x2, y1 < y2). Initially, let
T = T0 be the corner point set of B, i.e.,

T0 := {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}.

Then for each gadget, we add eight points on ∂B

(x1, b1.y), (b1.x, y1), (x2, b2.y), (b2.x, y2),

(x1, w1.y), (w1.x, y2), (x2, w2.y), (w2.x, y1),

to T , as shown in Figure 6. When there is no strip along
some side of a gadget, one point of ∂B should be added to T

such that this point, together with b1 or b2, is on a vertical
or horizontal line that goes along that side of the gadget
without strip. For example, in Figure 6, there is no strip
on the right side of the gadget, therefore point u is placed
on the bottom edge of ∂B with its x-coordinate same as
b2.x. Similar construction can be applied for the other three
sides. By adding these points, some line segments, actually
in EF and represented by the solid lines in Figure 6, are
forced to be in any Manhattan network. Furthermore, the
Manhattan network should contain paths between w1 and
g1, g1 and g2, w2 and g2, and also between g1, g2 and b1,
and similarly between g1, g2 and b2. For different gadgets,
w1, w2, g1 and g2 are placed at different locations so that
different relations for the assignments of the strips can be
enforced for obtaining an MMN.

u

b1

b2

w1

w2

g1 g2

(x1, y1) (x2, y1)

(x1, y2) (x2, y2)

Figure 6: The extra points of ∂B with respect to
one gadget. For each gadget, we add eight points in
the resultant network. Based on the relative posi-
tions among different gadgets we add point u in the
resulting network.

In the following, we shall describe the NEGATOR gadget
in detail and outline the other gadgets. Since the distance
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Figure 7: NEGATOR

Table 1: Cost Function of NEGATOR costmin = 110
v1 v2 ℓ potential cost
0 0 100 20 120
0 1 100 10 110
1 0 100 10 110
1 1 120 0 120

between g1 and w1, and similarly g2 and w2, is very small,
we shall ignore this value in the following tables, and the
sum of such distances for all the gadgets will be considered
when calculating the total length of Manhattan network.

3.3 Gadget NEGATOR
The Manhattan network in each gadget is shorter in length

when the strip path runs inside as opposed to outside (the
boundary of) the gadget. This will make the analysis dif-
ficult if each gadget is studied in isolation, as each strip
path should always run inside one gadget and outside on the
other. For ease of analysis so that we can simply consider
the length of each gadget with respect to the different as-
signments of the strips without worrying about their global
effects on the other gadgets, each strip is associated with an
extra potential cost which will be included in the cost calcu-
lation if the strip path is inside the gadget, i.e. on the left
or top of the gadget (v = 0), or on the right or bottom of
the gadget (v = 1). Informally, the potential cost of each
strip will be added into the cost evaluation of gadget α if
and only if the strip path is in the interior of α.

As shown in Figure 7, the NEGATOR gadget is involved
with two strips, whose connection relates the assignments
of the variables v1 and v2, and ℓ is the shortest length of
line segments so that for each point pair in the gadget, ex-
cept (w1, g1) and (w2, g2), there exists a Manhattan path.
We would like the connection of the grey points in this gad-
get to have the lowest length if the assignments of v1 and
v2 are different, i.e. this NEGATOR gadget will ensure that
v1 = ¬v2 if the length of the network has to be within a
certain value. In the following we consider the shortest con-
nections of the grey points for the four different assignments
of the two strips. The four possible connections are indi-
cated by the dashed lines as shown from Figure 8 to Figure
11.

Besides the cases with v1 = ¬v2 which give the lowest
length, the case v1 = v2 = 0 also gives the lowest length.
However, careful analysis of the situation will show that for
the case v1 = v2 = 0, the length of connection in the other
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Figure 8: v1 = 1, v2 = 0, ℓ = 100
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Figure 9: v1 = 0, v2 = 1, ℓ = 100
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Figure 11: v1 = 0, v2 = 0, ℓ = 100
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Figure 12: SPLITTER

Table 2: Cost Function of SPLITTER costmin = 87
v1 v2 v3 ℓ potential cost
0 0 0 77 10 87
0 0 1 72 20 92
0 1 0 69 20 89
0 1 1 67 30 97
1 0 0 107 0 107
1 0 1 87 10 97
1 1 0 87 10 97
1 1 1 67 20 87

gadgets will not be lowest. An assignment of a strip always
affects two gadgets and the same strip always locates at
different sides of the two gadgets, at top side of one and
bottom side of the other, similarly for the left and right
sides. An assignment of 0 or 1 for a strip is good for one
gadget, but will be bad for the other. Thus the assignment
v1 = v2 = 0 would be bad for the other two gadgets and
consequently the length of the resultant network for this
case would be longer than the other two cases.

