The Point Placement Problem on a Line -
Improved Bounds for Pairwise Distance Queries*

Francis Y.L. Chin' Henry C.M. Leung! W.K. Sung? S.M. Yiu!

! Department of Computer Science, The University of Hong Kong,
Pokfulam Road, Hong Kong
{chin, cmleung2, smyiu}@cs.hku.hk
2 Department of Computer Science, National University of Singapore, Singapore
ksung@comp.nus.edu.sg

Abstract. In this paper, we study the adaptive version of the point
placement problem on a line, which is motivated by a DNA mapping
problem. To identify the relative positions of n distinct points on a
straight line, we are allowed to ask queries of pairwise distances of the
points in rounds. The problem is to find the number of queries required
to determine a unique solution for the positions of the points up to trans-
lation and reflection. We improved the bounds for several cases. We show
that 4n/3 + O(y/n) queries are sufficient for the case of two rounds while
the best known result was 3n/2 queries. For unlimited number of rounds,
the best result was 4n/3 queries. We obtain a much better result of us-
ing 5n/4 + O(y/n) queries with three rounds only. We also improved the
lower bound of 30n/29 to 17n/16 for the case of two rounds.

1 Introduction

The point placement problem on a line is defined as follows. Suppose that there
are n points located at n distinct positions on a straight line. We are allowed
to ask queries of pairwise distances of the points. The problem is to find the
number of queries required to determine a unique solution for the positions of
the points up to translation and reflection. The points are distinguishable (i.e.,
each point has a unique label). In this paper, we study the adaptive version of
the problem. We submit our queries in rounds. In each round, the queries to be
asked can be based on the answers to the queries of the previous rounds. For the
non-adaptive version of the problem, only one round of queries is allowed.

The problem is motivated by a biological problem, called DNA mapping. In
general, we are interested to recover the whole DNA sequence for an organism.
One approach is to make use of some known short substrings, called markers or
restriction sites. The first step in this approach is to find the relative positions of
these markers in the DNA sequence. Unfortunately, there is no direct method to
identify these positions. A common technique for handling it is the flourescent
in situ hybridization (FISH) [5] Given any two markers, a FISH experiment can

* This research is supported by the RGC grant HKU7119/05E.

measure the distance between the markers in the sequence. The locations of these
markers can be deduced if enough information about the pairwise distances of
the markers are known. For more details about this problem, one can refer to
[6]. Note that doing experiments incurs resources such as time and money. To
reduce the cost, one would like to perform as few experiments as possible. We
can design the experiments adaptively depending on the results of all previous
experiments. However, this is too time-consuming. A more reasonable approach
is to perform the experiments in a few rounds. In each round, we design a set
of FISH experiments based on the measurements obtained from the previous
rounds and perform the designed FISH experiments in parallel. This motivates
the study of the adaptive versions of the point placement problem on a line.

The problem is easy to describe and solve optimally if the point positions are
not distinct; it can be shown in [1] that C(n, 2) nonadaptive and 2n — 3 adaptive
queries are necessary and sufficient to solve the problem. However when the
point positions are distinct, a more realistic assumption for the DNA mapping
problem in which each maker should be distinct, this point placement problem
becomes surprisingly difficult. It was shown that 8n/5 queries are sufficient while
the lower bound is 4n/3 except for some small n cases [1]. For the case of two
rounds, it was shown that 3n/2 queries are sufficient [1] while the lower bound
could only be shown to be 30n/29 [2]. For unlimited number of rounds, the upper
bound result of 3n/2 in [1] was improved to 4n/3 in [2] (to be more precise, they
derived a strategy with [4/3 + O(1/t)]n queries for O(t) rounds, note that this
result only applies to the case when the number of rounds is sufficiently large).
So, the best upper bound for two rounds was still 3n/2 while for unlimited
number of rounds, the best upper bound was 4n/3. In this paper, we manage
to improve these results and our contribution is summarized in the following
table. For two rounds, we obtained an upper bound of 4n/3 + O(y/n) queries
and improved the lower bound to 17n/16. For unlimited number of rounds, we
are able to reduce the number of queries to 5n/4 + O(y/n) and we only need
three rounds.

