
Online OVSF Code Assignment with Resource
Augmentation

Francis Y. L. Chin1,�, Yong Zhang1, and Hong Zhu2,��

1 Department of Computer Science, The University of Hong Kong, Hong Kong
{chin,yzhang}@cs.hku.hk

2 Institute of Theoretical Computing, East China Normal University, China
hzhu@sei.ecnu.edu.cn

Abstract. Orthogonal Variable Spreading Factor (OVSF) code assign-
ment is a fundamental problem in Wideband Code-Division Multiple-
Access (W-CDMA) systems, which play an important role in third
generation mobile communications. In the OVSF problem, codes must
be assigned to incoming code requests, with different data rate require-
ments, in such a way that they are mutually orthogonal with respect to
an OVSF code tree. An OVSF code tree is a complete binary tree in
which each node represents a code associated with the combined band-
widths of its two children. To be mutually orthogonal, each leaf-to-root
path must contain at most one assigned code. In this paper, we focus on
the online version of the OVSF code assignment problem, in the often-
studied context of the single cell as well as in the more general context of
the whole multi-cell cellular network (for which there are no known re-
sults). With the help of 1/8 and 11/8 extra bandwidth resources, we are
able to give a 5-competitive algorithm in the single cell and the multi-
cell context respectively, which means that the competitive ratio is a
constant and not a function of the height of the OVSF tree and thereby
improving upon past results.

1 Introduction

Wideband Code-Division Multiple-Access (W-CDMA) technology is one of the
main technologies widely-developed in recent years for the implementation of
third-generation (3G) cellular systems. We consider the well-studied problem of
Orthogonal Variable Spreading Factor (OVSF) code assignment in W-CDMA
systems [5,6,9,10,12].

OVSF is an implementation of CDMA wherein, before each signal is trans-
mitted, the spectrum is spread according to a unique code, which is derived from
an OVSF code tree. An OVSF code tree is a complete binary tree. Users have
requests for different data rates, and we accommodate these different requests by
assigning codes at different levels of the OVSF code tree, with the root being at
� This research was supported in part by Hong Kong RGC Grant HKU-7113/07E.

�� This research was supported in part by National Natural Science Fund (grant no.
60496321).

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 191–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

192 F.Y.L. Chin, Y. Zhang, and H. Zhu

the highest level and representing the entire bandwidth of the wireless system.
The code at any node other than the root denotes the bandwidth half that of
its parent in the tree. In any legal assignment in the code tree, no two assigned
codes lie on a single path from the root to a leaf, i.e., any two assigned codes are
mutually orthogonal. The subset of nodes in the code tree, which forms a legal
assignment, is called a code assignment (CA). A node x is said to be free if there
are no assigned nodes in every root-to-leaf path containing x, and thus making
x an assigned node would still result in a legal assignment. For convenience, we
use the words “code” and “node” interchangeably. Fig. 1 is an example of an
OVSF code tree with the code assignment represented by the darkened nodes
marked as c, d, e, g and i.

level 1

level 2

level 3

level 4

level 5

a

b

c

d

e f

g h

i

Fig. 1. An example of OVSF code tree, solid circles are the assigned codes

To illustrate the essence of the OVSF code assignment problem, consider the
configuration shown in Fig. 1. Let Req(x) denote the request to which code x
is assigned, and let reassign x to y denote the reassignment of Req(x) to code
y and the freeing of code x (i.e. making x a free code). Suppose a level-2 code
request arrives followed by a level-3 code request. If we assigned code b to the
first request, we would have to make two code reassignments before we can assign
code a to the second request, e.g. reassign b to h (and thereby freeing b) and
reassign c to f (freeing c and consequently a). If, on the other hand, h were
assigned to the first request, only one reassignment would be needed to satisfy
the second request, i.e. reassign c to f (freeing c and consequently a), and then
assign code a to the second request.

Since each reassignment requires processing overhead and may affect the qual-
ity of communications, a natural goal would be to minimize the number of re-
assignments. Note that this problem will not be too difficult and can be solved
optimally by a greedy strategy if codes were never released. However, when codes
can be released, the code tree can be fragmented so that many reassignments
might be needed if a good assignment algorithm were not used.

