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Abstract Given a set T of n points in R?, a Manhattan network on 7T is a graph
G with the property that for each pair of points in 7, G contains a rectilinear path
between them of length equal to their distance in the L;-metric. The minimum Man-
hattan network problem is to find a Manhattan network of minimum length, i.e., min-
imizing the total length of the line segments in the network.

In this paper, we prove that the decision version of the MMN problem is strongly
NP-complete, using a reduction from the well-known 3-SAT problem, which requires
a number of gadgets. The gadgets have similar structures, but play different roles in
simulating a 3-CNF formula.

Keywords Minimum Manhattan networks - 3-SAT - NP-completeness

1 Introduction
1.1 Problem Description

A rectilinear path connecting two points in the plane is a path consisting of only hor-
izontal and vertical line segments. A Manhattan path between p and q is a rectilinear
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path with its length equal to |p.x — g.x| + |p.y — q.y|, i.e., the L-distance between
pandgq.

Given a set T of n points in R?, a Manhattan network on 7 is a graph G = (V, E)
with the property that all the edges in E are vertical or horizontal line segments
connecting points in V 2 T and for all p,q € T, the graph contains a path having
the length exactly the L;-distance between p and g. The length of a network G,
denoted by L(G), is the total length of line segments in G. For a given point set 7',
the minimum Manhattan network (MMN) problem is to find a Manhattan network G
on 7" with minimum L(G).

The MMN problem is closely connected to planar z-spanners. For a number 7 > 1,
a planar graph G is said to be a ¢-spanner of a point set T if for all p,q € T, there
exists a path in G connecting p and g of length at most ¢ times the Euclidean distance
between p and g. The MMN problem for T is exactly the problem to compute the
shortest 1-spanner of 7 under the L-metric [3, 5].

1.2 Historical Review

Motivated by a number of applications in city planning, network layouts, dis-
tributed algorithms and VLSI circuit design, the MMN problem was first intro-
duced in 1999 by Gudmundsson et al. [5]. In that paper, they proposed an O (n>)-
time 4-approximation algorithm, and an O (n logn)-time 8-approximation algorithm.
Especially, they highlighted three open problems: (1) whether or not the MMN
problem is NP-hard; (2) whether or not a PTAS exists for the MMN problem;
and (3) whether or not a 2-approximation algorithm exists for the MMN prob-
lem.

After [5], much research was devoted to finding approximation algorithms for
the MMN problem. Most combinatorial constructions [1, 2, 6, 11] rely on the de-
composition of the input, by partitioning the plane into several blocks (ortho-convex
regions) that can be solved independently. Kato et al. [8] presented an O (n?)-time
2-approximation algorithm. Although the correctness proof of their algorithm is in-
complete [3], the paper showed that checking the existence of a Manhattan path for
O (n) specific pairs of points, instead of O (n?) pairsin T x T, is sufficient for deter-
mining whether a given network is a Manhattan network. Following this idea, Benkert
et al. [1, 2] proposed an O (nlogn)-time 3-approximation algorithm. They also de-
scribed a mixed-integer programming (MIP) formulation of the MMN problem. Af-
ter that, Chepoi et al. [3] used the notion Pareto Envelope and a nice strip-staircase
decomposition to divide the plane into several regions, which can be studied indi-
vidually. Based on this idea, they proposed a 2-approximation rounding algorithm
by solving the linear programming relaxation of the MIP. In Nouioua’s Ph.D. the-
sis [10], he presented a primal-dual based algorithm that yields a 2-approximation
and runs in O (nlogn) time. Later, Guo et al. [6] showed that the same approxima-
tion ratio can also be achieved with time complexity O (n”) using a combinatorial
construction, in particular using the dynamic programming speed-up technique for
the quadrangle inequality. Furthermore, Guo et al. [7] presented a 2-approximation
algorithm for constructing a Manhattan network in O (nlogn) time. Compared with
the previously best known combinatorial construction [6], Guo et al. [7] used a sim-
ple greedy strategy to construct a 2-approximate MMN. Seibert et al. [11] proposed
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a 1.5-approximation algorithm. However, their proof may be incorrect [3]. Muifioz
et al. [9] gave an NP-hardness proof of this problem in three dimensions and showed
that there is no polynomial-time approximation algorithm with a ratio better than
1 4+2-107 under the assumption P # NP.

Despite the wealth of publications in this area it has been an open question since
1999 whether the MMN problem is NP-hard or not.

1.3 Our Approach and Results

In this paper, we prove that the decision version of the MMN problem is strongly NP-
complete, using a reduction from the well-known 3-SAT problem, which requires a
number of gadgets. These gadgets have similar structures, but play different roles in
simulating a 3-CNF formula.

