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Abstract: The problem of finding motifs in binding sites is very important to the understanding of 

gene regulatory networks. However, when predicting a set of motifs, existing algorithms suffer the 

problem of either predicting many redundant motifs (motifs with similar binding sites) or, at the 

other extreme, missing the hidden motif. In this paper, we formulate the Motif Redundancy Problem 

(MRP) to model this kind of problem and introduce an algorithm called RME (Redundancy Motif 

Elimination) for solving MRP. Experimental results on real biological data show that a standard 

EM-based motif discovery algorithm enhanced with RME has a better performance than the popular 

motif discovery algorithm MEME. 

1 Introduction 

A gene is a segment of DNA that is the blueprint for protein. In most cases, genes do not 

work alone; rather, they cooperate to produce different proteins for a particular function. 

In order to start the protein decoding process (gene expression), a molecule called 

transcription factor will bind to a short region (binding site) preceding the gene. One 

transcription factor can bind to the binding sites of several genes to cause these genes to 

co-express. These binding sites have similar patterns called motifs. Finding motifs and the 

binding sites from a set of DNA sequences, which represent the promoter regions of co-

expressed genes, is a critical step for understanding the gene regulatory network. 

In order to discover motifs, we must first have a model to represent the motif. There 

are two popular models: string representation [3,5-7,11,12,15,17,19,20,22-28] and matrix 

representation [1,2,8,9,13,14,16,18]. String representation is the most basic representation 

which uses a length-l string of symbols (or nucleotides) ‘A’, ‘C’, ‘G’ and ‘T’ to describe a 

motif. To improve the representation’s descriptive power, wildcard symbols [5,22,26] can 

be introduced into the string to represent choices from a subset of symbols at a particular 

position (e.g. ‘K’ can denote ‘G’ or ‘T’). Matrix representation further improves 

descriptive power. In the matrix model, motifs of length l are represented by position 

weight matrices (PWMs) or position specific scoring matrices (PSSMs) of size 4 × l with 

the jth column of the matrix, which has four elements corresponding to the four 

nucleotides, effectively giving the occurrence probability of each of the four nucleotides 

at position j. 

When discovering motif in matrix representation, researchers usually assume the 

motif matrix with the largest likelihood, calculated based on some probability model 
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[1,13,14,16], is the hidden motif. However, motif discovery algorithms usually output a 

set of predicted motifs instead of a single motif with the highest likelihood because: 

1. The input DNA sequences may contain binding sites of several transcription factors. 

Therefore, the algorithms should discover a motif for each of these transcription 

factors. 

2. The motif matrix with the highest likelihood may not be a meaningful motif to the 

biologist and is considered only to be an over-represented pattern that occurs 

accidentally in the input sequences (noise), or alternatively, occurs in every part of 

the whole genome. 

3. Biologists need to perform experiments to verify predicted motifs. Sometimes one 

experiment can be performed on several predicted motifs simultaneously in order to 

verify the correct one.  

When motif discovery algorithms predict a set of motifs, they generally suffer the 

problem that some of the predicted motifs are very similar (redundant motifs) in the sense 

that they represent almost the same set of binding sites. For example, the motif matrices 

(predicted for AS-CT3) shown in Table 1, with M1 being the hidden motif, are very 

similar: 

 
Table 1. Example of similar motifs 

 

M1 and M2 have two binding sites in common. Although M3 is different from M1 and M2, 

its first two binding sites overlap with the first two binding sites of M1 and M2 with a one 

base pair shift. Although these three motifs have high likelihoods, motif discovery 

algorithms should not output them all because they represent almost the same set of 

binding sites and would increase the size of output unnecessarily without meaningful 

benefit. 

Some motif discovery algorithms [16] reduce the number of redundant motifs in the 

output by replacing a set of redundant motifs by a motif in that set. Other algorithms [14] 

(e.g. MEME) solve this problem by finding motifs one by one and by making, at each 

iteration, adjustments so as to reduce the probability that a binding site of an already-

discovered motif is considered again. While this approach will help to reduce redundant 

motifs, accuracy may also suffer because the hidden motif might not be discovered if its 

binding sites happened to overlap with the binding sites of some previously discovered 
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motifs. This approach depends very much on the order of motifs being discovered. For 

example, consider the transcription factor “CF2-1” of fruit fly and the following 

discovered motifs arranged in the order of decreasing log-likelihood: 

 

1 TTTTTTTT  log likelihood = -6399.45 

2 GCGCCTGC log likelihood = -6400.02 

3 GCCCCCGC  log likelihood = -6403.37 

 …  

19 GTTTTATT log likelihood = -6409.44 

 

The correct motif (ranked 19) will never be discovered in MEME if motif 1 is 

discovered first, nor, in those algorithms where redundant motifs are eliminated, because 

of its overlap with the first motif.  