In general, the algorithm for OVSF code assignment is expected to handle a se-
quence σ = (C1, C2, . . . , Ck, . . .) of code operations over time, each operation Ck

being either to request a code at a particular level or to release an assigned code.
Note that, if the total bandwidth of any set of mutually orthogonal free codes is
less than the bandwidth required by a code request, the new code request cannot
be satisfied. In this paper, without loss of generality, we assume that all requests
in σ can be satisfied (since we can easily check whether a new code request can
be satisfied), and after each request is satisfied, a legal assignment results.

Online OVSF Code Assignment with Resource Augmentation 193

The OVSF code assignment problem is hard, and the approach has often been
to produce heuristics, whose performance is measured by the approximation
(or competitive) ratio, which compares the cost of the algorithm to the cost
of optimal off-line scheme where cost is the total number of assignments or
reassignments done by the algorithm.

The problem has been studied extensively in recent years, and we have the
off-line and online versions of this problem.

– Off-line CA Problem
Given a sequence σ of code operations, find a sequence of code assignments
such that the total number of reassignments is minimum, assuming the ini-
tial code tree is empty. This problem was proved to be NP-hard by Marco
Tomamichel [11], who also gave an exponential-time algorithm to solve it.

– Online CA Problem
The operations in the sequence σ arrive through time. At any time t > 0, we
only know about the operations until t and have no information about any
future operation Ct′ with t′ > t. The problem is to find a sequence of code as-
signments such that the total number of reassignments is minimum. Erlebach
et al [5] gave an O(h)-competitive algorithm for this problem, where h is the
height of the OVSF code tree. They also proved that the lower bound on
the competitive ratio of this problem is 1.5. With resource augmentation [7],
which means the online algorithm is allowed to use more bandwidth than
the optimal scheme, a 4-competitive algorithm with a double-bandwidth
code tree was given in [5] .

In this paper, we focus on the Online CA Problem. In Section 2, for the
single-cell context, we give a new constant-competitive algorithm, using less
extra bandwidth (less resource augmentation) to improve upon previous results.
As far as we know, the Online CA Problem for multi-cell cellular networks has
not been studied. In Section 3, we apply the techniques used in Section 2 in
the context of the whole multi-cell cellular network to give a new constant-
competitive algorithm.

2 Code Assignment in a Single Cell

Our online algorithm, Online-CA-Cell, makes use of extra resource in the form
of an additional, albeit smaller, OVSF tree. Therefore, we talk about code as-
signments in the main OVSF tree and in a separate extra OVSF tree.

There are two properties that Online-CA-Cell seeks to maintain: (a) for any
set of mutually orthogonal free codes in the main tree, there is at most one free
code at each level; and (b) at each level of the extra tree, there is at most one
assigned code. Fig. 2(a) shows an example of a main tree that have assigned
codes, which are sorted and compacted. “Sorted” means that assigned codes are
in non-decreasing order in terms of level (from left to right); and “compacted”
means that, at each level, there is at most one free code. Fig. 2(b) gives an

194 F.Y.L. Chin, Y. Zhang, and H. Zhu

(a) Main tree (b) Extra tree

Fig. 2. Structure with assigned codes (shown as solid circles)

example of an extra tree. Online-CA-Cell is comprised of the method for handling
each code request and the method for handling each code release.

When a level-i code request arrives, Online-CA-Cell first tries to satisfy the
request in the main tree. Note that, we need only to consider assignment or
reassignment at level i or higher in the main tree, since the total bandwidth of
any set of mutually orthogonal free codes at lower levels is not large enough to
satisfy a request for level i (because there is at most one free code at every level).
If there is no free code at level i in the main tree, Online-CA-Cell will then try
to satisfy the request by assigning a code from the extra tree, and if the extra
tree already contains an assigned code at level i, Online-CA-Cell will reassign
the leftmost assigned code at the lowest level j > i in the main tree so as to free
its offsprings in the main tree in order to accommodate the new request and the
request of the assigned level-i code in the extra tree. The pseudo-code for code
request is as follows:

