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We introduce a new motif-discovery algorithm, DIMDom, which exploits two additional 

kinds of information not commonly exploited: (a) the characteristic pattern of binding 

site classes, where class is determined based on biological information about 

transcription factor domains and (b) posterior probabilities of these classes. We 

compared the performance of DIMDom with MEME on all the transcription factors of 

Drosophila with at least one known binding site in the TRANSFAC database and found 

that DOMDom can outperform MEME with 2.5 times the number of successes and 1.5 

times in the accuracy in finding binding sties and motifs. 

1. Introduction 

One important problem in bioinformatics is understanding how genes cooperate 

to perform functions. Related to this is the subproblem of discovering motifs. 

The context behind the motif discovering problem is the following. Gene 

expression is the process whereby a gene is decoded to form an mRNA sequence 

which is then used to produce the corresponding protein sequence. In order to 

start the gene expression process, a molecule called a transcription factor will 

bind to a short substring, which we call a binding site, in the promoter region of 

the gene. A transcription factor can bind to several binding sites in the promoter 

regions of different genes to make these genes co-express, and such binding sites 

should have common patterns. The motif discovering problem is to discover the 

common patterns, or motifs, from a set of promoter regions without knowing the 

positions of the binding sites. However, many motifs in real biological data 

cannot be discovered by existing algorithms because the 3D structures of many 

transcription factors are still unknown and the existing models [3, 8, 12, 13, 20] 

that represent motifs might not be able to capture the different pattern variations 

of the binding sites. 

PSSM (Position Specific Scoring Matrix) [2, 4, 6, 7, 10, 11, 14] is the most 

common motif representation. It uses a 4 × l matrix of real numbers to represent 

a length-l motif. The j-th column of 4 numbers gives us the probability, 
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respectively, that symbol ‘A’, ‘C’, ‘G’ or ‘T’ occupies the j-th position of the 

motif. The goal is to discover the optimal motif matrix which maximizes the 

likelihood of the input sequences being generated according to the matrix.  

Existing algorithms assume the prior probability of each matrix being 

chosen to generate the input sequences is the same. However, this assumption is 

not correct in real biological data. Transcription factors mainly bind to the 

binding sites by substructures called active binding domains (in short, domain), 

e.g. zinc finger [23], leucine zipper [16] and homeodomain [19]. Although the 

binding sites of transcription factors with the same domain do not necessarily 

have the same patterns, they should share some common characteristics [18]. For 

example, binding sites of zinc finger usually contain the nucleotide ‘G’ regularly 

and binding sites of homeodomain usually contain the “TAAT” substring. If we 

know which domains of the transcription factors contact the binding sites, we 

can improve the accuracy of existing motif discovering algorithms by adding 

constraints on the motifs [5, 15, 21, 24]. For some motif classes, it might be 

possible to find the motif by considering only substrings in the DNA sequences 

with certain characteristics as candidates for binding sites [17]. However, we 

usually do not know which transcription factors or, more specifically, which 

domains of the transcription factors contact the binding sites. The approach of 

searching for substrings with characteristics of each possible motif class is not 

only time-consuming, but may even fail to find the hidden motif because of the 

following two weaknesses of this approach. Firstly, the number of wrongly 

predicted binding sites by this method might be large, e.g. many substrings in the 

input sequences with pattern [CG] . . [CG] . . [CG] are not binding sites of a 

motif in Class I (to be introduced in Section 2). Secondly, some binding sites of 

a motif in a particular class may not have the corresponding characteristics 

exactly, e.g. a binding site of motif in Class IV may contain the pattern 

TGA.*TGA instead of TGA.*TCA. A natural question is: Can we improve the 

performance of motif discovering problem by knowing only the characteristics of 

each possible motif class? 

Narlikar et al. [17] trained 3847 binding sites in the TRANSFAC database 

and defined 3 motif classifiers using 1387 features. Each motif classifier can 

represent the common features for binding sites in the corresponding motif class 

precisely. However, the definition of the motif classifiers highly depends on a 

large set of training binding sites and may not capiture the real common features 

of binding sites in the motif class. In this paper, we model the common features 

of different motif classes based on biological knowledge instead of training data 

and only incorporate their prior probabilities to formulate the posterior 

probability of a particular matrix being chosen to generate the input sequences 

(Section 2). Our algorithm DIMDom (Section 3), which stands for DIscovering 



 3 

Motifs with DOMain knowledge, discovers motifs by an EM approach: the 

expectation step finds over-represented patterns in the DNA sequence, while the 

maximization step, based on the motif matrix with the maximum log likelihood, 

guesses the class of the binding site patterns according to posterior probabilities 

and then modifies the motif matrix according to the class guessed. Besides 

getting more accurate motifs, the binding sites with domain knowledge can 

converge to the real solution (motif) more quickly as shown in the experiments 

(Section 4) on real biological data when compared with the popular algorithm 

MEME. 

