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Sequence assembling is an important step for bioinformatics study. With the help of next generation sequencing (NGS) tech-
nology, high throughput DNA fragment (reads) can be randomly sampled from DNA or RNA molecular sequence. However, 
as the positions of reads being sampled are unknown, assembling process is required for combining overlapped reads to recon-
struct the original DNA or RNA sequence. Compared with traditional Sanger sequencing methods, although the throughput of 
NGS reads increases, the read length is shorter and the error rate is higher. It introduces several problems in assembling. 
Moreover, paired-end reads instead of single-end reads can be sampled which contain more information. The existing assem-
blers cannot fully utilize this information and fails to assemble longer contigs. In this article, we will revisit the major problems 
of assembling NGS reads on genomic, transcriptomic, metagenomic and metatranscriptomic data. We will also describe our 
IDBA package for solving these problems. IDBA package has adopted several novel ideas in assembling, including using mul-
tiple k, local assembling and progressive depth removal. Compared with existence assemblers, IDBA has better performance 
on many simulated and real sequencing datasets. 
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Deoxyribonucleic acid (DNA) is a sequence of nucleotides 
adenine (A), cytosine (C), guanine (G) and thymine (T) 
which is used to encode all genetic information for control-
ling development and functioning of most organisms in the 
world except some virus. Each cell in the same organism 
contains near identical set of DNA sequences which can be 
used to represent the organism. The whole set of DNA in a 
cell for storing genetic information is called genome. Along 
the genome, there are regions called gene, which can be 
copied to form a ribonucleic acid (RNA), a sequence of 
nucleotides adenine (A), cytosine (C), guanine (G) and ura-
cil (U). The RNA can support most metabolic activities in 
the cell either directly or indirectly by decoding itself to 

different proteins. The whole set of RNAs produced in a 
cell is called transcriptome. Determining the nucleotide se-
quences for the genomes and transcriptomes of different 
organisms is important for analyzing different biological 
properties of the organisms, determining the interaction of 
the organisms with the environment and other organisms, 
determining the evolutionary relationship for a set of organ-
isms. In particular, sequencing the human genome can be 
applied for determining different genomic diseases, person-
al medicine for each individual and human evolutionary 
history. 

Determining the whole genome or transcriptome of an 
organism is difficult. Early work on sequencing was done 
on single short RNA sequence only. In 1964, Holley et al. 
[1,2] determined the first RNA sequence (alanine transfer 
RNA) with less than 100 nucleotides (nt). In 1972, Fiers et 
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al. [3] determined the gene for Bacteriophage MS2 coat 
protein. In 1976, Fiers et al. [4] determined the complete 
genome (RNA) of Bacteriophage MS2. The first DNA ge-
nome was determined in 1977 by Sanger et al. [5] on the 
Bacteriophage φX174 with 5368 nt. After that, the Sanger et 
al. developed shotgun sequencing technology was applied 
on different organisms with longer and longer genomes. In 
2003, the first whole human genome (with three billion nu-
cleotides) was determined after 13 years’ analysis. 

Determining genome or transcriptome of an organism 
can be divided into two major steps, sequencing and assem-
bling. Sequencing step randomly samples fragments, called 
read, from a DNA or RNA sequence (or fragment of a DNA 
or RNA after preprocessing) and determines the sequence of 
the DNA fragments. Assembling step analyzes the set of 
fragments sampled from unknown locations and determines 
the original DNA or RNA sequence (or fragments of DNA 
or RNA if not possible). The traditional shotgun sequencing 
technology can sample a read of length around 1000 nt per 
hour with 0.1% error per nucleotide. Since the throughput 
of Sanger sequencing is low compared with the length of 
genome (the length of human genome is three billion and 
the lengths of some plant and fish genomes can be over 100 
billion), it is not suitable for sequencing long genome be-
cause of the high cost of sequencing enough reads.  

In recent years, several next generation sequencing (NGS) 
technologies were developed, e.g., pyrosequencing (454), 
sequencing by synthesis (Illumina), ion semiconductor (ion 
torrent sequencing). These NGS technologies can produce 
shorter reads (75500 nt) with higher throughput (million or 
even billion reads per day) but higher error rate (0.5%2% 
error per nucleotide). With the help of the NGS technology, 
it is possible to determine more genomes in a much faster 
way. However, it also introduces new challenges in the as-
sembling process. When assembling genomic and tran-
scriptomic data, there are multiple problems due to high  