Code-Request(R,i)——allocate a free code to satisfy the request R of level i

if the main tree has a free code at level i then
Assign that free code to R.

else if the extra tree contains no assigned node at level i then
Assign the rightmost free code at level i in the extra tree to R.

else
Let w be the leftmost assigned code at lowest level j > i in the main tree.
Apply Code-Request(Req(w),j) so as to free up w and its offspring codes.
Assign the leftmost free code of level i in the main tree to R.
For those assigned codes in the extra tree from level i to level j − 1

(if they exist) reassign them to the main tree.
end if

When a level-i code release of code x arrives, Online-CA-Cell might have to
reassign the rightmost assigned code y at level i to x in order to maintain the
compactness of the tree. The freeing up of y, however, could mean that there
would be more than one free node at level i. So, part of the algorithm is to fix
this up. The pseudo-code for code release is as follows:

Code-Release(x,i)——release code x at level i

Let y be the rightmost assigned code at level i (in either main or extra tree).
if x = y then Free x
else Reassign y to x, freeing up y.

Online OVSF Code Assignment with Resource Augmentation 195

end if
if there are two free codes at level i of the main tree, they must be children of
z then Apply Code-Release(z,i + 1)
end if

Let the amortized cost of each code request be 3 credits and each code release
be 2 credits because a code assignment/reassignment costs 1 credit, while freeing
a code costs 0. Next, we will define the potential function f (Fig. 3). We shall
show that the amortized cost of a code request or a code release can pay for the
assignment/reassignment costs and the change of potentials.

The intuition behind the definition of potential function f is the following.
The seven different cases shown in Fig. 3 exhaust all possible configurations of
the assigned codes at level i. Configurations C2, C5 and C7, which have 0, 1 and
more than one assigned codes in the main tree, respectively, have an assigned
code in the extra tree and have a potential value of 2 credits to compensate for
the reassignment cost of bringing the assigned code in the extra tree back to the
main tree if needed. Their corresponding configurations without assigned codes
in the extra tree (i.e. C1, C4 and C6) do not carry any potential credits. The
remaining configuration C3, which is the only configuration having an assigned
code and a free code in the main tree (thus no assigned code in the extra tree), is
associated with 1 potential credit to compensate for the cost of the reassignment
of the rightmost code upon any code release at this level or lower levels.

Lemma 1. Assume each code request is associated with 3 credits. The number
of credits at each level of the main and extra tree, as defined by the potential
function f as given in Fig. 3, will be maintained after each code request as
described in Online-CA-Cell.

Proof. According to Code-Request(R,i), when a request R arrives at level i:

if the main tree has a free code at level i: This configuration may be C1
or C3, whose potential value is 0 or 1. Note that C1 can have one or no
free codes. After the assignment, the configuration is changed to C4 or C6
and the remaining number of credits is either 2 or 3 (code request cost +
configuration potential − assignment cost), which is larger than the po-
tential values of C4 and C6.

else if the extra tree contains no assigned code at level i: This configu-
ration may be C1, C4 or C6, whose potential value is 0. After the assignment,
the configuration is changed to C2, C5 or C7 whose potential value is 2. Thus,
the amortized cost of the code request can cover exactly the assignment cost
and change of potential.

else (There is an assigned code in the extra tree.) The configuration may be C2,
C5 or C7 with potential value 2. After the assignment and Code-Request(Req
(w),j), the configuration is changed to C6 with potential value 0. Since
we have to do two assignment/reassignments in this level, 3 credits will
be left behind to cover the reassignment costs at higher levels, i.e. Code-
Request(Req(w),j). Note that, for those levels between i and j − 1 whose

196 F.Y.L. Chin, Y. Zhang, and H. Zhu

0 creditlevel i

level i

level i

level i

level i

extra tree

level i

level i

1 credit

0 credit

0 credit

2 credits

2 credits

2 credits

the rightmost assigned

codes of level i in the main tree

C1

C2

C3

C4

C5

C6

C7

potential
function f

Fig. 3. Potential function of each level of the code tree, solid circle denotes an assigned
code, empty circle denotes a free code, gray circle may or may not be an assigned code

assigned codes are reassigned to the main tree, the reassignment costs can
be covered by the change of potential. ��

Lemma 2. Assume each code release is associated with 2 credits. The number of
credits at each level of the main and extra tree as defined by the potential function
f as given in Fig. 3 will be maintained after each code release as described in
Online-CA-Cell.