The construction of the gadgets and the reduction rely on the following ideas:
(1) A horizontal or vertical line segment always exists between two points having the
same x- or y-coordinate, see Fig. 1(a). (2) There are many ways of connecting two
points with different x- and y-coordinates. However, for a set of point pairs, forming
strips, we are only interested in two different connections which, roughly speaking,
use one horizontal and one vertical line segment. These two ways of connecting two
points in a strip can be shown to be optimal and will be used to represent the as-
signment of O or 1 to a boolean variable, see Fig. 1(b). (3) There are several ways of
connecting the points within a gadget and these form the bases of different gadgets
with various constraints, see Fig. 1(c).

Our reduction generates a point set 7 from any 3-CNF formula . There are
three types of edges in a Manhattan network on 7', which are generated based on the
three above-mentioned ideas, i.e., G = (V, Er U Eg U E¢). The set Er consists of
all line segments with endpoints p, g € T based on the first idea, where p.x = g.x
or p.y =q.y. Basically Er contains those line segments whose endpoints have the
same x- or y-coordinate and form the basic structure of all gadgets; E is a set of
strip paths based on the second idea, and each path, connecting two points of dif-
ferent coordinates, usually consists of one vertical line segment and one horizontal
line segment; E¢ consists of line segments within the gadgets. Thus the total length
of Er and Eg should be fixed and only depend on 1. What matters will be how
strips are connected, i.e., variables are assigned, and this will affect the total length
of Ec. The set Ec contains line segments connecting one or two isolated points in
each gadget to other points in the same gadget based on the third idea. Let £, be
the total length of these line segments in each gadget «, which will depend on the

(@) (b) (©

Fig. 1 Intuition behind our construction. (a) The line segments with endpoints having the same x- or
y-coordinate compose a set Er; (b) The set Eg consists of strip paths for every strip; (¢) The solid line
segments within each gadget compose a set E¢
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assignments of those strips (variables) associated with that gadget and this is used
to enforce a relationship among these assignments in each gadget. The total length
of Ec can be computed by ), £, and reaches minimum if each ¢, achieves the
minimum value. Unfortunately, the values of ¢ are not independent, and an assign-
ment of a strip that makes £, minimum might not minimize £g where g # «. For
ease of evaluation, we shall introduce a “potential cost” for each strip depending
on its assignment and define cost, to be the sum of ¢, and the potential cost of all
strips associated with the gadget o. We will show that the value of E¢ is bounded
by a certain value if and only if the assignments of all strips (variables) give a mini-
mum cost, for each gadget «. Furthermore, we show that cost, achieves a minimum
value for each gadget « if and only if ¥ is satisfiable. Thus there exists a Manhat-
tan network of overall length bounded by a certain value if and only if ¥ is satisfi-
able.

As a consequence of our reduction, we prove that the MMN problem is strongly
NP-complete and there does not exist an FPTAS for this problem unless P = NP.
This also answers the first problem stated by Gudmundsson et al. [S], which has been
open for more than ten years.

This paper is structured as follows: Sect. 2 gives the basic notations and con-
cepts, followed by our reduction in Sect. 3. Section 4 is devoted to the cor-
rectness proof of the reduction. We end this paper with some open problems in
Sect. 5.

2 Preliminaries

Given p, g € R%, let R(p, q) be the smallest axis-aligned closed rectangle that con-
tains p and g. The area By (p, q) is defined as the vertical closed region bounded by

p.q,ie.,
By(p.q) :={(x,y) | min{p.x,q.x} <x <max{p.x,q.x},y € R},

and By (p, g) denotes the horizontal closed region bounded by p, g, i.e.,

Br(p.q):={(x,y) | min{p.y,q.y} <y <max{p.y,q.y}, x €R}.

Formally, for p,q € T, p.x < q.x, p.y <gq.y, we call R(p,q) a vertical strip
if there does not exist any point of T in the region By (p, q) except on the verti-
cal lines {(x,y)|x = p.x,y < p.y} and {(x, y)|x =q.x,y > q.y} (represented by
the dashed lines in Fig. 2). The length of a vertical strip R(p,q) is defined as
|p.y — q.y|, and the width of a vertical strip is defined by |p.x — g.x|. A hori-
zontal strip is defined similarly, see Fig. 2. For any strip R(p, g), we call a Man-
hattan path between p and g a strip path of R(p,q). Moreover, for each strip
we choose one Manhattan path and these paths compose a set Eg, called a strip
path collection. A strip path collection Eg is said to be nice if, for each strip
R(p, q), the strip path connecting p and g in Eg lies on dR(p, q), i.e., the boundary

of R(p, q).
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Fig. 2 The rectangle is a

|

vertical/horizontal strip R(p, q). + t
Any point in 7 within By (p, q) ! q
or By (p, q) can only be placed
on the dashed lines, e.g., point t qﬁ.tﬁr