sequencing error rate, repeat patterns in the sequence and 
uneven sequencing depths1). Some of these problems ap-
pears in both genomic and transcriptomic data while some 
problems appear in particular data type. Moreover, the high 
throughput of NGS technologies provides an opportunity to 
sequence sample with multiple micro-organisms (meta-
genomic and metatranscriptomic data), e.g., group of bacte-
ria, such that scientists can understand the interactions 
among micro-organisms. However, assembling these meta-
genomic and metatranscriptomic data also introduces more 
challenges in assembling. In this article, we will first de-
scribe the approaches of common assemblers in Section 1. 
Then we will explain the general problems of assembling 
NGS data (Section 2) and the possible solutions introduced 
by IDBA package (Section 3). Finally we will discuss the 
specific problems of assembling transcriptomic, meta-
genomic and metatranscriptomic data in Sections 4, 5 and 6 
respectively with some experimental results in Section 7. 
IDBA package (http://www.cs.hku.hk/~alse/hkubrg/) is a 
collection of software based on IDBA for different se-
quencing data. A short summary is given in Table 1. 

1  Existing approaches 

Since the location of each read in the DNA or RNA se-
quence is unknown, assembling process is needed to com-
bine these reads into the original sequence. As a huge num-
ber of reads are sampled randomly along the sequence, the 
overlapping information of the sampled reads is used for 
assembling. There are three major approaches for assem-
bling reads: (i) overlap-and-extend, (ii) string graph, and (iii) 
de Bruijn graph.  

The overlap-and-extend approach, e.g., SSAKE [6], 
VCAKE [7] and SHARCGS [8], first determines overlapped 
reads, i.e., the suffix of a read is the same as the prefix 

Table 1  Summary of IDBA package for solving different assembling problemsa) 

Data type Solutions Description 

Genome 
IDBA-UD 

A general tool for genomic and metagenomic data. It can also handle single-cell  
sequencing data. 

IDBA-Hybrid Extension of IDBA for assembling genomic data with a similar reference genome. 

Transcriptome IDBA-Tran Extension of IDBA for assembling eukaryotic transcriptomic data. 

Metagenome 
IDBA-UD Mentioned above 

Meta-IDBA 
Extension of IDBA for assembling metagenomic data. Multiple strands from the same 

species will be merged in a single consensus representation. 

Metatranscriptome 
IDBA-MT 

Extension of IDBA for assembling prokaryotic metatranscriptomic data. It applies 
paired-end read data for resolving chimeric contigs. 

IDBA-MTP 
Extension of IDBA for assembling prokaryotic metatranscriptomic data. It assembles 

reads by applying known protein reference sequences. 

a) The software can be downloaded at http://www.cs.hku.hk/~al se/hkubrg/. 

                         
1) Uneven sequencing depths problem also occurs in traditional Sanger sequencing. However, this problem is more serious in the next-generation se-

quencing technology especially when performing single-cell sequencing. 
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of another reads and the length of overlapped region is 
longer than a predefined threshold, and then extend the first 
read using the overlapped read to construct a longer read. 
This process is repeated until either (i) there is no over-
lapped read, or (ii) there are more than one overlapped reads 
and the extensions by these overlapped reads are not con-
sistent. There are several problems when overlap-and-  
extend approach is applied on NGS reads. (i) There is high-
er sequencing error rate on reads which introduces errors on 
extension and prevents some true positive overlap. (ii) Data 
structure such as prefix tree is needed to determine the 
overlapped reads. As the data structure is large and there is 
huge number of reads, a large amount of memory is re-
quired for the assembling process. (iii) Finding overlapped 
reads from huge number of reads is time-consuming. 

Instead of considering each read separately, the string 
graph approach, e.g., Edena [9] and BOA [10], considers a 
global view of all reads when assembling. These assemblers 
construct a string graph for the reads in which each read is 
represented by a vertex and there is a directed edge from 
vertex u to vertex v if read u overlaps with read v, i.e., the 
suffix of at least k nucleotides of read u is the same as the 
prefix of read v. The value of k is the number of overlapping 
nucleotides for the two consecutive reads. If there are no 
errors and repeated patterns in the genome, the string graph 
should be a simple path without any branches, i.e., every 
vertex, except the first and the last vertices, points to (and is 
pointed by) exactly one vertex. However, because of the 
existence of sequencing errors and repeated patterns, string 
graph algorithms only report maximal paths without 
branches as contigs (fragments of genome). Similar to the 
overlap-and-extend approach, since the data structure used 
for storing the string graph is large, it requires a large 
amount of memory and takes a long time for finding over-
lapped reads. 