To represent this dependence, we introduce a potential
cost associated with each strip. The potential cost of 10
for each strip can be added to exactly one of two gadgets
adjacent to this strip when evaluating cost function. Since
the number of strips is fixed for the input formula ψ, the
sum of potential costs used will be subtracted latter and do
not affect the final length of the network.

By including this potential cost, the cumulated costs for
the four cases are as shown in Table 1, where the lowest
costs occur when v1 = ¬v2. Similar analysis is applied for
the other gadgets, with the total length listed in the tables.

3.4 Other Gadgets
The SPLITTER gadget can “generate” a horizontal branch

from the original vertical strip and the generated horizontal
strip has the same assignment with the original vertical strip.
In order to generate such a branch, two vertical strips as
well as one horizontal strip are located as shown in Figure
12. The choice of values involving in the gadget guarantees
that costmin is obtained if and only if all of the three strips
get the same 0-1 value (Figure 12, Table 2).

Since originally the assignment for each variable is rep-
resented by vertical strips, the TURN gadget (Figure 13 and
Figure 14) is used to change the direction of information
flow so that the horizontal strip can represent the same as-
signment with the crossing vertical strip in the TURN gadget,

and the costmin in the TURN gadget is obtained if and only if
the two crossing strips are expressing the same assignment
(Figure 13 and 14, Table 3).
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Figure 13: TURN(a)
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1

v1

v2

Figure 14: TURN(b)

Table 3: Cost Function of TURN(a) costmin = 50
v1 v2 ℓ potential cost
0 0 40 10 50
0 1 40 20 60
1 0 60 0 60
1 1 40 10 50

Three strips in the CLAUSE gadget represent the three lit-
erals associated with the clause, and through other gadgets,
these strips are connected to the vertical strips on the left
representing the individual literals. The design of the CLAUSE
gadget is to make a gap in cost between the true assignments
of a clause in ψ and the false one. In other words, costmin

has to be achieved for the CLAUSE gadget in seven of eight
assignments of three variables (Figure 15, Table 4). Note
that the cost function will not achieve minimum only for
the case v1 = 0, v2 = 1, v3 = 0. However, since one of three
strips, actually representing v2, is connected to the left ver-
tical strip through the NEGATOR gadget, thus for the CLAUSE

gadget, costmin can be achieved if and only if the correspond-
ing clause can be satisfied for the assignment of the input
formula.

In order to achieve this goal, the width of two out of three
strips in the CLAUSE gadget is set to 10 and smaller than
the standard width 20. The ADAPTOR gadget (Figure 16 and
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Figure 15: CLAUSE

Table 4: Cost Function of CLAUSE costmin = 90
v1 v2 v3 ℓ potential cost
0 0 0 70 20 90
0 0 1 80 10 90
0 1 0 70 30 100
0 1 1 70 20 90
1 0 0 80 10 90
1 0 1 90 0 90
1 1 0 70 20 90
1 1 1 80 10 90

Figure 17, Table 5) is used to connect two strips of different
widths together, and costmin is obtained if and only if these
two strips represent the same assignment.
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Figure 16: ADAPTOR(a)

To bound the vertical strip associated with each literal,
we introduce the DUMMY gadget (Figure 18, Table 6).

3.5 Putting Them Together
According to the diagram of Figure 4, we combine dif-

ferent gadgets to form the desired network. For instance, in
Figure 4 the SPLITTER gadget is connected to gadgets DUMMY,
TURN, and NEGATOR. So we let the DUMMY gadget and SPLITTER

gadget share a common vertical strip, the TURN gadget and
SPLITTER gadget share a common vertical strip, whereas the
horizontal strip of the SPLITTER gadget is connected to the
NEGATOR gadget, as shown in Figure 19. Similar approach
can be applied for connecting other gadgets and obtaining
the point set T .