. i

p
Pl

! By (p,9)

|
Fig. 3 For each strip, two types —e

of Manhattan paths are used to :
represent the assignment of a I
variable v. The solid line ;
segments represent v = 1, and 1 : 0 L
I
I
I
I
I

the dashed line segments
represent v =0

o——-

In our reduction, each strip is used to express an assignment of a boolean variable,
which is indicated by which side of the strip the path (network) includes. Specifically,
by definition of vertical strips, we can assume that the strip path of R(p, q) does not
contain any vertical line segment whose x-coordinate is not equal to p.x or g.x [12],
thus has only one horizontal line segment (switch segment). For a nice strip path
collection Eg, there are two ways of connecting p and g using a strip path in Eg,
which can be used to express the value of a variable v in . This nice property of
a strip path is also used to transport the value of v from one end into the other. As
shown in Fig. 3, the solid line segments represent v = 1 and the dashed line segments
for v = 0. In our reduction, we first assume that all strip paths are nice and, in Sect. 4,
we show that all the other strip paths can be reduced to the nice ones for the point set
considered in this paper.

3 Reduction
3.1 Reduction Overview

We first give a high-level overview of our reduction. The main task is to convert
any given 3-CNF formula i with n variables and m clauses into a point set 7' such
that v is satisfiable if and only if the length of an MMN G on T is bounded by a
polynomial-time computable value.

As shown in Fig. 4, each line segment, denoting one strip, is associated with a
literal (with vertical lines for vertical strips and horizontal lines for horizontal strips),
each circled node represents one of the gadgets, and each dotted-line square rep-
resents one clause in ¥. Specifically, the two adjacent vertical lines numbered by
2i —1,2i,1 <i <n, which might be segmented by SPLITTER gadgets, are used to
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Fig. 4 A schematic view of the construction. Each line segment represents a strip, and each cir-
cled node represents a gadget. On the left side of this figure, vertical strips are used to represent the
assignments of n variables in v, and on the right side of the figure, each dotted-line square, con-
sisting of five gadgets, corresponds to a clause. This graph corresponds to the input 3-CNF formula
Y= (x1V-x3 V) A(—xg Voxg Voxg)

represent two literals x; and —x;, respectively. The upper end of each vertical line is
initiated by a DUMMY gadget whereas the lower end of each vertical line is connected
to a NEGATOR gadget or a TURN gadget so as to ensure that the boolean values
represented by the connections in the network can be flipped or maintained. These
vertical line segments (strips) and their associated gadgets are placed in such a way
that they will not interfere with each other. The assignments of the variables have
to be transported, through a SPLITTER gadget, to a CLAUSE gadget. The CLAUSE
gadget is connected to three line segments, which correspond to three literals, and
has a connection of the lowest length in all assignments except one (23 — 1 assign-
ments); this corresponds to the situation that the clauses will be satisfied for all but
one of the assignments. The m dotted-line squares, each of which represents an in-
dividual clause and consists of five gadgets, are placed at the right-part of the net-
work, again without interfering with each other and with other parts of the network.
A NEGATOR gadget together with a CLAUSE gadget is to ensure that the connection
will achieve the lowest length if the clause is satisfiable. In other words, the length of
the Manhattan network on 7 will be bounded by a certain value if and only if there
is an assignment satisfying every clause. In order to construct the desired network,
the strips in our construction have two different widths—standard width 20 and nar-
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Fig. 5 The configuration of gadgets. Generally speaking, each gadget consists of two black points, two
white points and two grey ones. In the degenerated case, two grey points may coincide and the gadget has
only five points. The grey regions represent three strips

row width 10, and an ADAPTOR gadget is for connecting two strips with different
widths.

3.2 Gadget Design

Our reduction relies on six different gadgets: NEGATOR, TURN, SPLITTER,
CLAUSE, ADAPTOR, and DUMMY. The gadgets are placed in such a way that there
exists a strip, either horizontal or vertical, between two gadgets, see Fig. 4. Generally
speaking, each gadget consists of three pairs of points: a pair of black points by, by
at the opposite corners of the gadget, a pair of white points w;, wy and a pair of
grey points g1, g» which might be degenerated into one grey point, see Fig. 5. The
positions of points inside each gadget are as follows: b1.x < wi.x < g1.x < g2.X <
wa.x <by.x,br.y <wp.y<gry<gp.y<wi.y<b.y.

The two grey points are very close to the white points with distance € under the
Li-metric, € < ﬁ, where n¢ is the number of gadgets and will be determined later.
We assume that the length of the connection between wi and g, and similarly w;
and g», is very small, and they can be ignored as long as the total length of an MMN
is bounded by a certain value. In the following discussion of gadgets, the gadgets are
placed in such a way that b; of a gadget «, expressed by b¢, and b; of another gadget

B will form a strip R(bY, bzﬁ ). Note that b; will always be located at the lower left
corner of the strip and b, the upper right corner. Depending on their relative positions,
horizontal or vertical strips will be formed according to the schematic diagram of
Fig. 4. Moreover, each side of the strip will lie on the boundary of one gadget at one
end and inside the other gadget at the other end, see Fig. 6. It is always advantageous
if the strip path lies on the boundary of the strip, as such a path is inside one gadget
and will shorten the connection length within the gadget. That is the intuitive reason
(formal proof in Sect. 4) why the strip paths are always nice. Should the path cross
over to the other side of the strip in the middle, it will be on the boundary of both
gadgets, which results in larger connection length for both gadgets.