The de Bruijn graph approach, e.g., Velvet [11], Abyss 
[12], IDBA [19,21,22–25], Euler-SR [13,14] and AllPaths 
[15], constructs a de Bruijn graph for the reads in which 
each vertex represents a length-k substring (k-mer) in a read 
and there is a directed edge from vertex u to vertex v if u 
and v are consecutive k-mers in a read, i.e., the last k–1 nu-
cleotides of the k-mer represented by u is the same as the 
first k–1 nucleotides of the k-mer represented by v. Similar 
to the string graph approach, maximal paths without 
branches in the graph corresponding to contigs are outputted. 
There are two main advantages against the other two ap-
proaches. (i) Utilize information in erroneous reads. When a 
read has errors, it is difficult to use the read information for 
assembling using the above two approaches. Consider a 
length-100 read with 1% sequencing error rate, the proba-
bility of sampling an erroneous read is 1–(1–1%)100=0.63, 
i.e., 63% of sampled reads will be wasted. The main chal-
lenge is that we do not know which reads are erroneous. 
However, since at most k k-mers overlap with an erroneous 
nucleotide, consider a length-l reads with l–k+1 k-mers, 

there should be at least l–2k+1 correct k-mers obtained from 
the read for assembling even there is one error in the read. 
(ii) Less memory consumption. Since the k-mer can be 
stored effectively using a hash table [16] or bur-
rows-wheeler transform [17,18] and the storage is inde-
pendent of the number of reads. As a result, de Bruijn graph 
approach is widely used in assembling NGS reads. 

When all reads are error-free and the number of se-
quenced reads is large compared with the genome length 
(high sequencing depth), both string graph and de Bruijn 
graph approaches work well. However, because of the ex-
istence of erroneous reads and the repeated patterns exist in 
the genome, these two approaches may not perform well on 
some sequencing data.  

2  General problems of assembling NGS data 

2.1  False positive vertices 

Errors in reads introduce false positive vertices which make 
the string graph and de Bruijn graph larger and more com-
plicated. Besides consuming more memory for storage, the 
false positive vertices also introduce false positive edges in 
the graph which introduce more branches and reduce the 
lengths of simple paths, thus resulting in shorter contigs. 
For example, considering a human genome with 3G nucleo-
tides and assuming no sequencing errors, there should be at 
most 3G different reads and fewer than 50G memory will be 
needed. However, for a typical human genome data with 
30× sequencing depth and around 1% sequencing error, the 
memory requirement of Velvet [11] and Abyss [12] is more 
than 250 G. Simulated data of E. coli shows that when the 
sequencing error rate increases from 1% to 2%, the N50 of 
contigs produced by Velvet and Abyss reduces by 33% and 
50% respectively [19]. 

2.2  Gap problem 

Due to non-uniform or low sequencing depth for some se-
quencing data by the NGS technologies, reads may not be 
sampled for every position in the genome. For the string 
graph and de Bruijn graph approaches, when all the (possi-
ble l–k for length-l read) reads covering consecutive 
length-k region (k-mer) are missing, there will be a true pos-
itive edge missing in the graph and the contig which origi-
nally contains this edge will be shortened. A large k value 
will make the gap problem more serious because it will re-
duce the number of required missing l–k reads covering a 
particular region. Therefore, using a small k can prevent the 
gap problem. 

2.3  Branching problem 

If there is a repeat region in the genome with length at least 
k and the reads covering and near this repeat region are 
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sampled, there will be branches adjacent to the node con-
taining or representing the repeat regions in the string graph 
and de Bruijn graph. As mentioned before, erroneous reads 
may also introduce branches in the graph. Since many as-
semblers [1113] will produce contigs which stop at 
branches and it is not possible to extend the length of a con-
tig beyond without additional information, branching prob-
lem will lead to shorter contigs (if the assemblers stop at 
branches) or erroneous contigs (if the assemblers extend 
beyond branches). Since using small k will lead to more 
branches resulting from short repeat regions, large k can be 
used to avoid serious branching problem even though this 
problem is not solvable if the length of repeat region is 
longer than the read length. 

2.4  Under utilization of paired-end reads information 

Besides sequencing each reads independently (single-end 
read), current NGS technology allows sequencing a pair of 
reads, called paired-end reads, separated by an approximat-
ed distance (insert distance) in the genome. Mate-pair reads 
are called for longer insert distance. Since paired-end reads 
and mate-pair reads play similar roles in the assembling 
process, without loss of geniality, paired-end reads stand for 
both in this paper. Since the relative positions of the 
paired-end reads are known, existing assemblers 
[1113,15,19] usually align paired-end reads to different 
contigs and use the paired-end reads information to deter-
mine the relative positions of the contigs, called scaffolds. 
Although paired-end reads can be used to construct scaf-
folds, the information of the paired-end reads can also be 
used in assembling as they can be used to resolve branches 
in the graph. Some assemblers [20] try to apply paired-end 
reads information directly on assembling by considering a 
rectangle graph instead of de Bruijn graph. A contig can be 
represented by some traversal of the rectangle graph with 
the insert distance restrictions. Although the rectangle 
graph-based algorithm might be able to produce longer con-
tigs for small error in insert distance, it fails to construct 
long contigs in practice as the insert distance usually varies 
a lot. 