2. Our Model 

The input sequences can be broken up into length-l (overlapping) substrings X = 

{X1, X2, … , Xw} and each substring in X either belongs to a background (non-

motif) substring with a prior probability λb or belongs to an instance of the 

hidden motif M with a prior probability 1 – λb. In particular, Z = (Z1, Z2, … , Zw) 

is the missing data that determines whether Xi is generated according to the 

background probability B (Zi = 1) or the hidden matrix M (Zi = 0). The 

likelihood of some particular B, M, λb being the hidden parameters of the finite 

mixture model [2] is defined as  
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The goal of many existing algorithms [2, 4, 10] is to discover the B, M, λb with 

the maximum likelihood (or log likelihood). 

Transcription factors are protein sequences with different three dimensional 

structures. They have different substructures, or domains, for recognizing and 

binding to specific binding sites. The binding affinity of a transcription factor 

depends on whether the binding sites have certain DNA patterns match with the 

domains of the transcription factor. For example, basic helix-loop-helix proteins 

usually bind to strings with the pattern “CA . . TG” [1]. Other examples can be 

found in [16, 19, 23, 25]. 

Narlikar and Hartemink [18] analyzed 3847 published binding sites and 

found that the binding sites can be classified into six groups with different 

occurrence counts represents the prior probabilities as shown in Table 1. For 

example, the probability Pm(2) that the hidden matrix is in Class II (Cys4) is 

approximately 734/3847. Based on this observation, we introduce the Bayesian 

Mixture Model to describe these uneven probabilities. 
 



 4 

Table 1. The six classes of binding sites patterns. 

Class name Characteristics Count 

I. Cys2His2 (zinc-coordinating) G . . G  | G . . G . . G | [CG] . . [CG] . . [CG] 776 

II.  Cys4 (zinc-coordinating) AGGTCA | TGACCT 734 

III.  bHLH (basic domain) CA . . TG 182 

IV. bZip (basic domain) TGA .* TCA 1353 

V. Forkhead (helix-turn-helix) no characteristics 281 

VI. Homeodomain (helix-turn-helix) TAAT | ATTA 621 

 Total 3847 

“ . ” means any nucleotide. “ .* ” means zero or more nucleotides. “ [ ] ” means one of the nucleotides in the bracket. “ | ” means or. 

2.1. Bayesian Mixture Model 

Each substring in X is assumed either generated according to a background 

probability B = (b(A), b(C), b(G), b(T)) or a hidden matrix M, however, the 

prior probabilities of each matrix being the hidden matrix are not the same. A 

motif class g, g = 1, … , 6 is randomly chosen according to probability 

distribution Pm = {Pm(g)} where 1)(6
1 =∑ =g m gP . Once a motif class is chosen, a 

probability matrix is picked, with equal probability, from the chosen class as the 

hidden matrix. The goal of the motif discovering problem is to discover motif M 

and other parameters with maximum likelihood with respect to the given X and 

Pm. 

Given the joint distribution of the substring X, the missing data Z, the hidden 

motif M and the motif class g, the likelihood of some particular B, λb, Pm being 

the hidden parameters of the Bayesian mixture model is defined as 
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Therefore, the likelihood L(B, λb, Pm | X, Z, M, g) is equal to L(B, M, λb | X, Z) 

times the term P(M | g)Pm(g) which is the probability of class g being chosen and 

matrix M being picked from class g.  

2.2. Characteristics of the Motif Classes 

Each motif class can be characterized by a regular expression as shown in Table 

1. A matrix for a particular motif class should contain a 4 × l’ sub-matrix M’ 

where l’ ≤ l, which satisfies the restriction stated by the regular expression. Note 

that a probability matrix can belong to more than one motif class. 