Let B be an axis-aligned bounding box enclosing all the gadgets and strips. As-
sume the four boundary edges dB of B are on the lines x = x1,x = x2,y =y,
Yy = y2, respectively (x1 < x2,y1 < y2). Initially, let 7y be the corner point set of
B, ie., Ty := {(x1, y1), (x1, 2), (x2, y1), (x2, y2)}, and let T := Tp. Then for each
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Fig. 6 The Manhattan path by
representing 1 is partially inside rTTT
the gadget @ and on the
boundary of the gadget 8 P a o 1

bt

Fig. 7 The extra points of B (z1,2)
with respect to one gadget. For
each gadget, we add eight points by
in the resultant network. Based i i
on the relative positions among | !

different gadgets we add a point L9l ge
u in the resulting network i X

(x1,91) “u (z2,91)

gadget, we add eight points on d B

(x1,b1.y), (b1.x,y1), (x2,b2.y), (b2.x, y2),
(x1, wi.y), (wy.x, y2), (x2, w2.y), (w2.x, ¥1)

to T, see Fig. 7. When there is no strip along some side of a gadget, one point of
d B will be added to T such that this point, together with by or by, is on a vertical or
horizontal line that goes along that side of the gadget without a strip. For example, in
Fig. 7, there is no strip on the right side of the gadget, therefore a point u is placed
on the bottom edge of d B with its x-coordinate same as b,.x. Similar construction
is applied for the other three sides. By adding these points, some line segments, ac-
tually in Er and represented by the solid line segments in Fig. 7, are forced to be in
any Manhattan network. Furthermore, the Manhattan network should contain paths
between w; and g1, g1 and g, w» and g3, and also between g1, g2 and b1, and sim-
ilarly between g1, g and b;. For different gadgets, wy, w», g1 and g are placed at
different locations so that different constraints for the assignments of the strips can
be enforced for obtaining an MMN.

In the following, we describe the NEGATOR gadget in detail and outline the other
gadgets. Since the distance between g; and wj, and similarly g» and wy, is very
small, we ignore this value in the following tables, and the sum of such distances for
all the gadgets will be considered when calculating the total length of a Manhattan
network.

3.3 Gadget NEGATOR

The Manhattan network in each gadget is shorter in length when the strip path runs
inside as opposed to on the boundary of the gadget. This will make the analysis
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difficult if each gadget is studied in isolation, as each strip path always runs inside one
gadget and outside on the other. For ease of analysis so that we can simply consider
the length of each gadget with respect to different assignments of the strips without
worrying about their global effects on the other gadgets, each strip is associated with
an extra potential cost which is included in the cost calculation if the strip path is
inside the gadget, i.e., v = 0 when the strip is on the left or the top of the gadget,
or v = 1 when the strip is on the right or the bottom of the gadget. Informally, the
potential cost of each strip will be added into the cost evaluation of a gadget « if and
only if the strip path is in the interior of «.

As shown in Fig. 8, the NEGATOR gadget is involved with two strips, whose con-
nection relates to the assignments of the variables v; and v;, and ¢ is the shortest
length of line segments so that for each point pair in the gadget, except (wy, g1) and
(w2, g2), there exists a Manhattan path. We would like the connection of the grey
points in this gadget to have the lowest length if the assignments of v; and v, are
different, i.e., this NEGATOR gadget will ensure that v; = —v; if the length of the
network has to be within a certain value. In the following, we consider the shortest
connections of the grey points for the four different assignments of the two variables.
The four possible connections are indicated by the dashed line segments as shown
from Figs. 9, 10, 11, 12.

Besides the cases v; = —vy which give the lowest length, the case vi = v, =0
also gives the lowest length. However, careful analysis will show that for this case,
the length of connection in other gadgets is not the lowest. An assignment of a strip
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always affects two gadgets and the same strip always lies at different sides of the two
gadgets, at the top side of one and the bottom side of the other, similarly for the left
and right sides. An assignment of O or 1 for a strip is good for one gadget, but will
be bad for the other. Thus the assignment v; = v, = 0 would be bad for the other two
gadgets, and consequently the length of the resultant network for this case would be
longer than the other two cases.

To represent this dependence, we introduce a potential cost associated with each
strip. A potential cost of 10 is added to exactly one of two gadgets adjacent to a strip
when evaluating the cost function. For example, in Fig. 6, a potential cost 10 will be
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Table 1 Cost function of

NEGATOR oty = 110 V1 v) 4 Potential Cost
0 0 100 20 120
0 1 100 10 110
1 0 100 10 110
1 1 120 0 120

added to the cost of « if we choose the Manhattan path representing 1; otherwise the
potential cost is counted when calculating the cost function of 8. Since the number
of strips, denoted by ng, is fixed for the input formula , the sum of added potential
costs 10ng will be subtracted and this way of handling the potential costs will not
affect the final length of the network.