Proof. According to Code-Release(x, i), when a code x of level i is released:

Reassign y to x where y is the rightmost assigned code at level i:This
costs one credit if y �= x exists.

After the assignment, the configuration cannot be C2, C5 nor C7.
If there is at most one free code at level i of the main tree: The con-

figuration must be C1, C4, C3 or C6 derived respectively from C4, C5, C6 or
C7. We can easily check that the 2 credits associated with the code release
operation can cover one reassignment cost and the increase of potential value
of C3 (no increase of potential value for C1, C4 and C6).

If there are two free codes at level i of the main tree: After Code-Rele-
ase(z,i + 1), the final configuration may be C1, C4 or C6 with potential
value 0, respectively derived from the initial configuration C4, (C3 or C5), or

Online OVSF Code Assignment with Resource Augmentation 197

(C3 or C7). Since the code release operation has 2 credits and freeing a code
costs nothing, the remaining credits in level i is at least 2 (from the change
of potential), which can cover the reassignments at level i + 1, i.e. Code-
Release(z, i + 1). ��

Theorem 1. Given a code tree T and extra tree T ′, which contains half the
bandwidth of T , Algorithm Online-CA-Cell is 5-competitive.

Proof. Since the extra tree can contain at most one code at all levels from 1
to h − 2, the total bandwidth of the extra tree is at most half of T . Note that
an extra code at level h − 1 is not possible because that would imply the total
bandwidth of all assigned codes is larger than the bandwidth of T .

Suppose there are m1 code requests and m2 code releases in the sequence.
From Lemmas 1 and 2, we can see that, at any step, the credit of each level is
at least 0. Thus, the total cost of Online-CA-Cell is at most 3m1 + 2m2 ≤ 5m1
since the number of releases is at most the number of requests. The optimal cost
is at least m1, and so, the competitive ratio of Online-CA-Cell is at most 5. ��

With the observation that the algorithm is k-competitive without any extra
resource if each code request/release involves only a fixed number k of levels, we
have a new 5-competitive algorithm with a extra code tree of 1/8 full bandwidth.
We partition the main code tree into a lower part and an upper part. The lower
part contains all the assigned codes from level 1 to h − 4 and its configuration
is similar to the main tree and extra tree as described before. The extra tree
contains codes from levels 1 to h− 4, and thus, the total bandwidth of the extra
tree is 1/8 of the code tree. The upper part contains the assigned codes from
level h−3 to h−1 which are sorted and compacted. Between the lower part and
upper part, there is no free code of level h−3. The potential of configurations at
level i (1 ≤ i ≤ h−4) is the same as the potential function defined in Fig. 3, and
each code request and code release is associated with 3 and 2 credits respectively.
The algorithm for code request/release is the same as before for levels 1 to h− 4
and keeps the assigned codes sorted and compacted for levels h − 3 to h − 1.

When a code request (or release) arrives at level i (1 ≤ i ≤ h − 4), if the
algorithm does not affect upper level h − 3, we can say the competitive ratio
in this case is at most 5; otherwise, the algorithm in the lower part will give 3
(2 for release) credits to the upper part, which is enough to cover the cost of
reassignments in the three levels from h − 3 to h − 1 (in the case of release, the
two levels h − 3 and h − 2 since reassignment at level h − 1 is not possible). So,
we can also say that the competitive ratio in this case is at most 5.

When a code request or release happens at level i (h − 3 ≤ i ≤ h), since the
process does not affect the lower part, the competitive ratio in this case is at
most 3. Thus, we have the following result.

Theorem 2. Given a code tree T and extra tree T ′ which contains 1/8 the
bandwidth of T , we can have a 5-competitive algorithm.