Each symbol ‘A’, ‘C’, ‘G’, ‘T’ in the regular expression means the entries 

M’(A,j), M’(C,j), M’(G,j) or M’(T,j) of the corresponding j-th column of the sub-

matrix M’ are larger than some predefined threshold β, 0.25 < β ≤ 1 respectively. 
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For example, the regular expression “CA . . TG” in Class III means all matrices 

in Class III must contain a 4 × 6 sub-matrix M’ such that M’(C, 1) ≥ β, M’(A, 2) 

≥ β, M’(T, 5) ≥ β and M’(G, 6) ≥ β. Since the Class V has no characteristics, we 

assume all matrices belong to Class V, i.e. the regular expression is “.*”. 

Since the size of the sample space for each motif class is not the same, the 

likelihood of a particular class g given a matrix M, i.e. P(M | g = k), k = 1, …, 6,  

is not the same for different motif classes. In order to compare (without finding 

their exact values) the likelihood of different motif classes when given a matrix, 

we consider a 4 × 1 column vector CV = (µ(A), µ(C), µ(G), µ(T)) in a probability 

matrix. Since 0 ≤ µ(A), µ(C), µ(G), µ(T) ≤ 1 and µ(A) + µ(C) + µ(G) + µ(T) = 1, 

the sample space of CV can be represented by the set of points in the tetrahedron 

shown in Figure 1 [10]. The four corners of the tetrahedron at (1,0,0,0), (0,1,0,0), 

(0,0,1,0) and (0,0,0,1) represent the four nucleotides A, C, G and T. Without loss 

of generality, let CV be the first column of a 4 × 4 matrix with the pattern 

“TAAT” in motif Class VI (Table 1), in which case µ(T) ≥ β. 

For illustration of the idea, let us consider the two classes of motif. In Class 

V a column vector CV’ is randomly picked from all possible column vectors, 

where as in Class VI, a column vector CV is randomly picked from all column 

vectors with µ(T) ≥ β. As the size of the sample space for column vectors with 

µ(T) ≥ β, i.e. the tetrahedron shown in Figure 2, is (1 – β)
3
 of the size of the 

sample space for arbitrary column vectors, i.e. the whole tetrahedron, conditional 

probability P(CV | g = 6) is 1/(1 – β)
3
 times higher than the conditional 

probability P(CV’ |  g = 5). 

Similarly, we may compare the conditional probability of a particular matrix 

M’ being picked given that it is from Class V (all probability matrices) and the 

conditional probability of another matrix M being picked given that it is from 

one of the remaining classes. For example, assume l = 4 and β = 0.8. The 

conditional probability P(M | g = 6) that a particular 4 × 4 matrix M in Class VI 

C 

G 

T 

(0,0,0,1) 

(0,1,0,0) 

(0,0,1,0) 

µ(A) = 0.25 

µ(G) 
µ(C) 

µ(T) A(1,0,0,0) 

(0.25, µ(C), µ(G), µ(T)) 

µ(A) = 0.5 

µ(A) = 0.75 

β 

C 
(0,1,0,0) 

A(1,0,0,0) 

T 

(0,0,0,1) 

G 

(0,0,1,0) 

Figure 1. Graphical representation of all 

possible column vectors (µ(A), µ(C), µ(G), 

µ(T)) of a probability matrix. 

Figure 2. Graphical representation of all 

possible column vectors with µ(T) ≥ β. 
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is picked from all length-4 matrices in Class VI is 1/(2(1 – 0.8)
3×4

) = 1.2 × 10
8
 

times larger than the conditional probability P(M’ | g = 5) that another matrix M’ 

is picked from all length-4 matrices in Class V. Note that if M’ does not belong 

to Class VI, P(M’ | g = 6) = 0. 

When the motif length l is not exactly 4, care should be taken not to double 

count those matrices with more than one sub-matrix satisfying the requirement 

(by using the Inclusion and Exclusion Principle). 

3. DIMDom Algorithm 

DIMDOM, which stands for DIscovering Motifs with DOMain knowledge, 

uses the expectation maximization (EM) approach to discover the motif matrix 

from the input sequences. In the expectation step (E-step), based on the current 

estimates of parameters M, B, λb and g, DIMDom algorithm calculates the 

expected log likelihood log L(B, λb, Pm | X, Z, M, g), over the conditional 

probability distribution of the missing data Z from the input sequences X. In the 

maximization step (M-step), DIMDom algorithm calculates a new set of 

parameters M, B, λb and g based on the new estimated Z for maximizing the log 

likelihood. These two steps will be iterated in order to obtain a probability 

matrix with larger, probably local maximum, log likelihood. In order to discover 

the probability matrix with maximum log likelihood (instead of local maxima), 

DIMDom algorithm repeats the EM steps with different seed matrices. 