Two Rounds Unlimited number of Rounds
Upper Bound| 3n/2 — 4n/3 + O(y/n) 4n/3 — 5n/4 + O(y/n) in 3 rounds
Lower Bound 30n/29 — 17n/16 —

The improvement we obtained is based on an observation on the induced
graph (we call it the point placement graph) of the given points and the pairwise
distances being queried. We give a characterization to these graphs for which
the corresponding locations of the points can be determined uniquely (up to
translation and reflection). The definitions of the point placement graph and the
characterization will be given in Section 2. Section 3 shows the algorithm for
solving the two-round case. The solution for the three-round case is presented
in Section 4. The lower bound for the two-round case is discussed in Section 5.

As a remark, there are some other related works in this area. For example, [4]
studied the problem of finding the best estimation of the locations of points from
a partial set of pairwise distances of the points. In their study, they assumed that
there may be errors in measuring the pairwise distances and provided heuristics
algorithms to solve the problem. In [3], a similar problem has been studied by
assuming that the pairwise distances are given in terms of distance intervals.
They proposed a randomized algorithm to solve the problem. They also proved
that the problem is NP-hard even for those point alignment graphs which have
only chordless cycles.

2 Preliminaries

Given a set S of n distinct points, p1, p2, ..., Pn, on a line and a set D of
pairwise distances of some of these points, we can construct a point placement
graph, G(S, D), as follows. Each point is represented as a node and if the distance
between p; and p; is given, there is an edge between the nodes representing p; and
p; with weight equal to the given distance. The distance is denoted as |p;p;|. Not
every point placement graph corresponds to a unique set of n distinct points (up
to translation and reflection) on a line. For a given point placement graph, any
set of n distinct points on a line for which the pairwise distances are consistent
with the graph is called a linear layout of the graph. The following lemma shows
a simple observation on a point placement graph.

Lemma 1. There are at most 2 edges with the same length | adjacent to any
node in the graph G. [2]

Proof. Consider the linear layout of G, there are at most two distinct points
whose distance from a node is [.

Definition 1. A point placement graph G is line rigid if there is only one unique
set of n distinct points (up to translation and reflection) on a line that is con-
sistent with G, i.e. there exists a unique linear layout of G.

The following shows a characterization of a line rigid point placement graph.
We first define what a layer graph is.

Definition 2. A point placement graph G is called a layer graph if G can be
plotted in a xy-plane (represented by two unit vectors x and y) with the following
properties.

1. All edges uv are parallel to x ory, ie. |lu—v|=(u—v) x or (u—v)-y

2. Length of edge uv, |u — v|, is the same as the weight of the edge.

3. There are two nodes p and q with different x-coordinates and y-coordinates.
ie. (p—q)-z#|p—q|land(p—q) -y #|p—dq|

4. When the angle between x and y tends to O or w, no nodes overlap.

Figure 1 contains three examples of layer graphs with « and y as two per-
pendicular vectors.

Theorem 1. A point placement graph G is line rigid iff it is not a layer graph.

Proof. Without loss of generality, we assume that G is connected, otherwise,
Theorem 1 can be proved by considering each connected component of G. If G
is a layer graph, we can find two linear layouts of the graph by considering angle
between x and y tends to 0 and 7 (Property 4). Assume that G is not line rigid.
Consider a spanning tree S of G and two linear layouts P and P’ of G. Pick any
node of S as the root. We plot the root of S at the origin and the remaining
edges uv with length [in S as follows:

1. Node v is on the right of node u in both P and P', v = u + lz.
2. Node v is on the left of node u in both P and P', v = u — lx.
3. Node v is on the right of node v in P and on the left of node u in P,

v=u+ly.
4. Node v is on the left of node v in P and on the right of node u in P,
v=u—ly.

It is easy to see that the spanning tree S constructed by the above procedure
satisfies Property 1, 2, and 3 of a layer graph. When the angle between x and
y tends to 0 and m, S is degenerated to a straight line on the z-axis with the
positions of all vertices the same as the linear layouts P and P’ respectively,
therefore S satisfy property 4 and is a layer graph.

Consider the edges of G not in S. Let uv be a length-l edge between vertices
w(z1,y1) and v(z2,y2). When the angle between x and y tends to 0, i.e. the
positions of the vertices are the same as the linear layout P, v(x2,y2) is on the
right of u(x;,y;) with distance (z2 — 1) 4+ (y2 —y1). Note that when (xo —z1) +
(y2 — y1) is negative, v(z2,y2) is on the left of u(x1,y;). When angle between
x and y tends to 7, i.e. the positions of the vertices are the same as the linear
layout P, v(x2,y2) is on the right of u(x1,y;) with distance (z2 —x1) — (y2 —y1)-
Note that when (z2 —21)— (y2—y1) is negative, v(za, y2) is on the left of u(z1,y1).
Since |(z2 — z1) + (Y2 —y1)| = [(x2 — 1) — (Y2 — y1)| =, we have two possible
solutions: i) (zz — 1) =l and (y2 —y1) =0, i) (22 —2z1) =0 and (y2 — 1) = 1.
Therefore, uv is either parallel to x or y and the distance between u(z1,y1) and
v(x2,y2) is . G is a layer graph.