By including this potential cost, the adjusted costs for the four cases are shown in
Table 1, where the lowest cost is achieved when v; = —wv;. Similar analysis is applied
for the other gadgets, with the total length, potential cost and adjusted cost of each
assignment listed in the tables. The correctness of all the tables was verified with
computer assistance, by enumerating all the connections of points within the gadget
and choosing the lowest one.

3.4 Other Gadgets

The SPLITTER gadget can “generate” a horizontal branch from the original vertical
strip and the generated horizontal strip has the same assignment with the original
vertical strip. In order to generate such a branch, two vertical strips as well as one
horizontal strip are located as shown in Fig. 13. The positions of the white and grey
points in the gadget guarantee that the cost function achieves minimum if and only if
all of the three strips get the same boolean value (Fig. 13, Table 2).

Since originally the assignment of each variable is represented by vertical strips,
the TURN gadget is used to change the direction of an information flow so that a
horizontal strip can represent the same assignment with the crossing vertical strip,
and costp, in the TURN gadget is obtained if and only if these two crossing strips
express the same assignment (Figs. 14 and 15, Table 3).

Three strips in a CLAUSE gadget (Fig. 16) represent three literals associated with
the clause, and through other gadgets, these strips are connected to the vertical strips
on the left representing the individual literals. The design of the CLAUSE gadget is to
make a gap in cost between the true assignments of a clause in ¥ and the false one.
In other words, costp;i has to be achieved for a CLAUSE gadget in seven out of eight
assignments of three variables (Table 4). Note that the cost function will not achieve
minimum only for the case vi =0, v, = 1, v3 = 0. Since the strip representing v,
is connected to the left vertical strip through a NEGATOR gadget, costyi, for the
CLAUSE gadget can be achieved if and only if the corresponding clause is satisfied,
i.e., as long as not all the values of the three variables are 0.

In order to achieve this goal, the width of two out of the three strips in a CLAUSE
gadget is set to 10 which is smaller than the standard width of 20. An ADAPTOR
gadget (Figs. 17 and 18, Table 5) is used to connect two strips of different widths
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Fig. 13 SPLITTER L V1o
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Table 2 Cost function of -
SPLITTER COStyin = 87 V1 v2 v3 ¢ Potential Cost
0 0 0 77 10 87
0 0 1 72 20 92
0 1 0 69 20 89
0 1 1 67 30 97
1 0 0 107 0 107
1 0 1 87 10 97
1 1 0 87 10 97
1 1 1 67 20 87
Fig. 14 TURN(a) 20 .20 | 20 |
i i \
1 o
V1 &
0 . S
O.O Y
1 Vo 0

together, and costpi, is obtained if and only if these two strips represent the same
assignment.

A DUMMY gadget (Fig. 19, Table 6) is located at the end of each vertical strip
associated with each literal.

3.5 Putting Them Together

According to Fig. 4, we combine different gadgets to form the desired network.
For instance, a SPLITTER gadget is connected to gadgets DUMMY, TURN, and
NEGATOR. So we let a DUMMY gadget and a SPLITTER gadget share a common
vertical strip, a TURN gadget and a SPLITTER gadget share a common vertical strip,
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Fig. 15 TURN(b) 1 v2
-y O.O
— 1
5 V1
Tt 20 | 20 | 2 0
) i 1
Table 3 Cost function of TURN(a) costyin = 50
V] vy L Potential Cost
0 0 40 10 50
0 1 40 20 60
1 0 60 0 60
1 1 40 10 50
Fig. 16 CLAUSE 1 U1 0
1 o
U3 2
0 o5
% v
o 4
0 g !
‘ 20 10 20 10 | 10 ‘
Table 4 Cost function of -
CLAUSE costyyi, = 90 V] v v3 14 Potential Cost
0 0 0 70 20 90
0 0 80 10 90
0 1 0 70 30 100
0 1 1 70 20 90
1 0 0 80 10 90
1 0 1 90 0 90
1 1 0 70 20 90
1 1 1 80 10 90
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Fig. 17 ADAPTOR(a) 10 | 10 | 12 20 ‘

20
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Fig. 18 ADAPTOR(b) 18 20 5 ‘
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Table 5 Cost function of -
ADAPTOR(a) cOStpin = 65 V] v l Potential Cost
0 0 55 10 65
0 1 68 0 68
1 0 47 20 67
1 1 55 10 65

whereas a horizontal strip of a SPLITTER gadget is connected to a NEGATOR gad-
get, see Fig. 20. Similar approach is applied for connecting other gadgets and obtain-
ing the point set 7'.

In addition, if a gadget « is located to the left of a gadget B in Fig. 4, then we
put all the points in « to the left of the points in 8, i.e., b .x < b’f .x. Similarly, if a
gadget « is located above a gadget § in Fig. 4, then we put all the points in o above
the points in 8, i.e., bf.y > bzﬁ.y.