3.1. Expectation step 

Given a fixed probability matrix M
(0)

, the background probability B
(0)

, prior 

probability λb
(0)

 and the motif class g
(0)

, the expected log likelihood is 
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where )0(

iZ  = E(Zi | X, M
(0)

, B
(0)

, λb
(0)

) which can be calculated as follows 
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Therefore, we can calculate the expected log likelihood and the expected Z
(0)

 

from X, M
(0)

, B
(0)

,λb
(0)

 and g
(0)

 by Equations (4) and (5). 

3.2. Maximization step 

Based on Equation (4), we can calculate the parameters M
(1)

, B
(1)

,λb
(1)

 and g
(1)

 to 

maximize the expected log likelihood. λb
(1)

 is involved in the last term in 

Equation (4) only and the expected log likelihood will be maximized when 

∑= =
w
i ib wZ1

)0()1(
)/(λ . B

(1)
 is involved in the first term in Equation (4) which will 

be maximized when 
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where α can be A, C, G, or T and I(s) = 1 iff the proposition s is true and I(s) = 0 

otherwise. 

M
(1)

 and g
(1)

 are involved in the second term in Equation (4). In order to find 

the probability matrix M
(1)

 and the motif class g
(1)

, we assign M
(1)

 and g
(1)

 to be 

the probability matrix for each motif class that maximizes the expected log 

likelihood. Consider g
(1)

 = 5, Equation (4) will be maximized (by considering 

Lagrange Multiplier of each column vector of M’) when  
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When g
(1)

 = 1, 2, 3, 4 or 6, the matrix M’ calculated in Equation (6) will 

maximize the log likelihood if M’ belongs to the corresponding class. However, 

when M’ does not belong to the corresponding class, we have to test all the 

boundary matrices (by considering Lagrange Multiplier of each column vector 

of M’ with extra constraint) in each class, which are closest to M’. 

For example, when we are considering g
(1)

 = 6 (Class VI) and the matrix M’ 

does not contain any 4 × 4 sub-matrix satisfying either TAAT or ATTA, we 
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consider the 2(l – 4 + 1) boundary matrices of M’
 
in Class VI as follows. For 

each starting position j = 1, … , l – 4 + 1, consider the 4 × 4 sub-matrix Msub of 

M’ formed by columns j to j + 4 – 1 of M’. If Msub does not satisfy ATTA 

because some entries in Msub are less than β, we set these entries to β and 

decrease the values of the rest entries proportionally. When β = 0.8, we will 

modify the following sub-matrix Msub 

















 0.8  2.0  0  9.0 
 0.05 1.0  1.0  04.0 
 0.05  4.0  1.0  03.0 

 0.1  3.0  8.0  03.0 

 to 
















×
×
×

 0.8  7.0/2.02.0  0  9.0 
 0.05 7.0/2.01.0  1.0  04.0 
 0.05  7.0/2.04.0  1.0  03.0 

 0.1  8.0  8.0  03.0 

 

to form a boundary matrix of M’. We can prove that either matrix M’ or one of 

its boundary matrices in each motif class can maximize the expected log 

likelihood when )0(

iZ  is fixed. Thus, we can set M
(1)

 to be the matrix with the 

largest expected log likelihood. 

We can repeat the E-step and M-step for a fixed number (10 is used in our 

experiments) of times to find the motif matrix with local maximum expected log 

likelihood. 

3.3. Seed Matrices 

In order to initiate the EM-step, we should have a set of seed matrices M
(0)

, 

background probability B
(0)

, prior probability λb
(0)

 and motif class g
(0)

. Similar to 

Bailey and Elkan [2], when the motif length l is short, we convert each length-l 

DNA sequence S into a seed matrix M
(0)

 by setting 





≠
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=
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However, when the motif length l is long, as the number of seeds increases 

exponentially with l, it is impossible to try all seeds. Fortunately, real biological 

motifs usually contain a conserved region in the center (column vector with one 

or two entries having high probabilities) or conserved regions at two ends. 

Instead of considering all 4
l
 seeds, we consider all length-l’ seeds where l’ < l 

and extend these length-l’ seeds to length-l by adding column vectors with all 

entries equal to 0.25 at both ends to represent motifs with conserved region in 

the center. Similarily, we construct seed with all entries equal to 0.25 at the 

center to represent motifs with conserved regions at both ends. 