Moreover, the simple approach in which we allow for redundancy but limit the size 

of the output may also not work in situations such as that of the transcription factor “bcd” 

of fruit fly (see below) where the correct motif (ranked 281) is ranked far down the list. 

 

1 CCCAACCC log likelihood = -33744.8 

2 CCAATCCC log likelihood = -33753.4 

3 CCCGATCC  log likelihood = -33755.8 

 …  

281 TGGATTAG log likelihood = -33870 

 

In this paper, we introduce a novel way to select the “best” motifs among all possible 

motifs (redundant or otherwise) based on their likelihood of being the hidden motif and 

also their pair-wise redundancies. We first formulate the Motif Redundancy Problem 

(MRP) as the problem of picking a set of motifs for output such that accuracy will not be 

affected too much. However, since MRP is NP-hard, we cannot find the optimal solution 

of MRP in polynomial time unless P equals NP. Thus, we introduce a heuristic algorithm 

RME (Redundant Motif Elimination) to solve MRP. We show the usefulness of RME by 

comparing the performance of the popular software MEME against a simple EM 

algorithm enhanced by using RME to eliminate redundant motifs. We find that a simple 

EM algorithm can outperform MEME with the help of RME. Moreover, RME does 

successfully output the correct motif for the cases described above of “CF2-1” and “bcd”. 

This paper is organized as follows. In Section 2, we briefly describe how to calculate 

the likelihood of a matrix being the hidden motif. In Section 3, we introduce MRP. The 

heuristic algorithm RME for solving MRP is described in Section 4. Experimental results 

on real biological data comparing are given in Section 5, followed by concluding remarks 

in Section 6. 
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2 Maximizing Likelihood 

Existing algorithms using PSSM matrix representation discover the motif matrix with the 

maximum likelihood of being the hidden motif based on the finite mixture model [1]. 

Conceptually, they break up the input sequences into length-l (overlapping) substrings. 

For example, a length-n sequence can be broken up into w = n – l +1 length-l substrings. 

Let X = (X1, X2, … , Xw) be all length-l substrings in the input where each substring can 

occur more than once in X if the same pattern appears in more than one position. The 

finite mixture model assumes that each substring in X belongs to either a background 

(non-motif) substring or an instance of the hidden motif. The prior probability that a 

substring belongs to the background substrings (generated according to the background 

probability) is λb and the prior probability that a substring belongs to binding sites 

(generated according to the hidden matrix) is 1 – λb. 

Let Z = (Z1, Z2, … , Zw) be the missing data that determines whether Xi is generated 

according to the background probability B or the hidden matrix M. 
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By the assumption of independent substrings X, the joint conditional density of X and 
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The likelihood of a particular B, M, λb being the hidden parameters of the finite mixture 

model given the joint distribution of the substring X and the missing data Z is defined as 

 ),,|,(),|,,(
bb

MBZXpZXMBL λλ =  (1) 

So, the log of the likelihood, or log likelihood, is therefore 
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The goal of existing algorithms using matrix representation is to discover the B, M, λb 

with the maximum likelihood (or log likelihood). 

3 The Motif Redundancy Problem 

In practice, biologists want to get a set of predicted motif matrices with high likelihood 

instead of a single matrix with the highest likelihood (as discussed in the introduction). 

However, existing motif discovery algorithms either allow the output of many redundant 

motifs (i.e. motifs representing almost the same set of binding sites), which makes the 

output size unnecessarily large, or try to eliminate redundant motifs and in the process 

risk also eliminating the hidden motif. We introduce the Motif Redundancy Problem 

(MRP) to reduce the size of the output with the least reduction in accuracy. 