Lemma 2. A j-cycle C with nodes p, q, r, s and edges pq, qr, rs, sp is not line
rigid if |pg| = |rs| and |qr| = |sp|. [1] (proof omitted)

Based on the above characterization, we identify the following property for
5-cycle and 6-cycle point placement graph to be line rigid. Note that since we
only consider point placement graphs, we will simply refer them as graphs.

Lemma 3. A 5-cycle C' with nodes p, q, r, s, t and edges pq, qr, rs, st, tp is
line rigid if |pq| ¢ {|rs|,|st],[|rs| £ |st|[} and |st] ¢ {lqrl, |lpq| + lqr||}-

Proof. A 5-cycle layer graph with nodes a, b, ¢, d, ¢ must be plotted in one
of the three ways in Figure 1 with (a,b,¢,d,e) = (p,q,r,s,t) or (¢,p,q,r,s) or
(s,t,p,q,7) or (r,s,t,p,q) or (q,r,s,t,p). In all cases, we show that C' cannot be
mapped to any of these three layer graphs because (a, b, ¢, d, e) cannot be equal
to

b b
Ibcl = leal Ibcl = leal bl = leal

e c d e d c d e c

Fig. 1. Layer graphs for 5-cycle

(p,q,7,5,t) because |pq| # ||rs| + [st[]
(t,p,q,7, s) because |pq| # |st|
iii. (s,t,p,q,7) because |st| # ||pg| £ |gr||
iv. (r,s,t,p,q) because |st| # |qr|

(g7, s,t,p) because [pq| # |rs|

ii.

Since C' cannot be mapped to these three graphs, C is not a layer graph.
Therefore, it is line rigid (Theorem 1).

Lemma 4. A 6-cycle C with nodes o, p, q, r, s, t and edges op, pq, qr, rs, st,
to is line rigid if

- lopl ¢ {larl,|rsl,|stl |lgr| £ |rs||, |Irs| £ [st]], [[gr| £ [st]], |lgr| £ |rs| £ |st]|}
- |pal ¢ {Irsl,|stl,|rs| £ |st||}

- lar| & {Ist], [lop| £ |st||}

- |rs| # |lop| £ [pq]]

- Istl & {llopl £ Ipall, llpal £ lgrl, lopl £ |gr|l, [lopl £ |pal £ |gr||}

- lop| £ |pg|| # ||rs| £ |st|]

D Cr A oo~

Proof. Similar to the proofs of Lemma 3, Lemma 4 can be proved by considering
all possible mapping function from (op, pq, qr, rs, st, to) to 15 ways of plotting a
6-cycle layer graph in the xy-plane.

3 Upper Bound for Two Rounds

In this section, we show that 4/3n (more precisely, 4n/3 + O(y/n)) pairwise
distance queries are sufficient to determine the positions of n distinct points
on a line using two rounds. The main idea is based on Lemma 1 and 3. From
Lemma 3, we can always have a line rigid 5-cycle (p,q,r,s,t) no matter what
the distance between node p and node t is. Since at each point, there are at most
two edges with the same length, we can always find many links of 4 edges pq, gr,
rs, st satisfying the conditions stated in Lemma 3 and form 5-cycles by making
the last query on the distance bewteen node p and node t. Since each 5-cycle can
determine the positions of 3 points (2 points of the 5-cycle should be fixed) with
4 queries, we might achieve the ratio 4/3 when the number of points is large.

Algorithm 1. Let n = 3b% 4+ 17b + 31 for some positive integer b. In the first
round, we choose 3b? + 17b + 30 queries represented by the tree in Figure 2.

di

t.
Di ik

b? subtrees b + 2 subtrees

Fig. 2. First round queries for 2-round algorithm.

Let vertex r be the root of the tree. There are b subtrees (2-links) with
exactly one child ((piqi,qir),i = 1,2,...,b%) and and b+2 subtrees (b-trees) with
roots s;,j = 1,2,dots, b+ 2, each with b + 14 children #;,k =1,2,...,b + 14.