198 F.Y.L. Chin, Y. Zhang, and H. Zhu

3 Code Assignment in Cellular Networks

The geographic area of a mobile communications network is usually divided into
many small cellular regions and call requests may be made at any cell. The code
assignment in a single cell can be considered as a special case of code assignment
in multi-cell cellular networks. In this section, we study the online OVSF code
assignment problem in multi-cell cellular networks.

In cellular networks, each cell contains a base station, which communicates
with other base stations via a high-speed wired network. Communications be-
tween any two users (even within the same cell) must be established through
base stations. When a call request arrives, the nearest base station must assign
a code, whose bandwidth matches with the bandwidth of the call request and
which is orthogonal to all the assigned codes in the OVSF code tree of its own
cell and its neighboring cells in order to avoid interference.

Communications in cellular networks have been widely studied [1,2,3,4,8], but
mainly focus on Frequency Division Multiplexing (FDM) networks, which are
the backbone for 1G/2G wireless communications. This is the first study on
OVSF code assignment in cellular network. We will give a constant-competitive
algorithm for OVSF code assignment in cellular networks with resource augmen-
tation [6].

The cellular network can be 3-colored with {R, G, B} so that each cell has one
color and neighboring cells have different colors. Each cell with a different color
can use a different code tree for handling code requests and releases initiated at
that cell. In order to achieve a constant-competitive ratio, a total of six code trees
with full bandwidth will be needed using the resource augmentation approach
given in [5], whereas 3.375 code trees with full bandwidth would be sufficient
using the approach in Section 2. However, we will introduce here an algorithm
with a competitive ratio of 5 that uses only 19/8 = 2.375 code trees of full
bandwidth. Fig. 4 depicts three code trees T1 , T2 and T3, with the heights of T1

T2T1

TR TG TB TS

level h − 1

level h − 2

T3

Tr Tg Tb

level h − 3

Fig. 4. Three code tree used by Online-CA-Network

and T2 being h and the height of T3 being h − 2. The off-line optimal algorithm
uses only one code tree with height h. Let the left and right subtree of T1 be
TR and TG, and those of T2 be TB and TS, and let the three equal-bandwidth
subtrees with height h − 4 of T3 be Tr, Tg and Tb.

The cell with color X will use TX as its main tree and Tx as its extra tree.
TS will be shared by all cells. We will show in Theorem 3 that conflicts from
different cells can never occur.

Online OVSF Code Assignment with Resource Augmentation 199

Online algorithm Online-CA-Network can be described as follows:

– For cells colored X (X ∈ {R, G, B}), perform Online-CA-Cell on TX and Tx

as the main and extra trees for all call operations in the cell colored X . In
case the bandwidth of TX is not enough, use TS and Tx for those calls that
cannot be accommodated by TX .

– When a code request asks for the bandwidth of the whole code tree, assign
the root of T1, since there will be no other assigned code in this cell and its
neighboring cells.

Theorem 3. Online-CA-Network is a 5-competitive algorithm for the online
OVSF code assignment problem with augmentation ratio of 19/8.

Proof. As all neighboring cells use different code trees, there will be no interfer-
ence as long as all the assigned codes in each cell are mutually orthogonal. Since
Online-CA-Cell is applied to handle code operations in each cell, orthogonal
assigned codes are ensured if Online-CA-Cell works properly with TX and TS ,
which is trivially true if TS is not used by any other cells. Suppose TS contains
codes at level l assigned to call requests from a cell X . The total bandwidth of
these codes must be greater than the total bandwidth of the free codes in TX

(the main tree is “sorted” and “compacted”). Since the bandwidth of TX is B/2,
assuming that the total bandwidth of the code tree is B, the total bandwidth of
the assigned codes in the cell X is greater than B/2. Since the off-line optimal
algorithm uses only one code tree, the total bandwidth of neighboring cells is
no more than B. So the total bandwidth in each cell neighboring with X must
be strictly less than B/2. Therefore, we can ensure that TS is used by at most
one cell at any time, which means that the assigned codes in the main trees in
cellular network do not affect each other.

As for each extra tree in T3, the bandwidth is 1/8 of T1 (TX and TS), i.e.,
B/8. From Section 2, we know this is sufficient to handle all the extra codes, and
the three subtrees of T3 in the whole cellular network do not affect each other.