3.1 The Motif Redundancy Problem 

Assume the positions of the planted binding sites of the hidden matrix M* are known. The 

accuracy of a predicted motif with matrix M is measured by its score s(M,M*) expressed 

as follows [3]: 

 
M*M

M*M
M,M*s

 of sites   of sites

 of sites  of sites
)(

∪

∩
=  (3) 

We say a planted binding site at position [x, x + l – 1] is correctly predicted if that planted 

binding site overlaps with at least one predicted site [y, y + l – 1], i.e. [x, x + l – 1] ∩ [y, y 

+ l – 1] is non-empty. The score s(M,M*) is in the range of [0,1]. When all the planted 

binding sites are correctly predicted without any mis-prediction, score = 1. When no 

planted binding site is predicted correctly, score = 0. Since biologists will select the best 

motif as the hidden motif, the accuracy of a motif discovery algorithm can be measured 

by the maximum score obtained from its set of predicted motifs, i.e. max{s(M,M*) | M ∈ 

S} where S is the set of motif matrices predicted by the algorithm. Note that accuracy 

increases with the size of output of any motif discovery algorithm. 
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3.2 Motif Redundancy Problem 

Given a set S of motif matrices Mi (where i = 1, …, q) and their binding sites and 

corresponding likelihood ),|,,( ZXMBLL
bii

λ= . Assuming the hidden motif is one of the 

q matrices in S, we can estimate the probability P(Mj | X) that Mj is the hidden matrix of 

the data set X by its likelihood ),|,,( ZXMBLL
bii

λ= . 

Since )|(),,|,(),|,,( XMPMBZXpZXMBLL
ibibii

∝== λλ , we have  
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As the score of Mi is s(Mi, Mj) if Mj is the hidden matrix, the expected score of Mi is 
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Given a set S of motif matrices, their binding sites and likelihoods, E(S) can be calculated 

with Eq (1), (3) and (4).  That is, 
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The Motif Redundancy Problem (MRP) is defined as follows: 

Given a set of input sequences, a set of motif matrices Mi (where i = 1, …, q), their 

binding sites and corresponding likelihood ),|,,( ZXMBLL
bii

λ= , find a subset 

mSqiMS
i

==⊆ ||},,...,1,{  such that E(S) is maximized. 

Note that a set of redundant motifs usually has a lower score on average, because s(M, Mj) 

of each redundant motif M is almost the same and there will be many motifs Mj not in S 

with a low max{s(M, Mj) | M ∈ S} value. This means there is a higher chance of missing 

the hidden motif. Therefore, a set S with the largest expected score E(S) tends to contain 

non-redundant motifs. 

4 Algorithm 

We can show that MRP is a NP-hard problem by transforming the Set Covering Problem 

to MRP (shown in the Appendix). Therefore, it is not possible to find a polynomial time 

algorithm to solve MRP unless P equals NP. We apply a heuristic algorithm RME (which 

stands for Redundancy Motif Elimination) to solve MRP. RME finds the subset S of 

motifs with large expected score E(S) by selecting motifs that give the largest increase in 

E(S) one by one until the size of S is m. This is essentially a greedy approach. Although 

RME is simple, experimental results (see Section 5) on real biological data show that it 

works well in practice. Algorithm RME is shown in below. 
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Algorithm RME  

1. qiMES
iM i

,...,1)},(max{arg ==  

2. For i = 2 to m 

3. qjMSES
jM j

,...,1)},(max{arg =∪=  

4. output S 

First we begin with S containing the motif matrix with the highest expected score 

E(Mi). At each step, we add a new motif matrix to S such that the new expected score E(S) 

has the largest increase in value. 

In order to illustrate how RME works, let us consider the following example. 

Example. Suppose {M1, M2, M3} is a set of three predicted matrices with 0.45, 0.35 and 

0.2 as their corresponding P(Mj | X) where M1 and M2 are two redundant motifs. Thus, 

s(M1, M2) = s(M2, M1) =0.8 and s(M3, M1) = s(M3, M2) = s(M1, M3) = s(M2, M3) = 0.2. 

RME would first choose M1 since E(M1) = 1 * 0.45 + 0.8 * 0.35 + 0.2 * 0.2 = 0.77 (by Eq 

(5)) has the highest expected score. If m = 2, the second motif matrix will be M3 instead 

of M2 even though M2 has a higher likelihood since E({M1, M2}) = 1 * 0.45 + 1 * 0.35 + 

0.2 * 0.2 = 0.84 and E({M1, M3}) = 1 * 0.45 + 0.8 * 0.35 + 1 * 0.2 = 0.93. 

5 Experimental Results 

We have implemented the standard EM algorithm [14] for discovering motifs and RME 

on C++ and have performed experiments on real biological data for fruit fly (Drosophila) 

and yeast from the database TRANSFAC (http://www.gene-regulation.com) and 

SCPD (http://rulai.cshl.edu/SCPD/). For each transcription factor, we searched for all 

genes regulated by that transcription factor and used the 450 base pairs (bp) upstream and 

50 bp downstream from the transcriptional start site of these genes as the input sequences. 