Apart from M
(0)

, we set the background probability B
(0)

 to be the occurrence 

probability of each nucleotide in the input sequence =)()0( αB  

)/())][I(( 1 1 wljXw
i

l
j i∑ ∑ == = α . We also set the prior probability 1 – λb

(0)
 of a 

substring being an instance of the motif to be the number of input sequences over 
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w (we assume each input sequence contains one instance of the motif) and set the 

motif class g
(0)

 = 5, which means that there is no restriction on the motif matrix 

M
(0)

. 
 

Table 2. Experimental results on real biological data for transcription factors of Drosophila for 

output with 1 and 30(in brackets) predicted motif(s) per data set. 

Factor 

Name 
l g 

Predicted 

g 

DIMDom  

(class V only) 
DIMDom MEME 

Ac 8 III III (III) 0 (0.6667) 0.6667 (0.6667) 0 (0.5) 

adf-1 11 V II (II) 0.2 (0.1667) 0.2 (0.33) 0.1111 (0.1111) 

AP-1 9 - - (IV) 0 (0.25) 0 (1) 0 (0.5) 

AS-CT3 6 III III (III) 0.5 (0.5) 0.5 (0.5) 0.3333 (0.3333) 

Bcd 8 VI VI (VI) 0 (0.3333) 0.2308 (0.3529) 0.0227 (0.2) 

Bfactor 4 - - (VI) 0 (0) 0 (0) 0 (0.2222) 

CF1 9 II - (II) 0 (0.3333) 0 (1) 0 (0.5) 

Ci 9 - II (I) 0.1667 (0.2) 0.1429 (0.2143) 0.25 (0.5) 

D_MEF2 10 - - (III) 0 (0.3333) 0 (0.3333) 0 (0) 

D1 11 - IV (IV) 0 (0.1818) 0 (0.2857) 0.0476 (0.0870) 

DREF 14 - - (VI) 0 (0.1429) 0 (0.3333) 0 (0.1429) 

Dri 10 - IV (IV) 0 (0.25) 0.5 (0.5) 0 (0.5) 

DTF-1 6 - I (I) 0.5 0.1667 (0.1667) 0.125 (0.5) 

E74A 17 V IV (IV) 0.3077 (0.375) 0.3333 (0.6667) 0.1818 (0.4) 

EcR 7 II III (IV) 0 (0.5) 0.3333 (0.5) 0 (0.3333) 

Elf-1 8 - I (I) 0 (0.2222) 0 (0.6667) 0.1 (0.4444) 

En 7 VI - (I) 0 (0.25) 0 (0.25) 0 (0.1) 

Exd 20 VI IV (II) 0.3333 (0.3333) 0.3333 (0.6667) 0.2 (0.4) 

Ftz 12 VI VI (VI) 0 (0.2813) 0.1429 (0.25) 0.1471 (0.1875) 

FTZ-F1 7 II II (II) 0 (0) 0.5 (0.5) 0 (0) 

GAGA 11 I I (I) 0.0476 (0.2941) 0.1579 (0.1579) 0 (0.1818) 

GCM 13 - III (IV) 0.0588 (0.2307) 0.3333 (0.3333) 0 (0.25) 

H 10 III - (III) 0 (0.3333) 0 (1) 0 (0.3333) 

Hb 10 I III (IV) 0 (0.1333) 0 (0.2142) 0.1667 (0.25) 

HSTF 15 VI VI (VI) 0.0909 (0.2222) 0.1111 (0.25) 0.1429 (0.1667) 

Kr 10 I II (VI) 0 (0.2857) 0.0833 (0.2667) 0 (0.25) 

Sc 8 III III (III) 0 (0.6667) 0.6667 (0.6667) 0 (0.5) 

Sn 13 I IV (IV) 0 (0.2727) 0.2857 (0.5) 0.0667 (0.3333) 

Su_Hw 12 I - (IV) 0 (0.25) 0 (1) 0 (0.5) 

TAB 15 - - (II) 0 (0.2857) 0 (0.5) 0 (0.3333) 

TBP 7 - - (I) 0 (0.2) 0 (0.25) 0 (0.25) 

TII 8 II I (VI) 0 (0.1111) 0.1176 (0.1176) 0.0526 (0.1667) 

Ttk69k 8 I IV (I) 0.0909 (0.3333) 0 (0.4286) 0.2143 (0.2143) 

Ubx_a 19 VI II (II) 0.25 (0.25) 1 (1) 1 (1) 

Zen-1 8 VI IV (VI) 0 (0.1818) 0 (0.2222) 0.0435 (0.2353) 