3  Solution for assembling NGS reads 

We have developed an IDBA (iterative de Bruijn graph  

short read assembler) package based on de Bruijn graph 
approach [19,21,2225] to solve those problems mentioned 
in Section 2 and construct longer and more accurate contigs 
from NGS reads. In this section, we will describe several 
novel ideas in the genome assembler IDBA-UD [22] in the 
package addressing each of the above-mentioned problems 
including (i) filtering erroneous k-mers for small k by mul-
tiplicity; (ii) using multiple k from small to large values 
iteratively; (iii) local assembling using paired-end reads 
information; (iv) reads and contigs correction. Table 2 
summarizes which problems are solved by these novel ideas. 
We will describe each idea one by one in this section. Fig-
ure 1 shows the workflow of IDBA-UD for assembling ge-
nome. 

3.1  Filtering short k-mers by multiplicity 

As mentioned before, although the error rate is low, the 
number of erroneous reads can still be larger than the num-
ber of correct reads. The number of erroneous k-mers can be 
much larger than the number of correct k-mers. Since the 

 
 

 

Figure 1  Flowchart of main steps in IDBA package. 

Table 2  Summary of the ideas of IDBA package for solving the problems in assembling 

Problems Solutions 

False positive vertices Filtering short k-mers for small k by multiplicity; reads and contigs correction 

Gap problem Using multiple values of k iteratively 

Branching problem Using multiple values of k iteratively; local assembling 

Paired-end read information Local assembling 
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same correct k-mers at a particular position may be sampled 
by different reads while erroneous k-mers might only be 
sampled once or twice, erroneous k-mers are unlikely to be 
generated multiple times and they can be filtered out based 
on their low multiplicities.  

In IDBA-UD, kmin-mers (kmin=25) appear no more than m 
times (m=1) will be removed by default. The values of kmin 
and m can be user-specified depending on the sequencing 
depth and genome length. As shown in [19], the probability 
that a correct k-mer being removed can be as low as 
1.14×109 (expected number of false removal is 0.0047<<1) 
when sampling 1.6 M length-75 reads with 1% error rate 
from a genome of length 4.1 M (45× coverage) while 
50%80% of erroneous k-mers can be removed. Thus, 
IDBA can much reduce the memory usage for storing the 
erroneous k-mers and the complexity of the de Bruijn graph.  
Other assemblers or read correction algorithms may apply 
similar approach for filtering or correcting erroneous k-mers 
or reads. For an effective filtering of erroneous k-mers or 
reads, a small k is required. However, in order to prevent 
branching problem, the assemblers need to apply a large k 
to construct de Bruijn graph which reduces the effectiveness 
of the error filtering steps. Read correction algorithm can 
apply shorter k-mers, say k=15, for filtering erroneous 
k-mers and correcting the input reads using a set of confi-
dent k-mers [26]. However, this process is time-consuming 
and might not be effective as each read will be determined 
independently without considering its overlap with others. 

3.2  Multiple k  

The regions in a genome can be classified into five classes 
according to their sequencing depth and the existence of 
repeat patterns (Table 3). Regions with high sequencing 
depth and no repeat pattern can be assembled easily inde-
pendent of the value of k (A). Regions with low sequencing 
depth and no repeat pattern can be assembled using a small 
k (but not a large k) because using large k will introduce a 
gap problem (B). On the other hand, regions with high se-
quencing depth and some short repeat patterns can be as-
sembled using a large k (but not a small k) because using 
large k can overcome the branching problem introduced by 
the short repeat patterns (C). Regions with low sequencing 
depth and short repeat patterns are difficult to assemble us-
ing single-end reads (D). Regions with repeat patterns long-
er than the read length are unsolvable using single-end reads 
(E). In this section, we will describe how to assemble region 
A, B and C using single-end reads. We will describe how to 
assemble regions D and E using paired-end reads later.  

Since small k value helps solve the gap problem while a 
large k value helps solve the branching problem, existing 
algorithms usually apply a single k in between as a trade-off 
between these two problems. Thus these algorithms can 
always assemble the region A, but only part of the region B 

Table 3  Classification of genome regions 

 A B C D E 

Sequencing depth High Low High Low Any 

Repeat No No Short Short Long 

Best k Any Small Large No No 

 
and part of the region C depending on the value of the cho-
sen k. Instead of using one single k value, IDBA-UD applies 
multiple k from small to large for constructing the de Bruijn 
graph and assembling the reads. By combining the ad-
vantages of different k values, IDBA-UD can assemble re-
gion A, B and C successfully. 