Since the analysis and code operations are similar to that in Online-CA-Cell,
the competitive ratio of Online-CA-Network in the cellular network should be
the same as the competitive ratio of Online-CA-Cell, which is 5-competitive. ��

The following result applies in the special case where all code requests are at the
same level.

Theorem 4. There exists a 2-competitive algorithm with augmentation ratio of
2 that solves the code assignment problem when all requests are at the same level.

Proof. We use two code trees T1 and T2. Similar to Fig. 4, let the two subtrees
of T1 be TR and TG, and let those of T2 be TB and TS. Since all the requested
bandwidth are the same, the extra trees as given in T3 may not be needed.

Suppose there are m1 code requests and m2 code releases in a given sequence
of code operations. Since each code request has 1 credit to pay for the assignment,
and each code release has 1 credit to pay for the reassignment of the rightmost
assigned code, the cost of our scheme is at most m1 + m2 ≤ 2m1 since the

200 F.Y.L. Chin, Y. Zhang, and H. Zhu

number of releases is no more than the number of requests. Note that the cost of
the optimal off-line algorithm is at least m1, and so we can say that our scheme
is 2-competitive. ��

Acknowledgements. The authors thank Dr. Bethany M. Y. Chan for her efforts
in making this paper more readable.

References

1. W. T. Chan, F. Y. L. Chin, D. Ye, Y. Zhang and H. Zhu. Frequency Allocation
Problem for Linear Cellular Networks. In Proc. of the 17th Annual International
Symposium on Algorithms and Computation (ISAAC 2006), LNCS 4288, 61-70.

2. W. T. Chan, F. Y. L. Chin, D. Ye, Y. Zhang and H. Zhu. Greedy Online Frequency
Allocation in Cellular Networks. Information Processing Letters, 102(2007), 55-61.

3. W. T. Chan, F. Y. L. Chin, D. Ye and Y. Zhang. Online Frequency Allocation in
Cellular Networks. To appear in Proc. of the 19th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’07).

4. I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Efficient on-line frequency
allocation and call control in cellular networks. Theory Comput. Syst., 35(5):521–
543, 2002. A preliminary version of the paper appeared in SPAA 2000.

5. T. Erlebach, R. Jacob, M. Mihalak, M. Nunkesser, G. Szabo and P. Widmayer.
An algorithmic view on OVSF code assignment. In proc. of 21th Symposium on
Theoretical Aspects of Computer Science (STACS 2004), LNCS 2996, pp. 270-281.

6. Xiang-Yang Li and Peng-Jun Wan. Theoretically Good Distributed CDMA/OVSF
Code Assignment for Wireless Ad Hoc Networks. In Proc. the 11th Annual Inter-
national Conference of Computing and Combinatorics (COCOON05), pp. 126-135.

7. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In
Proceedings of the 36th IEEE Symposium on Foundations of Computer Science,
pages 214-221, 1995.

8. C. McDiarmid and B. A. Reed. Channel assignment and weighted coloring. Net-
works, 36(2):114-117, 2000.

9. T. Minn and K. Y. Siu. Dynamic assignment of orthogonal variable-spreadingfactor
codes in W-CDMA. IEEE Journal on Selected Areas in Communications,
18(8):1429-1440, 2000.

10. Angelos N. Rouskas, Dimitrios N. Skoutas. OVSF codes assignemnt and reassign-
ment at the forward link OFW-CDMA 3G systems. In Proc. of the 13 th IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications,
2002.

11. Marco Tomamichel. Algorithmische Aspekte von OVSF Code Assignment mit
Schwerpunkt auf Offline Code Assignment. menuscript.

12. Peng-Jun Wan, Xiang-Yang Li and Ophir Frieder. OVSF-CDMA Code Assignment
in Wireless Ad Hoc Networks. In Proc. of DIAL M-POMC 2004 joint workshop
on Foundations of mobile computing, pp. 92-101, 2004.

	Introduction
	Code Assignment in a Single Cell
	Code Assignment in Cellular Networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