As described before, we only need to consider the optimal network connection
of each gadget without worrying about the global network length. Actually we shall
prove in Sect. 4 that i is satisfiable if and only if costni, is obtained for each individ-
ual gadget, i.e., the total cost for the resulting network is bounded by a polynomial-
time computable value. In summary, we have the following results.
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Fig. 19 DuMMY

20

O’o
&
1 v, O
Table 6 Cost function of -
DUMMY COStpiy = 40 ] 4 Potential Cost
0 40 0 40
30 10 40

Lemma 1 The minimum cost value coStpip is obtained

e For any assignment of the strip in the DUMMY gadget;

e [fthe crossing strips represent different boolean values in the NEGATOR gadget;

o [fall the crossing strips represent the same boolean value in the ADAPTOR, TURN
and SPLITTER gadgets;

e For all seven of the eight assignments of the three variables on crossing strips in
the CLAUSE gadget.

4 Analysis
As shown in Fig. 4, we have the following facts.

Lemma 2 For any 3-CNF formula  with n variables and m clauses, there are m
CLAUSE gadgets, 2m ADAPTOR gadgets, (m 4+ n) TURN gadgets, (m + n) NEGA-
TOR gadgets, 3m SPLITTER gadgets, and 2n DUMMY gadgets in the resulting in-
stance of MMN.

Proof As shown in Fig. 4, each dotted-line square, consisting of one CLAUSE gadget,
two ADAPTOR gadgets, one TURN gadget and one NEGATOR gadget, represents a
clause of 1. On the left side of Fig. 4, two DUMMY gadgets, one TURN gadget and
one NEGATOR gadget are used to express the assignment of each variable. Three
SPLITTER gadgets are used with respect to three literals in each clause. U

Corollary 1 In the resulting instance reduced from  with n variables and m

clauses, the number of gadgets ng = 8m + 4n, and the number of strips ng =
10m + 3n.
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Fig. 20 The method of combining different gadgets. Two adjacent gadgets always share a common strip

Proof We divide the gadgets into three categories:

e Each DUMMY gadget is associated with one strip.

e For the gadgets ADAPTOR, TURN and NEGATOR, each gadget is associated with
two strips.

e For the CLAUSE and SPLITTER gadgets, each gadget is associated with three
strips.

Combing this fact with Lemma 2, the number of strips ng = 10m + 3n.
The number of gadgets follows from Lemma 2 directly. O

Corollary 2 For the resulting instance reduced from v with n variables and m
clauses, Y costmin = 240n + 641m.
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Proof Sum up the costpyip values for all the gadgets according to Tables 1-6. |

Recall that all the line segments connecting the points with the same x- or y-
coordinate compose a set Er. A set Eg consists of strip paths and E¢ contains the
line segments within each gadget. Now we prove that G, consisting of Ef, Eg and
E, is indeed a Manhattan network.

Define Q(p) as the kth closed quadrant originated at point p, where k = 1, 2, 3, 4.
For any point p € T\Tj (note that Tj contains the four corner points of the big rect-
angle B), let hy (p) be the pointin 7' N Qx(p)\{p} whose x-coordinate is closest to
p.x (if more than one point exists, choose the point whose y-coordinate is closest to
p.y). Similarly, we can give the definition of hz (p). Figure 21(a) shows an example
of h7(p) and hr (p). For convenience, points in Ty are excluded from the domains of
hy and h; so that h] (p) and &) (p) always exist.

The following lemma, first presented by Gudmundsson et al. [5], gave an efficient
way of verifying whether a network is a Manhattan network. For completeness, we
give a proof of this lemma for the network we consider.

Lemma 3 Given a network G, if for any point p € T\Ty, there exist a Manhattan
path connecting p and hy(p), as well as p and hz(p), k=1,2,3,4, then G is a
Manhattan network on T .

Proof Tt suffices to show that for any points p,q € T satisfying T N R(p, g)\
{p, q} =0, there exists a Manhattan path between p and g.

First, we discuss the case that p € Ty or g € Tp. Without loss of generality, assume
p = (x1, 1), see Fig. 7. Since T N R(p, ¢)\{p.,q} =¥, g & To. We have h3(q) = p
and p, g are connected by a Manhattan path.

Ifboth p & Ty and g & Ty, assume p.x < q.x, p.y < q.y and the other cases can be
proven similarly. In such a case, the path between p and A7 (p) and the path between
q and hz(q) always intersect, and as shown in Fig. 21(c), they form a Manhattan
path connecting p and ¢. Note that in the special case i} (p) and g, as well as h% (q)

and p, can coincide. O
% ¢ h{(p) Tl ? rE®)
! ° : Og
i x i
3 i) ° e q % o
| i i h8l)
| ¢ hY () 1 | - .
; LA — ! ;
} ° ! | o !
| | | [ ] i
i b hy<P) i o .o

p p P

Fig. 21 (a) An example of h’f (p) and h’f (p). (b) A Manhattan path between p and g can be obtained
zz (co)mbmmg two different Manhattan paths together. (¢) A Manhattan path connecting p and h’f (p) or
\p
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The following theorem gives the necessary and sufficient conditions for a network
G to be a Manhattan network on T even though G might not be minimum.