IDBA-UD first constructs a de Bruijn graph Gkmin based 
on the kmin-mer, say kmin=25, from the input reads after fil-
tering the erroneous kmin-mers by multiplicity. Since the 
value of k is small, the gap problem is not serious and the 
genome should be represented by a path in the de Bruijn 
graph. However, the branching problem may be very seri-
ous (Region C) as any repeat patterns with length at least 
kmin–1 will introduce branches in the de Bruijn graph. Alt-
hough the branching problem is serious, regions A and B 
can be assembled easily and contigs Ckmin can be construct-
ed to represent these regions. Then IDBA-UD increases the 
value of k, say k=kmin+1 and using the (kmin+1)-mers in the  
reads and contigs Ckmin to construct another de Bruijn graph 
Gkmin+1. Since the value of k increases, some of the branch-
ing problems (repeat patterns with length kmin–1) may be 
solved, i.e., part of the region C can be assembled. Since 
(kmin+1)-mers obtained from the contigs in Ckmin represent-
ing low sequencing depth region B are connected in Gkmin+1, 
there is no gap problem for a larger k value. Then IDBA 
repeats this process by increasing the value of k to kmin+2 
and constructs a de Bruijn graph Gkmin+2 using (kmin+2)-mers 
in the reads and contigs Ckmin+1. By iteratively increasing the 
value of k (up to kmax≤read length), region B can be assem-
bled without losing regions A and C of the genome. 

In practice, IDBA-UD needs not reconstruct a de Bruijn 
graph in each step, Gk+1 can be constructed by updating Gk, 
and reads appearing in contig Ck can be removed from the 
input. As a result, the speed of IDBA-UD is similar to the 
performance of existing algorithms [19]. Moreover, we can 
jump from k to k+s instead of considering every k between 
kmin and kmax to speed up the assembling process. As using 
too large s, say s>20, may reduce the quality of contigs, it is 
suggested to use s≤20 as a trade-off between the efficiency 
of the algorithm and the quality of the contigs. 

3.3  Local assembling 

Repeat patterns will introduce branches in the de Bruijn 
graph. In order to determine which branches a path should 
extend, single-end reads containing the repeat with two ends 
representing unique patterns near the repeat can be used to 
resolve the branches. Although IDBA-UD can utilize the 
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single-end read information to resolve some of the repeat 
patterns by applying multiple k values, there are some re-
peat patterns in low sequencing depth regions (region D) 
which are covered by very few or even no reads and some 
repeats longer than the read length (region E). As a result, 
these regions cannot be assembled using single-end reads 
only. However, since the insert distance (300–5000) of 
paired-end reads can be longer repeats, they could be used 
to resolve branches during assembling. 

Consider a repeat pattern R longer than read length oc-
curring twice in the genome (region E) adjacent to unique 
regions U1 and U2 on the left and unique regions U3 and U4 
on the right (Figure 2 shows the corresponding de Bruijn 
graph). Since we cannot determine whether the pair of con-
tigs U1RU3 and U2RU4 or the pair of contigs U1RU4 and 
U2RU3 occur in the genome using single-end reads, five 
contigs representing R, U1, U2, U3 and U4 will be obtained. 
If there are two paired-ends P1 and P2, where the two ends 
of P1 can be aligned to U1 and U3 and the two ends of P2 can 
be aligned to U2 and U4, then we can resolve the branches 
and determine that the contigs U1RU3 and U2RU4 are cor-
rect. A similar but more complicated situation is that region 
R represents a series of short repeats each of which occurs 
multiple times along the genome. When the sequencing 
depth is low (region D), the series of short repeats in region 
R cannot be determined easily because of the existence of a 
huge number of branches in the de Bruijn graph represent-
ing the interconnected short repeats. Consider there are two 
unique regions U1 and U3 adjacent to region R in the ge-
nome, we can divide those paired-end reads with one end 
aligned to the short repeats in region R into two groups: (i) 
those paired-end reads with the other ends aligned to R, U1 
or U3 (which should be sampled from the region U1RU3); (ii) 
those paired-end reads with the other ends cannot be aligned 
to U1, R nor U3 (which should be sampled from other re-
gions in the genome). Thus, when determining the sequence 
in region R, only paired-end reads in (i) should be consid-
ered. By reducing the number of reads, the de Bruijn graph 
representing region U1RU3 will become less complicated 
(without any branches) and the sequence of region R can be 
determined. 