In the second round, for each 2-link (p;g;, g;7), we find a distinct path (rs;, s;t;x)
in the b + 2 b-trees ((b+ 2)(b + 14) = b? + 16b + 28 possible paths) to form a
5-cycle which satisfies the requirements stated in Lemma 3 and query the length
of t;xp;. Note that there are at most 16b 4 28 paths that do not satisfy Lemma
3 because there are at most a) 2 b-trees with |p;¢;| = |rs;| (Lemma 1) and b) for
each tree rooted at s; there are at most 2 edges s;t;; for each case

i |pigi| = |sjtkl

ii. |pigi| = |rs;| + [sjtjul
il [pigi| = |rs;| — |s;tjxl
iV. |piq,~| = |Sjtjk| — |’I“Sj|
v. |sjtjk| = |qir]

vi. |sjtix| = [piqs| + |qir]
vil. [sjtjx| = |pigi| — |qir| or |gir| — |pigi

So we can always find a distinct path (rs;, s;t;x) by matching with (p;q;, ¢;7).
For each of the unused 16b + 28 leaves ¢j;, in the b-trees, we query the distance
between node tj;, and the root r (rt;;). Last, we query the length of s;s;41,j =
1,2,...,0+1.

Theorem 2. The graph constructed by Algorithm 1 is line rigid.

Proof. The relative positions of the b+2 b-trees and the root r can be determined
because they form b + 1 connected triangles (rsj,rs;ji1,5;5;4+1) with the root
r [1]. The relative positions of 16b + 28 leaves t;, are also fixed because each
forms a triangle (s;t;x,rs;,7t;) with the root 7 and its parent [1]. Each 5-cycle
formed in the second round is line rigid (Lemma 3). Therefore the graph is line
rigid.

Theorem 3. Algorithm 1 uses 4n/3 + O(\/n) queries.

Proof. In the first round, we have chosen 3b? + 17b + 30 queries. In the second
round, we have chosen b + (16b+28) + (b+1) = b+ 17b+ 29 queries. Therefore,

the total number of queries is

(36 + 17b + 30) + (b* + 17b + 29)

4
(3b? + 17b+ 30) + <3—b + §>

3 3

IA

4
3
4 34
4

4 Upper Bound for Three Rounds

In this section, we show that 5n/4 (more precisely, 5n/4 + O(y/n)) pairwise
distance queries are sufficient to determine the positions of n distinct points on
a line using only three rounds. The idea is based on the same idea for the 2-
round case. Instead of building 2-links, we try to build 3-links. However, there is
a problem of using 3-link. Let (0;p;, pigi, ¢;r) be a particular 3-link (note that we
assume r is the root in Algorithm 1). If |o;p;| = |gir|, then we may not be able
to get a unique solution (Lemma 4). However, according to Lemma 1, for any
edge with weight |o;p;|, there are at most two edges gsr, 3 = 1,2,...,b?, such
that |gar| = |oipi|- Instead of constructing b* 3-links in a single round, we first
construct b + 2 1-links and b edges o;p;,i = 1,2,...,b%. For each edge o;p;, we
can always find a distinct 1-link ggr such that |o;p;| # |ggr|. By querying the
length of p;qs, we will get a 3-link (0;p;i, pigg,qpr) with |o;pi| # |gpr|-

Algorithm 2. Let n = 4b> + 87b + 773 for some positive integer b. In the first
round, we choose 2b? 4+ 87b + 772 queries represented by the tree in Figure 3.
We also pair up the rest 2b2 nodes and query their pairwise distances |o;p;|,i =
1,2,...,0°

Let vertex r be the root of the tree. There are b? + 2 children (1-links)
are leave (ggr,3 = 1,2,...,b% + 2) and b + 10 subtrees (b-trees) with roots
sj,j =1,2,...,b+ 10, each with b+ 76 children ¢;;,,k =1,2,...,b 4 76.

In the second round, for each edge o;p;, we find a distinct 1-links ggr such
that |o;p;| # |gar| and query the length of p;gs to form a 3-link (0;pi, Pigs, qar).
For the rest two 1-link ggr, we query the length of ggs;.