Theorem 1 A network G is a Manhattan network on T if and only if G satisfies the
following three properties: (1) EF C G; (2) G contains a strip path collection; and
(3) G contains a Manhattan subnetwork on the vertex set of each gadget.

Proof 1t is easy to see that a Manhattan network satisfies these three properties. So
we only need to prove that any network G satisfying these conditions is a Manhattan
network. By Lemma 3, it suffices to show that for any point p € T'\ Tp, there exists a
Manhattan path connecting p and hy (p), as well as p and hz (p).

For symmetry, we only consider the pair of points p, h{(p), as well as p, k3 (p).
If there exists a point u € T such that u.x = p.x,u.y > p.y, and there is no point
in T between p and u, then h’l‘ (p) = h; (p) =u and G contains a Manhattan path
connecting p and hj(p), as well as p and i} (p) (Property 1). We can verify that if p
is the point wy or by of a gadget, then such a point u exists. Similarly, u also exists if
p is a point in d B\ Ty but is not on the top boundary. Therefore in these cases, there
exist a Manhattan path between p and /7 (p), as well as p and i3 (p).

For the point p lying on the top boundary of d B, the top horizontal line segment
(y = y2) N 9B contains a Manhattan path connecting p and 7y (p), as well as p and
h3(p) (Property 1).

So the rest is to consider those cases when p is one of the points {by, g1, g2, w2}
in any gadget o, where there is no point u € T satisfying u.x = p.x,u.y > p.y.

If p = by of a gadget o, denoted by b}, then there exists a gadget # such that
R(b%, bb) is a vertical strip. As shown in Fig. 21(b), /¥ (p) = bk and h3(p) = wh.
Points p and h7(p) are connected by a Manhattan path in the strip path collection
(Property 2), whereas a Manhattan path between p and /7 (p) is obtained by combin-
ing the horizontal line segment between p and the left boundary point (x1, p.y) with
the vertical line segment with endpoints wz'3 and (wzl3 .x, y1) (Property 1).

For the other cases, p € {g}, g5, w5} and we know that i{ (p) = b5, h3(g}) = wf,
hy(g5) = gf, hy(wg) = g5 . Since both of A} (p) and h3(p) are in the same gadget
with p, there exists a Manhattan path connecting p and i} (p), as well as p and h3 (p)
(Property 3). g

Let L r be the overall length of Er, and Lg be the overall length of all the strips,
where the length of a horizontal (vertical) strip is the length of the horizontal (vertical)
side of the strip. From the construction described above, all of these quantities are
bounded by a polynomial in n and m.

Theorem 2 Let Q :=Lp+ Ls+ > costmin — 10ns + 1. Then v is satisfiable if and
only if there exists a Manhattan network G on T such that L(G) < Q.

Proof First of all, we prove that if i is satisfiable, then we have a Manhattan network
G on T satisfying L(G) < Q.

We know that for any two points having the same x- or y-coordinate, a horizontal
or vertical line segment must exist in any Manhattan network. So at the first step
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we add these line segments into the network, and these line segments compose the
set Er with overall length L. Secondly, according to a satisfying assignment of i,
denoted by m, we construct the nice strip path collection E. Thirdly, we add the line
segments within each gadget according to . Since for each gadget the length of line
segments used for connecting w; and g;, i € {1, 2}, is at most €, the overall length of
line segments added in the third step is at most

Z(costmin +2¢€) — 10ng = X:costmi[1 — 10ng 4+ 2¢ - ng
< Zcostmin —10ng + 1.

By definition, the potential cost of each strip is added to exactly one of its
adjacent gadgets. Thus the sum of the potential costs used in the network is
10ng, and this value is subtracted when calculating the length of the network.
By Corollaries 1 and 2, the above formula can be computed in polynomial-
time.

Next we show that L(Er U Eg) = Ly + Lg. This equation holds if the switch
segment of each strip path falls in Ef, or is shared with another strip path. How-
ever, arbitrary union of Ef, Es and Ec does not satisfy this property and we need
to modify the generated network. Without loss of generality, we consider a verti-
cal strip where the switch segment is at the bottom. Figure 22 shows all the cases
of the switch segment, and {1, { are two strip paths for the vertical and horizon-
tal strips. In Fig. 22(a), no strip goes along the bottom side of the gadget, and the
switch segment is shared with a line segment in Er, whereas in Fig. 22(b), the
switch segment of ¢; is shared with the strip path {» of another horizontal strip.
In Fig. 22(c), the switch segment of 1 (&2) is neither in Er, nor lying on the other
strip path. However, in this case we modify ¢; and let {{ be the new strip path, see
Fig. 22(d). We repeat these operations until no such strip path exists. Finally, we get
L(EFUEs)=Lr+ Lg.