MEME [1], a popular motif discovery program (which is based on a more 

complicated EM-algorithm), was compared to the performance of a standard EM 

algorithm enhanced with RME and the standard EM algorithm without RME. Each of the 

three algorithms predicted 30 motifs with length equal to the published motif of the 

corresponding transcription factor. The standard EM algorithm first generated 300 

predicted motifs and, with and without RME, 30 motifs were picked as output. The 

performance of these algorithms on each transcription factor was measured by the 

following formula for accuracy and is shown in Tables 2 (fruit fly) and Table 3 (yeast) 

below. 

 
sites published  sites predicted

sites published  sites predicted
accuracy

∪

∩
=  

In the 47 experiments of the fruit fly, all three algorithms failed to predict any 

published binding site correctly in 4 data sets (which are not shown in Table 2). For the 

remaining 43 data sets, the standard EM algorithm with RME has better performance (i.e. 

higher score) in 28 data sets and equal performance (i.e. the same score) in 4 data sets, 
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while MEME had a better performance in 10 data sets and the standard EM algorithm 

without RME has better performance in 1 data set only. Moreover, the average score of 

the standard EM algorithm with RME is 0.2787, which is higher than the average score of 

MEME of 0.1934 and the average score of the standard EM algorithm without RME of 

0.0873. 

 
Table 2. Experimental results on real biological data for transcription factors of fruit fly (Drosophila) in 

TRANSFAC 

Factor 

Name 
l MEME EM RME  

Factor 

Name 
l MEME EM RME 

Ac 8 1 0.0053 0.4  Exd 20 0 0 0.3333 

adf-1 11 0.1667 0.0769 0.15  Ftz 12 0.1724 0.1351 0.2424 

antp 7 0 0.0476 0.2  FTZ-F1 7 0.3333 0 0.6667 

AP-1 9 0 0 0.1429  GAGA 11 0.0870 0.1 0.2222 

AS-CT3 6 1 0.0435 1  GCM 13 0.25 0.4286 0.5 

bcd 8 0.2941 0.0130 0.4375  H 10 0 0.1667 0.25 

BEAF-32B 5 0 0.7143 0.25  Hb 10 0.1429 0.1875 0.2941 

Bfactor 4 0.1 0 0  HSTF 15 0.1667 0 0.1667 

CF1 9 0 0 0.2  Kr 10 0.3077 0.0526 0.2778 

CF2-I 8 0 0 0.1667  Sc 8 0.5 0.0526 0.4 

Ci 9 0.2857 0.0909 0.3636  Sn 13 0.2857 0 0.2105 

Cut 7 0 0 0.1667  Su_Hw 12 0 0.1 0.1 

D_MEF2 10 0 0 0.1667  TAB 15 0.3333 0.1111 0.1333 

D1 11 0.0870 0.0909 0.1379  TBP 7 0.25 0 0.4 

Da 6 0 0 0.3333  TII 8 0.0769 0.0938 0.1304 

DREF 14 0.1429 0 0  Ttk69k 8 0.3333 0.2222 0.3333 

dri 10 0 0 0.1429  Ubx_a 19 0 0.0833 0.25 

DTF-1 6 0.25 0.1111 0.75  Zen-1 8 0.1 0.1538 0.1579 

E74A 17 0.4 0.1143 0.2941  Zen-2 8 0.1111 0.1111 0.25 

EcR 7 0.3333 0 0.3333  Zeste 11 0.1026 0.1290 0.3191 

Elf-1 8 0.5 0.1 0.1429  Zeste_b 11 0.1026 0.1290 0.3191 

En 7 0.1 0.0909 0.25       

Average score 0.1934 0.0873 0.2787 

Number of times getting the best performance 14 1 32 

 

In the experiments, the performance of the standard EM algorithm was much 

improved with the application of RME (except BEAF-32B). Instead of selecting 30 

redundant motifs with the highest score generated by the EM algorithm, RME selected 30 

non-redundant motifs, which increased the probability of predicting the hidden motifs. 

Although the standard EM algorithm has a worse performance than the sophisticated 

MEME in most cases, it outperformed MEME after applying RME. 