In the third round, for each 3-link (o;p;,piggs, gsr), we find a distinct path
(rsj, sjtjr) in the b+ 10 b-trees ((b+ 10)(b+ 76) = b* + 86b + 760 possible paths)
to form a 6-cycle which satisfies the requirements stated in Lemma 4 and query
the length of ¢j;0;. Note that there are at most 86b 4+ 760 paths that do not
satisfy Lemma 4 (Lemma 1). So we can always find a distinct path (rs;, s;t;x)
for (0;pi, piqgs, gar)- For each of the unused 86b+ 760 leaves t;;, in the b-trees, we
query the distance between node t;, and the root r (rt;;). Last, we query the
length Of Sj8j+1,j = 1, 2, PN b + 1.

Theorem 4. The graph constructed by Algorithm 2 is line rigid.

b? + 2 leaves

111

b’ edees

b + 10 subtrees

Fig. 3. First round queries for three round algorithm.

Proof. The relative positions of the b + 10 b-trees and the root r can be de-
termined because they form b+ 1 connected triangles (rs;,rs;41,5;8j41) with
the root r [1]. The two unused 1-links r¢s are line rigid because they form two
triangles (rs1,7rqg, gss1) with the root r and node s;. The relative positions of
10b + 76 leaves ¢, are also fixed because each forms a triangle (s;t;x,rs;, 7tk)
with the root r and its parent [1]. Each 6-cycle formed in the third round is line
rigid (Lemma 4). Therefore the graph is line rigid.

Theorem 5. Algorithm 2 uses 5n/4 + O(\/n) queries.

Proof. In the first round, we have chosen (2b% 4+ 87b+ 772) +b* = 3b> + 87b+ 772
queries. In the second round, we have chosen b2 + 2 queries. In the third round,
we have chosen b* + 86b + 760 + (b + 9) = b® + 87b + 760. Therefore, the total
number of queries is

(30 + 87b + 772) + (b* + 2) + (b* + 87b + 760)

5, 261, 2271
_4(4b +87b+773)+< y b+ 1 >
5 261
< = _—_
<gnt 3 vn
5

5 Lower Bound for Two Rounds

In this section, we show that any 2-round adaptive algorithm for solving the
1-dimensional point placement problem requires at least 17n/16 queries.

Let V be the set of points. Suppose that a particular 2-round algorithm can
uniquely determine the relative positions of a set V' of n nodes in two rounds.
Let G; = (V, Ey) and G2 = (V, Ey U E5) be the graphs of queried node pairs (or
edge), where E;(i = 1,2) contains all edges whose lengths have been measured
in round ¢.

Let us consider round 1 first. The algorithm has queried the edges in G;. The
adversary will report the length of the edges based on the following strategy:

1. For nodes of degree at least 3, the adversary fixed the layout of all these
nodes and answers the queries of E; related to these nodes accordingly.

2. For nodes of degree 2, we consider the maximal paths (pi,p2,ps,...,DPk)
formed by these nodes such that the number of degree 2 nodes is at least 3.
Let pg and pg41 be the nodes of degree not equal to 2 which are adjacent
to p1 and pg, respectively. The adversary fixed the layout of nodes p; if
i = 0(mod 3).

Denote (p;, pi+1) as special node pair if ¢ = 1(mod 3). For each special node
pair, say (p;, pi+1), suppose p; is adjacent to p;—1 and p;;1 is adjacent to p;yo.
Note that the positions of p;_1 and p; 41 are fixed. The adversary sets |p;—1pi| =
|pit1pit2] and |pipit1] = |pi—1pit+1]. By setting the length in this way, the posi-
tions of p; and p; 11 are ambiguous. (More precisely, p; and p;11 have two possible
layouts: (1) p; to the left of p;_; and p;4+1 to the left of p;1o or (2) p; to the right
of p;_1 and p;41 to the right of p;;o.) Then, we consider G5 (that is, round 2).
We have the following two properties:

Lemma 5. In G, for each special node pair (p;, pi+1), there exists at least one
edge in Ea connecting to either p; or pit1.

Proof. Suppose that both p; and p;+1 do not attach to any edges in Es. Then,
the ambiguity we introduced in round 1 cannot be resolved.

Lemma 6. For any mazimal path P of degree 2 in G2, the number of nodes in
the maximal path is at most 4.

Proof. By construction, no three consecutive edges in the maximal path can be
in E. If there exist three consecutive edges in E;, two of the nodes will form a
special node pair.