In addition, if gadget α is located on the left of gadget β
in Figure 4, then all the points in α fall on the left of the
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Figure 17: ADAPTOR(b)

Table 5: Cost Function of ADAPTOR(a) costmin = 65
v1 v2 ℓ potential cost
0 0 55 10 65
0 1 68 0 68
1 0 47 20 67
1 1 55 10 65

points in gadget β. Similarly, if gadget α is located above
gadget β in Figure 4, then all the points in α are located
above the points in gadget β.

As described before, we can only consider the optimal net-
work connection of each gadget without worrying about the
global network length. Actually we shall prove in Section 4
that ψ is satisfiable if and only if costmin can be obtained for
each individual gadget, i.e. the total cost for the resulting
network is bounded by a polynomial-time computable value.
In summary, we have the following results.

Lemma 1. costmin is obtained

• for any assignment of the strip in the DUMMY gadget.

• if the crossing strips represent different 0-1 values in
the NEGATOR gadget.

• if all the crossing strips represent the same 0-1 value
in the ADAPTOR, TURN and SPLITTER gadgets.

• for all seven of the eight assignments of the three vari-
ables on crossing strips in the CLAUSE gadget.

4. ANALYSIS
As shown in Figure 4, it is easy to observe the following

facts.

Lemma 2. For any boolean formula ψ with n variables
and m clauses, there are m CLAUSE gadgets, 2m ADAPTOR

gadgets, (m + n) TURN gadgets, (m + n) NEGATOR gadgets,
3m SPLITTER gadgets and 2n DUMMY gadgets in the resulting
instance of MMN.

Corollary 1. In the resulting instance reduced from the
boolean formula ψ with n variables and m clauses, the num-
ber of gadgets

nG = 8m+ 4n,

and the number of strips

nS = 10m+ 3n.
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Figure 18: DUMMY

Table 6: Cost Function of DUMMY costmin = 40
v1 ℓ potential cost
0 40 0 40
1 30 10 40

Corollary 2. For the resulting instance reduced from
the boolean formula ψ with n variables and m clauses,

∑

costmin = 240n+ 641m.

Define Qk(p) be the k-th closed quadrant originated at
point p, where k = 1, 2, 3, 4. For any point p ∈ T\T0 (note
that T0 contains the four corner points of the big rectan-
gle B), let hx

k(p) be the point in T ∩ Qk(p)\{p} whose x-
coordinate is closest to p.x (if more than one exist, choose
the one whose y-coordinate is closest to p.y). Similarly, we
can give the definition of hy

k(p). Figure 20(a) shows an ex-
ample of hx

1(p) and hy
1
(p).

Lemma 3. For a network G, if for any point p ∈ T\T0,
there exist Manhattan paths connecting p and hx

k(p), as well
as p and hy

k(p), k = 1, 2, 3, 4, then G is a Manhattan network
on T .

Proof. It suffices to show that for any points p, q ∈ T
satisfying T ∩R(p, q)\{p, q} = ∅, there exists the Manhattan
path connecting p and q.

First, we discuss the case that p ∈ T0 or q ∈ T0. Without
loss of generality, assume p = (x1, y1) (Figure 6). Then
q 6∈ T0. We have hx

3(q) = p and p, q are connected by a
Manhattan path.

Otherwise, assume p.x ≤ q.x, p.y ≤ q.y and the other cases
can be proven similarly. In such case, the path connecting
p and hx

1(p) and the path connecting q and h
y
3
(q) intersect,

and as shown in Figure 20(c), they form a Manhattan path
connecting p and q (note that in the special case hx

1(p) and
q, as well as hy

3
(q) and p, can coincide).

The following theorem gives the necessary and sufficient
conditions of a network G being a Manhattan network on T
even though G might not be minimum.

Theorem 1. A network G is a Manhattan network on
T if and only if G satisfies the following three properties:
(1) EF ⊆ G, (2) G contains a strip path collection, (3) G
contains a Manhattan subnetwork on the vertex set of each
gadget.