In the 32 experiments of yeast, all three algorithms failed to predict any published 

binding site correctly in 1 data set (which is not shown in Table 3). For the remaining 31 

data sets, the standard EM algorithm with RME had better performance (higher score) in 

15 data sets and the same score in 6 data sets, while MEME had better performance in 10 

data sets. The average score of the standard EM algorithm with RME was 0.4845, which 

was slightly lower than the average score of MEME of 0.4995 but much higher than the 

average score of the standard EM algorithm of 0.2030. 
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Table 3. Experimental results on real biological data for transcription factors of yeast in SCPD 

Factor 

Name 
l MEME EM RME  

Factor 

Name 
l MEME EM RME 

13nt 13 0.75 0.375 0.75  GFI 13 0.2 0 0.2222 

ABF1 13 0.0870 0.0082 0.125  HAP1 12 0.5833 0 0.5625 

ACE2 6 0.3333 0.3 0.6  HAP2 7 0.3333 0.0833 0.3333 

ADR1 5 0.6667 0.3333 0.6667  HSE_2 8 0.7 0 0.6 

AP1 7 1 0 0.25  IRE 32 1 0.1053 0.5 

BAS1 7 0.3889 0 0.4444  LEU 10 0.6667 0.3333 1 

BAS2 6 0.25 0 0.3333  MAT2 9 0.3333 0.0690 0.4375 

CCBF 7 0.9375 0.9375 0.9375  MCM1 5 0.4590 0 0 

CPF1 7 0.6667 0.1818 0.6  MIG1 12 0.3333 0.0164 0.2174 

CSRE 12 0.3333 0.0731 0.3636  NBF 9 0.5 0.375 0.5714 

CURE 7 0.6667 0.5714 0.6667  SFF 10 0.2 0 0.1875 

GAL4 17 0.8666 0.8235 0.8235  SWI5 6 0.4444 0 0.5714 

GATA 6 0.3913 0.45 0.45  UASCAR 11 0.25 0 0.5 

GCFAR 6 0.5714 0.5714 0.8  
UASGAB

A 
19 0.4 0.6667 0.6667 

GCN4 6 0.3333 0.0222 0.3571  UESPHR 9 0.6667 0 0.4285 

GCR1 5 0.1818 0 0.0526       

Average score 0.4998 0.2030 0.4845 

Number of times getting the best performance 16 3 21 

 

As shown by the results given in Tables 2 and 3, the standard EM algorithm without 

RME had a worse performance than MEME in all cases (except GATA and UASGABA). 

However, the standard EM algorithm had a similar performance to MEME after applying 

RME. This indicates that algorithm RME can indeed improve the performance of motif 

discovery algorithms. 

6 Concluding Remarks 

Many motif discovery algorithms use heuristics to search for motif matrices according to 

some performance criteria. In most cases, many redundant (similar) motif matrices will be 

found based on local optimal values. We introduce the motif redundancy problem (MRP) 

so as to find the best fixed-size output with highest accuracy. Even though MRP is NP-

complete, we have demonstrated in this paper that a simple greedy approach (RME) can 

already bring an improvement in the accuracy of the output. However, this is only a 

preliminary result, and there are at least two other approaches one could take to make 

further improvements: (1) improving the heuristic used in solving MRP; and (2) the 

elimination of the assumption that the hidden motif is among one of the predicted motif. 

We would include these improvements in our future paper. 

Appendix 

In this section, we will show how to reduce the Set Covering Problem (SC) to the Motif 

Redundancy Problem (MRP). The Set Covering Problem is defined as follows: 
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Given a finite set X = {x1, …, xn} and a family F of subsets X1, …, Xp such that every 

elements xi in X belongs to at least one subsets in the family. We want to determine 

whether there is a subset kCFC =⊆ ||,  such that 
iCX

XX
i∈

∪= . 

We reduce SC to MRP in the following manner. Let W = p + n. We construct W + 

pW motifs. The first p motifs (set P) represent the p subsets X1, …, Xp, the next n motifs 

(set N) represent the n elements x1, …, xn in set X and the last pW are dummy motifs (set 

D). 

Each motif has equal likelihood 1/(W + pW) and has exactly W + pW binding sites. 

There are two ways in which a motif can have exactly one binding sites overlapped with 

another motif: 

1. The motif representing Xi has one binding site overlapping with the motif representing 

xj if and only if 
ij

Xx ∈ . 

2. The motif representing Xi has one binding site overlapping with W distinct dummy 

motifs. 

Except as a result of applying the above two rules, no other binding-site overlaps are 

allowed. 

In particular, the W + pW binding sites for each motif are constructed in the following 

manner. Each binding site is of length-(W+pW) DNA sequence with nucleotide ‘T’ at 

every position except the yth position in the case of yth motif and the zth position if the 

binding site of this motif is meant to overlap with that of the yth motif (according to one 

of the above two rules). Nucleotide ‘A’ appears at such (yth and zth) positions instead.  

SC can be reduced to MRP by finding a subset S of motifs, |S| = k such that E(S) is 

maximized. There is a solution for SC if and only if 
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