Suppose that the number of degree-2 nodes is 5, let the nodes be pg, p1, p2, p3,
P4, Ps, Pe Where pg and pg are heavy nodes adjacent to the length-5 maximal path.
Suppose that |pop1| = w1, |p1p2| = wa, [paps| = ws, |psps| = w4, |paps| = ws,
and |pspe| = wg. There are the following combinations of E; and E- edges for
(w1,w2:w37w47w5:w6)-

. Es, By, E,Ey, By, Fy
. E1,Es, E1,Es, B, F4
E\, By, By, E, B>, By
. B, B, Es, Ey, By, Fy
. E1,E,Es, Eq, Es, E4
. B, By, Es, Ey,Eq, Fy

For each combination, we can set the length of the edge of E; to make it
ambiguous. For example, for combination 1, we can set wy 4+ ws + w3 = ws + wg
and wq = |pspol; then (po, p1, p2, p3, P4, Ps) can be degenerated to a 4-cycle which
is not line rigid (Lemma 2) and becomes ambiguous.

Below, we try to analyze the average number of edges per node. Nodes of
degree at least 3 or belong to special node pair are denoted as heavy nodes;
otherwise, they are light nodes. We split every edge into two fractional edges
owned by the two incident nodes. For an edge joining two heavy nodes or two
light nodes, each incident node owns 1/2 edge count. For an edge joining a light
and a heavy node, the light node owns 1/2 + g edge count and the heavy node
owns 1/2 — g edge count. (We will specify g below.) The nodes in V' can be
divided into three types:

a. Special node pairs
b. Degree 3 normal nodes

c. Maximal path formed by degree-2 normal nodes connecting using edges in
E1 and Ez.

For type (1), by Lemma 5, each special node pair (p1,p2) has at least one
edge in E» connecting to either p; or pa (says p1). Then, the edge count of p;
is at least (1/2 4+ 2(1/2 — g) = 1.5 — 2g) while the edge count of p- is at least
(1/241/2—g = 1-—g). So, the average edge count of p; and p» = (2.5—3¢)/2 =
(5—6g)/4.

For type (2), each node of degree at least 3, the edge count of the node is at
least 3(1/2 — g) = 3/2 — 3g.

For type (c), by Lemma 6, each maximal path is of length k(k < 4), the total
edge count of all nodes in the path = 2(1/2+ g) + (k — 1) = k + 2g. Hence, the
average edge count is 1+2g/k. (For the worst case, we set k = 4 and the average
degree is 1+ g/2.)

In total, the average edge count of each node in G; is at least maz{(5 —
69)/4,3/2—3g,1+ g/2}. By setting g = 1/8, the total edge count of all n nodes
in G is at least 17n/16. Hence we have the following theorem.

Theorem 6. Any deterministic 2-round adaptive algorithm for solving the 1-
dimensional point placement problem requires at least 17n/16 queries.

6 Conclusions

There are quite a number of related open problems. For examples, whether it is
possible to have a strategy that matches the lower bound or whether a better
lower bound exists for the case of two rounds. For unlimited number of rounds,
the only lower bound we have is the trivial bound of n. It is challenging to
obtain non-trivial lower bounds for the case of r rounds. Of course, it is also
challenging to obtain better strategies for all cases including the non-adaptive
version in which the upper bound (8n/5) and the lower bound (4n/3) are not
closed yet. Another direction is to design randomized algorithms to solve the
problem (e.g. [2]).

References

1. Damaschke, P.: Point Placement on the Line by Distance Data. Discrete Applied
Mathematics. 127 (2003) 53-62

2. Damaschke, P.: Randomized vs. Deterministic Distance Query Strategies for Point
Location on the Line. Discrete Applied Mathematics. 154 (2006) 478-484

3. Mumey, B.: Probe Location in the Presence of Errors: A Problem from DNA Map-
ping. Discrete Applied Mathematics. 104 (2000) 187-201

4. Redstone, J., Ruzzo, W.L.: Algorithms for a Simple Point Placement Problem. Pro-
ceedings of the Fourth CIAC, Lecture Notes in Computer Science, 1767 (2000),
Springer, Berlin, 32-43

5. Trask, B.J., Allen, S., Massa, H., Fertitta, A., Sachs, R., Engh, G., and Wu, M.:
Studies of Metaphase and Interphase Chromosomes using Fluorescence in situ Hy-
bridication. Cold Spring Harbor Symposia on Quantitative Biology, LVIII (1993)
767775

6. Waterman, M.S.: Introduction to Computational Biology. Maps, Sequences and
Genomes. Chapman and Hall, London (1995)