0

7

1 0

1

1 0

1 0

NEGATOR

TURN

SPLITTER

DUMMY

Figure 19: The method of connecting different gad-
gets. Two adjacent gadgets always share a common
strip.

Proof. It is easy to see that a Manhattan network must
satisfy these three properties. So we only need to prove that
any network G satisfying these conditions is a Manhattan
network. By Lemma 3 it suffices to show that for any point
p ∈ T\T0, there exists a Manhattan path connecting p and
hx

k(p), as well as p and hy

k(p).
For symmetry, we only consider the case of hx

1(p) and
hx

2(p). If there exists point u ∈ T such that u.x = p.x, u.y >
p.y, and there is no point of T between p and u, then hx

1(p) =
hx

2(p) = u and G contains a Manhattan path connecting p
and hx

1(p), as well as p and hx
2(p) (Property 1). It is easy

to verify that in such case p is one of points w1, b2 of each
gadget, or the points on ∂B, except the corner and the top
boundary ones.

For the point p lying on the top boundary of ∂B, it is easy
to see that the top horizontal line (y = y2) ∩ ∂B contains
Manhattan paths connecting p and hx

1(p), as well as p and
hx

2(p) (Property 1).
So the rest is to consider those cases when p is one of the

points {b1, g1, g2, w2} of any gadget α, where there does not
exist point u ∈ T satisfying u.x = p.x, u.y > p.y.

If p = b1 of gadget α, denoted by bα1 , then there exists
gadget β such that R(bα1 , b

β
2
) is a vertical strip. As shown

in Figure 20(b), hx
1(p) = b

β
2

and hx
2(p) = w

β
2
. p and hx

1(p)
is connected by a Manhattan path in the strip path collec-
tion (Property 2), whereas the Manhattan path between p

and hx
2(p) is obtained by combining the horizontal line seg-

ment between p and the left boundary point (x1, p.y) with

the vertical line segment with endpoints wβ
2

and (wβ
2
.x, y1)

(Property 1).
For the other cases, when p ∈ {gα

1 , g
α
2 , w

α
2 }, we know that

hx
1(p) = bα2 , hx

2(gα
1 ) = wα

1 , hx
2 (gα

2 ) = gα
1 , h

x
2(wα

2 ) = gα
2 . Since

both of hx
1 (p) and hx

2(p) are in the same gadget with p, there
exists a Manhattan path connecting p and hx

1(p), as well as
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Figure 20: Figure (a) gives an example of hx
1 (p) and h

y
1
(p). Figure (b) shows a Manhattan path connecting

p and hx
1 (p) or hx

2(p). Figure (c) shows that the Manhattan path connecting p and q can be obtained by
combining two different Manhattan paths together.

p and hx
2 (p) (Property 3).

In the following analysis, let LF be the overall length of
EF and LS the overall length of all the strips, where the
length of a horizontal (vertical) strip is the length of the
horizontal (vertical) side of the strip. From the construc-
tion described above, it is easy to observe that all of these
quantities above can be bounded by a polynomial of n and
m.

Theorem 2. Let

Q := LF + LS +
∑

costmin − 10nS + 1.

Then ψ is satisfiable if and only if there exists a Manhattan
network G on T such that L(G) ≤ Q.

Proof. First of all, we prove that if ψ is satisfiable, then
we can construct a Manhattan network G on T satisfying
L(G) ≤ Q.

We know that for any two points having the same x-
coordinate (or y-coordinate), a horizontal line segment (or
a vertical line segment) must exist in any Manhattan net-
work. So at the first step we add these line segments into
the network, and these line segments compose the set EF

with overall length LF . Secondly, according to a satisfying
assignment of ψ, denoted by π, we construct the nice strip
path collection ES. Then for each gadget, construct the min-
imum Manhattan network with respect to the assignment π.
Since for each gadget, distance 2ǫ is enough for connecting
w1 and g1, as well as w2 and g2, the overall length of line
segments added in the third part is at most

∑

(costmin + 2ǫ) − 10nS

=
∑

costmin − 10nS + 2ǫ · nG

≤
∑

costmin − 10nS + 1

By definition, the potential cost of each strip S is added
to exactly one of its adjacent gadgets. Thus the sum of
potential cost used in the network is 10nS , and such value
has to be subtracted when calculating the minimum length
of the network. By Corollary 1 and Corollary 2, it is easy to
see that the formula above can be computed in polynomial
time.