Zen-2 8 VI VI (VI) 0.1429 (0.375) 0.1 (0.5) 0.05 (0.1667) 

Zeste 11 V IV (I) 0.0192 (0.1224) 0.05 (0.2) 0.4222 (0.4222) 

Zeste_b 11 - IV (I) 0.0192 (0.1224) 0.05 (0.2) 0.4222 (0.4222) 

Average score 0.0998 (0.2761) 0.2501 (0.4471) 0.1925 (0.3141) 
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4. Experimental Results 

We have implemented DIMDom on C++ and have compared its performance 

with the popular motif discovery algorithm MEME [2], which is also based on 

an EM approach, on real biological motif from the TRANSFAC database 

(http://www.gene-regulation.com). For each transcription factor with at least one 

known binding site in fruit fly (Drosophila), we searched for all genes regulated 

by that transcription factor and used the 450 bp (base pairs) upstream and 50 bp 

downstream of the transcriptional start site of these genes as input sequences.  

We set l’ = 8 when constructing seed matrices and considered a substring Xi 

as a binding site if 1 – Zi ≥ 0.9 for a 90% confidence. Higher thresholds such as 

0.95 and 0.99 failed to give satisfactory results as the number of predicted 

binding sites decreased sharply to almost zero.  

A score for each predicted motif is defined as: 

sites published  sites predicted

sites published  sites predicted
score

∪

∩
=  

A published binding site is correctly predicted if that binding site overlaps with 

at least one predicted binding site. The score is in the range of [0,1]. When all 

the published binding sites are correctly predicted without any mis-prediction, 

score = 1. When no published binding site is predicted correctly, score = 0.  

The value of the threshold β used in calculating probability P(M | g) was 

determined by performing test on another set of real data from the SCPD 

database (http://rulai.cshl.edu/SCPD/) on yeast (Saccharomyces cerevisiae). 

DIMDom had the highest average score when β = 0.9. A smaller value of β did 

not give better performance because the values of log(P(M | g)) were similar for 

different motif classes. As a result, DIMDom could not take much advantage of 

different motif classes and motifs from class V were predicted most of the time. 

Table 2 shows the performance of MEME [2] and DIMDom on two types of 

output, only one predicted motif and 30 predicted motifs (from now on, all 

results related to outputs with 30 predicted motifs will be given in brackets). In 

order to have a fair comparison on our experiments, we have ignored the known 

prior probabilities of different motif classes and set them all equal. We have also 

performed experiments on a version of DIMDom which considers only the class 

V (basic EM-algorithm) so as to illustrate the improvement in performance by 

introducing the knowledge of different motif classes. It is not surprising to find 

that MEME (with average score 0.1925 (0.3141)) performed better than the 

basic EM-algorithm (with average score 0.0998 (0.2761)). However, after 

introducing the five motif classes, DIMDom (with average score 0.2501 

(0.4471)) outperformed MEME when the same set of parameters were used for 
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both DIMDom and basic EM-algorithm. Note that DIMDom was about 1.5 times 

more accurate than MEM when 30 predicted motifs could be outputted. 

Among the 47 data sets, both DIMDom and MEME failed to predict any 

published binding sites in 19 (9) data sets and DIMDom had a better 

performance (higher score) in 17.5 (27.5) data sets while MEME had a better 

performance in 10.5 (10.5) data sets only. When the output has 30 predicted 

motifs, DIMDom could outperform MEME with 2.5 times in the number of 

sccuesses. Among 5,5 out of 10.5 cases that MEME could do better than 

DIMDom, MEME predicted only 1 or 2 out of many not-so-similar binding sites 

because of the high threshold (0.9) used by DIMDom. 

Even with a simple description of motif classes, DIMDom can correctly 

predict the motif classes in 9 (12) out of 21 (25) instances. Presumably we can 

get better prediction by using more parameters to describe motif class [17], 

however, more training data are needed for tuning these parameters. 

5. Conclusion 

We have incorporated biological information, in terms of prior probabilities and 

pattern characteristics of possible motif classes, into the EM algorithm for 

discovering motifs and binding sites of transcription factors. Our algorithm 

DIMDom was shown to have better performance than the popular software 

MEME. DIMDom will have potentially even better performance if more motif 

classes are known and included in the algorithm. Similar to many motif 

discovery algorithms, DIMDom needs the length of motif to be specified when 

discovering motif for better performance of the algorithm. However, this 

requirement can be removed and becomes unnecessary at the expense of 

efficiency by comparing likelihoods of motifs with different lengths. 
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