IDBA-UD adopts the above idea by introducing the local 
assembling step in each iteration of k. After constructing a 
set of contigs Ck using single-end reads, the input 
paired-end reads will be aligned to each contig in Ck, those 
paired-end reads aligned to the same contig c will be 
grouped together with contig c to construct a smaller and  

 

 

Figure 2  Example of de Bruijn graph for long repeat. 

simpler de Bruijn graph. Since the branching problem is less 
serious in this smaller de Bruijn graph, longer contigs rep-
resenting regions near or adjacent to contig c can be assem-
bled. The contigs assembled in the local assembling step 
will be mixed with Ck and be used for constructing de 
Bruijn graph with larger k, say Gk+1. Since paired-end in-
formation is used, repeats whose lengths are longer than 
read length can be resolved and k-mers with length longer 
than read length could be constructed for resolving branches. 
As a result, the value of kmax can be increased to or more 
than the read length.  

3.4  Reads and contigs correction 

Although some erroneous k-mers are filtered based on mul-
tiplicity, there are still some unfiltered errors in reads and 
thus contigs. During assembling process, since erroneous 
k-mers can be removed using topological based methods 
such as removing tips (short dead-end path, say shorter than 
2× read length, in the de Bruijn graph) and merging bubbles 
(combining two paths in the de Bruijn graph representing 
similar sequences), the contig sequences are usually more 
accurate than a read. Thus, by aligning reads to the contigs, 
errors in reads can be detected and be corrected. For each 
position in a contig, IDBA-UD will determine whether the 
nucleotide in that position is “confident” by checking the 
number of reads aligned to the contigs covering that posi-
tion. If over 80% of aligned reads have the same nucleotide 
at a particular position, that position is confident and 
aligned reads with different nucleotides at that position will 
be corrected. Note that reads which can be aligned to multi-
ple contigs will not be counted. 

Besides correcting reads by contigs, corrected reads can 
also assist better assembling and construct more accurate 
contigs. IDBA-UD provides an optional pre-error-correction 
step for correcting reads before assembling. A medium k 
value and filtering threshold will be used to assemble reads 
to construct contigs. Erroneous reads are corrected based on 
its alignment with the contigs. These corrected reads will 
then be used for assembling as in the normal process. 

4  Problems and solutions for assembling tran-
scriptomic data 

Transcriptomic data contains multiple RNAs produced by 
the same species. The RNA sequences are different and 
mixed. The NGS technology can only sample reads from 
the mixture of RNAs without knowing the association be-
tween a read and the RNAs. 

4.1  Problems of assembling transcriptomic data 

Compared with assembling genomic data, there are two  
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additional problems in assembling transcriptomic data. (i) 
Different expression levels of RNAs. The expression levels 
of different RNAs can vary a lot (three orders of magnitude, 
i.e., 11000). Thus, some RNAs appear with high abun-
dance in the sample while some RNAs appear sparingly. 
Since reads are uniformly sampled from the RNAs, more 
reads are sampled from the high-expressed RNAs while 
fewer reads are sampled from the low-expressed RNAs. As 
a result, the number of erroneous k-mers and reads sampled 
from high-expressed RNAs can be much more than the 
number of correct k-mers and reads sampled from 
low-expressed RNAs. The erroneous k-mers with high mul-
tiplicity cannot be filtered easily and introduces many 
branching problems. On the other hand, the correct k-mers 
with low multiplicity may be filtered and introduce the gap 
problems. (ii) Alternative splicing. Since different regions, 
called exons, of a single gene can be copied to form differ-
ent RNAs through alternative splicing, RNAs (isoforms) 
constructed from the same genes can have very similar se-
quences with long repeat regions. These long repeats cannot 
be easily solved using local assembling or multiple k. 

4.2  Solutions for assembling transcriptomic data 

Isoforms from the same gene should be represented by a 
connected component in the de Bruijn graph. However, be-
cause of the existence of erroneous reads, the components 
representing different genes may be connected in the de 
Bruijn graph and cannot be separately easily. IDBA-Tran 
[25] models the multiplicities of k-mers in the same com-
ponent by a multi-normal distribution which depends on the 
expression levels of the corresponding isoforms. Based on 
the multi-normal distribution, erroneous k-mers in the 
component with relative low multiplicity can be determined 
and be removed. By removing the erroneous k-mers, large 
components representing multiple genes can be divided into 
smaller components. New multi-normal distributions can be 
learned from the smaller components and erroneous k-mers 
in these small components can be determined and be re-
moved. By repeating this step, IDBA-Tran obtains a number 
of small components each of which represents a single gene. 

Since each paired-end read should be sampled from a 
single isoform, an isoform should be represented by a path 
in a small component with supports from multiple 
paired-end reads (paired-end read aligned to the path with 
the distance of the two ends matches with the insert dis-
tance). For each small component, IDBA-Tran recovers the 
isoform sequences by searching paths in the component 
with maximum support from the paired-end reads. As the 
number of branches in each small component is small, this 
search process is efficient and the resultant contigs are ac-
curate compared with searching paths in the original de 
Bruijn graph. 