So we only need to show that

L(EF ∪ES) = LF + LS .

ζ1ζ1ζ1 ζ′1

ζ2ζ2
ζ2

Figure 21: Modifications on the nice strip path col-
lection. The solid line segments represent the strip
path ζ1 or ζ′1. The dotted line segments represent the
strip path ζ2. The dashed line segment represents a
line segment in EF .

Such equation is satisfied if the switch segment of each strip
path falls in EF , or is shared with another strip path. How-
ever, arbitrary union of three mentioned sets does not satisfy
this property and we need to modify the generated network.
Without loss of generality, we consider the vertical strip and
the switch segment is on the bottom. Figure 21 shows all
the cases of the switch segment. In Figure 21(a), no strip
goes along the bottom side of the gadget, and the switch
segment s is shared with a line segment in EF , whereas in
Figure 21(b), the switch segment s of ζ1 is shared with the
strip path ζ2 of another horizontal strip. In Figure 21(c),
the switch segment of ζ1, and ζ2, are neither in EF , nor ly-
ing on the other strip path. However, in such case we can
modify ζ1 and let ζ′1, as shown in Figure 21(d), be the new
strip path. The above operations are repeated until no such
strip path exists. Finally we obtain

L(EF ∪ ES) = LF + LS .

From the construction of the network, the properties of
Theorem 1 are satisfied. Thus the resulting network is a
Manhattan network, and the overall length is not greater
than

LF + LS +
∑

costmin − 10nS + 1 = Q.

On the other hand, we shall prove that if ψ is unsatis-
fiable, then any network G on the point set T must have
L(G) > Q. The proof is by contradiction. For the unsat-
isfiable boolean formula ψ, suppose there exists Manhattan
network G satisfying L(G) ≤ Q. By Theorem 1, G has a
strip path collection ES. Let

EC := G\(EF ∪ ES).

Then we modify the strip paths in ES. As shown in Figure



Figure 22: The replacement of strip paths. The strip
path, which does not switch in the upper gadget, is
replaced by the one representing the assignment 0.
Otherwise such a strip path is replaced by the one
representing the assignment 1.

22, for a strip path in ES switching in the middle, we replace
it by a strip path which lies on the boundary of the strip.
If the strip path does not switch in the upper gadget, we
replace it by the path representing value 0. Otherwise such
strip path is replaced by the path representing 1.

After these operations, we obtain a nice strip path col-
lection and let π be the corresponding assignment. Again
we use the same method, as described before, to make sure
that the switch segment of the strip path falls in EF , or is
shared with another strip path. Let the resulting strip path
collection be E′

S. We have L(EF ∪E′

S) = LF + LS .
Let the network G′ := EF ∪E′

S ∪EC . It is easy to check
that G′ satisfies Property (1) and (2) in Theorem 1. By
the method of modifying ES, we know that G′ also satisfies
Property (3). Therefore G′ is a Manhattan network, and

L(G) = L(EF ∪ES ∪EC)

= L(EF ∪ES) + L(EC)

≥ LF + LS + L(EC)

≥ L(G′).

So the rest is to prove L(G′) > Q. Let

E
′

C = G
′\(EF ∪E′

S).

Since ψ is unsatisfiable, for at least one gadget the value of
cost function exceeds costmin by at least 2 under the assign-
ment π. Thus

L(E′

C) ≥
∑

costmin − 10nS + 2.

As a consequence, we have

L(G′) = L(EF ∪E′

S) + L(E′

C)

≥ LF + LS +
∑

costmin − 10nS + 2

> Q.

Therefore L(G) ≥ L(G′) > Q, which leads to a contradic-
tion.

Combining Theorem 2 and the fact that 3-SAT is NP -
complete, we obtain the main result of this paper.

Theorem 3. Minimum Manhattan Network problem is
strongly NP -complete, and there does not exist FPTAS al-
gorithms for this problem unless P = NP .
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