From the construction of the network, the properties of Theorem 1 are satisfied.
Thus the resulting network is a Manhattan network, and the overall length is not
greater than Ly + L + ) costmin — 10ng + 1 = Q.

On the other hand, we prove that if ¥ is unsatisfiable, then any network G on T
must have L(G) > Q. By Theorem 1, G has a strip path collection Eg. Let E¢ :=
G\(EF U Eg). Then we modify the strip paths in Eg. As shown in Fig. 23, for a strip
path in Eg switching in the middle, we replace it by a strip path which lies on the

G G1 G G
J J OO G e G
.................. G2 g

(@) (b) (© (d)

Fig. 22 Modifications on the nice strip path collection. The solid line segments represent the strip path
{1 or {l’ . The dotted line segments represent the strip path ¢,. The dashed line segment represents a line
segment in Ep

@ Springer



720 Discrete Comput Geom (2011) 45: 701-722

Fig. 23 The replacement of strip paths. The strip path which does not switch in the upper gadget is
replaced by the path representing the assignment 0. Otherwise such a strip path is replaced by the path
representing the assignment 1

Fig. 24 After modifying a Manhattan path ¢, only the paths connecting b1 will be affected, e.g., the path
between by and t. However, a path ¢’ is used so that these connections are actually preserved

boundary of the strip. If the strip path does not switch in the upper gadget, we replace
it by the path representing value 0. Otherwise such a strip path is replaced by the path
representing 1.

It can be observed that our way of replacing a strip path ¢ by a new path
¢’ changes the local connection of a gadget only when the switch segment of ¢
lies in this gadget. Consider such a strip path { whose switch segment is in a
gadget. Without loss of generality, we assume the strip is vertical and the gad-
get is at its lower end, as shown in Fig. 24. Notice that the only Manhattan paths
within the gadget that may be affected are those connected to b;. For these con-
nections, the path ¢’ is used instead to compose new Manhattan paths. So Prop-
erty (3) in Theorem 1 is maintained when performing the replacement opera-
tions.

After these operations, we have a nice strip path collection and let 7 be the corre-
sponding assignment. Again we use the same method, as described before, to make
sure that the switch segment of each strip path falls in Er, or is shared with another
strip path. This process maintains Property (3). Let the resulting strip path collection
be E. We have L(EF UES) =Lp + Ls.

Let the network G' := Er U E U Ec. By the method of modifying Eg, G’ sat-
isfies Property (3). Properties (1) and (2) also hold since G consists of Er and Eg
Therefore, G’ is a Manhattan network, and

L(G) = L(Er U EsU E¢)
=L(EFUEg)+ L(Ec)
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>Lr+Ls+ L(Ec)
> L(G").

So the rest is to prove L(G') > Q. Let E.. = G'\(Ef U E}). Since ¥ is unsatis-
fiable, for at least one gadget the value of cost function exceeds costpyin by at least 2
under any assignment. Thus L(E.) > )" costyin — 10ng 4+ 2. As a consequence, we
have

L(G")=L(EFUE) + L(E)
>Lp+Ls+ ) costyin — 10n5+2
> Q.
Therefore, L(G) > L(G') > Q. d

Combining Theorem 2 and the fact that 3-SAT is NP-complete, we obtain the
main result of this paper.

Theorem 3 The minimum Manhattan network problem is strongly NP-complete, and
there does not exist an FPTAS for this problem unless P = NP.

Proof We have presented a polynomial-time reduction from the 3-SAT problem.
Since all numerical parameters used are bounded by a polynomial in n and m, the
MMN problem is strongly NP-hard. Now we show that it is in NP. By [12], there
exists a minimum Manhattan network in the Hanan grid of 7 which contains a poly-
nomial number of edges. Let the network, denoted by G, be a certificate and it can be
verified in polynomial-time by computing L(G) and comparing L(G) with a given
bound of the network’s length. O

5 Open Problems

Several interesting problems remain open. First of all, it is not known whether a
PTAS exists for this problem. Mufioz et al. [9] gave an in-approximation factor in
three dimensions. However, both our reduction presented in this paper and the NP-
completeness proof of the MMN problem in three dimensions [9] cannot be applied
directly to obtain an in-approximation ratio of the MMN problem in two dimensions.

Another interesting problem is to design approximation algorithms for the MMN
problem in higher dimensions. Gudmundsson et al. [4] showed that for any n points
in R, there is a Manhattan network that consists of only O(n logd’1 n) vertices
and edges. Mufoz et al. [9] generalized the notion of critical rectangles and gave
the definition of critical cuboids. Even though some preliminary attempts have been
shown in these papers, it is unknown how to design constant-factor approximation
algorithms in three dimensions.
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