5  Problems and solutions for assembling meta-
genomic data 

Metagenomic sample contains multiple genomes from dif-
ferent species. During the sequencing process, reads are 
sampled from these genomes without any information of 
which genome a particular read comes from.  

5.1  Problems of assembling metagenomic data 

Besides the problems mentioned in Section 2, there are two 
additional problems when assembling metagenomic data. (i) 
Repeat patterns from similar species. Species with similar 
genomes, say subspecies from the same species, may appear 
in the sample. There are many common patterns (repeats) 
among the similar genomes. As a result, there are more and 
longer repeats in the metagenomic data than the genomic 
data. The repeats will connect the de Bruijn graph for dif-
ferent species into a larger and more complicated de Bruijn 
graph. (ii) Different abundances. The abundances of differ-
ent species can vary (two or more orders of magnitude). 
Similar to assembling transcriptomic data, the erroneous 
k-mers cannot be filtered easily because erroneous k-mers 
sampled from high abundance species have higher multi-
plicity than correct k-mers sampled from low abundance 
species. 

5.2  Solutions for assembling metagenomic data 

The repeat problem can be solved partially using the multi-
ple k and local assembling technology as in the genomic 
data. However, as the length of repeats can be longer than 
the insert distance, those long repeats are difficult to resolve 
completely. Instead of resolving all repeats, Meta-IDBA [21] 
proposes to distinguish those repeats occurring in different 
subspecies of the same species and the repeats occurring in 
different species. Since similarity of the genomes of differ-
ent subspecies of the same species is high, there are many 
repeats among them and the distances of adjacent repeats in 
the genomes are short. For the genomes of different species, 
although there are repeats, there are relatively fewer repeats 
among different species and these repeats are further apart 
in the genomes. When considering the de Bruijn graph of 
different subspecies of the same species, the path between a 
repeat and its closest repeat is short while in the de Bruijn 
graph of different species, the path between a repeat and its 
closest repeat is long. Based on this property, the repeats 
among different species can be determined and resolved 
such that the de Bruijn of different species can be separated. 

In order to solve the abundance problem, IDBA-UD [22] 
applies another approach for separating the de Bruijn graph 
to smaller components representing genomes of different 
species. Although the sequencing depths may vary a lot 
along the genome, sequencing depths for neighboring re-
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gions in the genome should change slowly and are similar. 
Even the multiplicities of some k-mers within a high se-
quencing depth region are higher than the global average 
multiplicity, they may be erroneous if they have relatively 
much lower multiplicity than the nearby k-mers. Similarly, 
when the multiplicities of some k-mers within a low se-
quencing depth region are lower than the global average 
multiplicity, these k-mers may not be erroneous. Based on 
this idea, instead of using a global average of the multiplic-
ity of all k-mers, IDBA package adopts variable relative 
thresholds depending on the sequencing depths of their 
neighboring contigs. Short contigs with relative low multi-
plicity than adjacent contigs will be removed progressively 
(repeatedly remove those contigs with lowest multiplicity 
first and recalculate the average multiplicity of the rest con-
tigs). 

6  Problems and solutions for assembling meta-
transcriptomic data 

Metatranscriptomic data contain reads sampled from dif-
ferent RNAs from different species without knowing the 
association of read to RNA or species. As the number of 
RNAs is large (compared with transcriptomic data) and the 
abundances of RNAs vary a lot (large variation than meta-
genomic and transcriptomic data). It is very difficult to as-
semble metatranscriptomic data. 

6.1  Problems of assembling metatranscriptomic data 

Assembling metatranscriptomic data has similar problems 
as assembling genomic, transcriptomic and metagenomic 
data but the problems are more serious. (i) Repeats problem. 
RNAs from different species with similar function usually 
have similar sequences. As some RNA functions are essen-
tial for life, many RNA sequences have similar patterns  

even they are from different species. This large amount of 
repeats cannot be solved by the above methods completely. 
(ii) Huge variations in abundances. Since the abundances of 
different species vary and the expression levels of different 
RNAs from the same species also vary, the abundances of 
different RNAs in the sample can vary a lot. Because of 
these problems, existing assemblers usually combine dif-
ferent regions of different RNAs into a single wrong contig, 
called chimeric contig [23]. 

6.2  Solutions for assembling metatranscriptomic data 

IDBA-MT [23] and IDBA-MTP [24] solve the chimeric 
contigs by two different approaches. When the chimeric 
contigs are constructed from RNAs with different abun-
dances, the multiplicities of the k-mers along the chimeric 
contig usually vary a lot. Moreover, since paired-end reads 
are sampled from the same RNA, there should be no 
paired-end reads with two ends aligned to regions from dif-
ferent RNAs. Although the above two ideas can be applied 
to determine chimeric contigs, the false positive rate is still 
high and many correct contigs are considered as chimeric 
contigs. IDBA-MT applies a probability model, based on 
both multiplicity and paired-end reads information, to de-
termine chimeric contigs with higher true positive and lower 
false positive than the straightforward approach. 

IDBA-MTP applies another approach to resolve chimeric 
contigs. A major type of RNA is messenger RNA (mRNA) 
which can be decoded to produce proteins. Since the protein 
sequences of many microbes are known and are similar, 
IDBA-MTP constructs contigs in de Bruijn by aligning 
known protein sequence to the de Bruijn graph. Given a 
protein sequence, IDBA-MTP finds a path in the de Bruijn 
graph representing an mRNA such that the decoded protein 
sequence is similar to the input protein sequence. By using 
known protein sequence information, the repeat problem 
and varying abundance problem can be greatly alleviated.

Table 4  The assembly results on simulated 10× lenght-100 reads of Lactobacillus plantarum (~3.3 Mb) with 1% error rate 

 k 
Contigs Scaffolds 

Time Mem 
No. N50 Max len Cov (%) Sub. err err # (len) No. N50 Max len Cov (%) Sub. err err # (len) 

IDBA-UD 20100 210 36513 201860 99.56 0.0225% 10 4437 83 194322 406269 99.55% 0.0218% 5 3784 63 s 432 M 

SOAPdenovo 31 3346 1584 8691 98.36 0.0572% 1079 112 k 147 121214 246514 92.50% 0.0483% 1087 283 k 31 s 852 M 

Velvet 21 473 13761 48489 98.09 0.0323% 5 15 k 111 111871 225438 96.81% 0.0291% 6 67 k 43 s 526 M 

Table 5  The assembly results on real single cell sequencing data of Escherichia coli (~4.64 Mb)a)  

 k 
Contigs Scaffolds 

Time Mem 
No. N50 Max len Cov (%) Sub. err err # (len) No. N50 Max len Cov (%) Sub. err err # (len) 

IDBA-UD 40100 187 82007 224018 95.01 0.0017% 87 347 k 148 98306 224018 95.00 0.0016% 73 346 k 35 min 3.2 G 

SOAPdenovo 75 6008 6428 50965 92.42 0.0421% 693 335 k 4419 25244 118128 86.49 0.0448% 588 653 k 30 min 19 G 

Velvet 45 1736 7679 68395 92.69 0.0095% 160 266 k 1707 7795 68395 92.59 0.0095% 154 272 k 91 min 11 G 

Velvet-SC 55 372 34454 157931 92.74 0.0019% 78 279 k       46 min 8.3 G 

a) The read length is 100, insert distance is about 215, and the average depth is about 600×. 

liuhui
在文本上注释
此数字没加k,是否需要加？

liuhui
在文本上注释
此数字没加k,是否需要加？

liuhui
在文本上注释
此列数字间的空格表示什么？是否可删除？
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7  Experimental results 

IDBA package outperforms existing genome assemblers in 
multiple simulated and real datasets [19,21,2225]. In this 
section, we show the experimental results on one simulated 
dataset and one real dataset for demonstration. Tables 4 and 
5 show the performance of IDBA-UD on assembling simu-
lated and real single cell sequencing genomic data. The 
simulated data was generated from the genome of Lactoba-
cillus plantarum. Length-100 reads with 1% sequencing 
error rate and depth 10× were generated and assembled by 
Velvet [11], SOAPdenovo [27] and IDBA-UD [22]. A con-
tig is considered as correct if it can be aligned to a region of 
the genome with 95% similarity. As showed in Table 4, 
when the sequencing depth is low (10×), IDBA-UD pro-
duced longer contigs (more than double N50 and five times 
of the maximum contig length) and scaffolds (60% increas-
es in N50 and 65% increases in the maximum scaffold 
length) with the minimum errors. Similar result obtained in 
the real single cell sequencing data of Escherichia coli. The 
read length was 100 and the insert distance was around 215 
nt. The average sequencing depth of the data was 600× but 
the sequencing depth for different region varied a lot. When 
the variation of sequencing depths is two order of magni-
tudes, IDBA-UD can still produce longer contigs (more 
than double N50 and 43% increases in the maximum contig 
length) and scaffolds (four times increases in N50 and dou-
ble the maximum scaffold length) with the second minimum 
error in contigs and the minimum error in scaffolds. 
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