
Consistency Issue on Live Systems Forensics

Frank Y.W. Law, K.P. Chow, Michael Y.K. Kwan, Pierre K.Y. Lai

The University of Hong Kong
{ ywlaw,chow,ykkwan,kylai}@cs.hku.hk

Abstract

Volatile data, being vital to digital investigation,
have become part of the standard items targeted in the
course of live response to a computer system. In
traditional computer forensics where investigation is
carried out on a dead system (e.g. hard disk), data
integrity is the first and foremost issue for digital
evidence validity in court. In the context of live system
forensics, volatile data are acquired from a running
system. Due to the ever-changing and volatile nature,
it is impossible to verify the integrity of volatile data.
Let alone the integrity issue, a more critical problem –
data consistency, is present at the data collected on a
live system. In this paper, we address and study the
consistency issue on live systems forensics. By
examining the memory data on a Unix system, we
outline a model to distinguish integral data from
inconsistent data in a memory dump.

1. Introduction

Traditional computer forensics focuses on the
examination of non-volatile data that are stored on
digital storage media (e.g. hard disk) on an inactive
system. These data exist permanently at a specific
location under a defined format specified by the file
system. Due to the static and persistent nature, its
integrity can be verified in the course of legal
proceedings starting from the point of acquisition to its
appearance in court.

On a live system, some digital evidence exists in the
form of volatile data, which is managed by the
operating system in a dynamic environment. One
example of volatile data is system memory data which
contain information of processes, network connections
and temporary data that are used by the operating
system at a particular point of time. Unlike non-
volatile data, memory data vanish and leave behind no
trail after powering off the machine. There is no way

to obtain the original content to verify the digital
evidence obtained from the live system or the dump.
For its high volatility and dynamicity, it is generally
agreed that verifying the integrity of volatile data is
impossible [20].

Memory data have become increasingly substantial
at court proceedings. In particular, it is considered as a
form of “electronically stored information” in a recent
US judgment [1]. In order to produce digital evidence
on a live system in court, it is essential to justify the
validity of the acquired memory data. Recently, live
system forensics has drawn remarkable attention
among the research community of computer forensics.
A number of research works [11, 12, 13] have been
developed for conducting forensic investigation
against a live system. To examine volatile memory
data, one common approach is to acquire it into a
dump file for offline examination. Various techniques
[14, 15] have been proposed to shed light on the
extraction of memory data from a live system.
However, data consistency in connection with the
dumped memory is rarely addressed. The problem of
data consistency is described as follows: If a system is
running, it is impossible to freeze the machine states in
the course of data acquisition. Even the most efficient
method would introduce a time difference between the
moments that the first bit and the last bit are acquired.
For example, the program may execute function A at
the beginning of the memory dump and execute
function B at the end of the dump. The data in the
dump may correspond to different execution steps
somewhere between function A and function B. As the
data are not acquired at a unified moment, data
inconsistency is inevitable on the memory dump.

Despite the acquired memory is inconsistent by
itself, a considerable portion may constitute useful
digital evidence. To moderate the contention and
disputes in presenting this evidence before court, we
study the data consistency problem with the view of
proposing a model to distinguish data from
inconsistent data in a memory dump.

The rest of this paper is organized as follows.
Section 2 presents some common features and
problems of the tools or techniques for acquiring
volatile memory data. Section 3 elaborates the data
consistency problem with respect to the dynamic
memory structure. Section 4 discusses an experiment
showing how to locate different segments of a running
process in the memory. To conclude the paper, we
suggest some future research directions in Section 5.

2. Literature Review

The concept of collecting volatile memory data is still
new to computer forensic study and evolving
researches have been given to this area with a view to
search for proper ways of investigation into this area.
Recently, the analysis of volatile memory data
becomes an item in live incident response and there are
a number of response toolkits being developed to
address the needs [2, 3]. The available toolkits are
often automated programs that run on the live system
to collect transient data in the memory. However, if the
response tool is run on a compromised system, the tool
would heavily rely on the underlying operating system
and may affect the reliability of the collected data [4].
Some of the response tools may even substantially
alter the digital environment of the original system and
causes an adverse impact to the dumped memory data.
As a result, it is often required to study those changes
to determine if those alterations will affect the acquired
data [5].

Carrier and Grand [4] pointed out the potential
flaws in acquiring volatile data through application
running at the original system and proposed a
hardware-based procedure for making a copy of
memory contents to avoid the collected data being
compromised by any untrusted code of the operating
system or its applications. Antonio [6] further
discussed the problems when acquiring live data
through a network-based model and suggested a
forensically sound approach in using firewire device to
acquire memory data utilizing the Direct Memory
Access (DMA) controller.

Notwithstanding, the aforementioned papers focus
on methods and techniques that could be used for
collecting reliable memory data, there are fewer
analysis on the acquired memory data which contained
transient and discrepant data. The inconsistency of
memory violates computer forensic principles [16, 17,
18, 19] because data in the memory are not
consistently maintained during system operation. This
issue poses challenge for computer forensics and need

to be addressed before presenting the evidence to the
court of laws.

3. Consistency of Memory data

To study the consistent problem, we need to
understand the basic structure of memory when a
program is running. When a program is loaded into the
memory, it will basically be divided into four segments,
namely Code (C), Data (D), Heap (H) and Stack (S).
The code segment contains the complied codes and all
functions of a program, this is the area in which the
executable instructions of the program reside.
Normally, the data being stored in this segment are
static and should not be affected whilst the memory is
running. The other three segments contain data being
used and manipulated by the program in running.

The data segment is used for global variables and
static variables. The data in the data segment is quite
stable and remains in existence for the duration of the
process.

The heap segment is where dynamic memory for
the program comes from. When dynamic memory is
requested by the process using memory allocator such
as malloc, the address space of the process grows
upward. The data in the heap area can exist between
function calls. They are less stable than the data in the
data segment because the memory allocator may reuse
memory that has released by the process.

The stack segment is where memory is allocated to
local variables and parameters within each function
and its data structure based on Last In First Out (LIFO)
principle. When the program is running, the memory
allocated to the stack area will be used by program
variables again and again. This segment is the most
dynamic area of the memory process and the data
within the segment are discrepant and influence by
various function calls of the program.

When the program is running, the code, data and
heap segments are usually placed into a single
contiguous area, whilst the stack segment is separated
from those two segments and grows downward within
the memory allocated space. The relationship among
code, data, heap and stack segments is illustrated in
Figure 1.

Indeed, the memory comprises a number of
processes of the operating system or the applications
running on top of it. It can be viewed as a large array
that contains many segments for respective memory
processes. In a live system, process memory “grows
and shrinks” according to the system usage as well as
user activities. As we can see from the above, the
“grows and shrinks” of memory is either related to the

growth of heap data or the expansion/release of stack
data, whilst the data in code segment should be static
and remain intact at all time. Apparently, data in the
growing heap segment and stack segment cause
inconsistency to the data that are contained in the
memory as a whole, and the stack data affect more due
to its vivid nature. Nevertheless, consistent data can be
found at the code segment. By studying the behavior of
data being contained in code, data, stack and heap
segments, we may draw inference on the
characteristics of consistent data that are existed at the
memory being used by a specific operating system or
application. These consistent data are usually dormant
in nature and would not be affected when the process
is running in the memory.

When obtaining a process dump of a running

program, data in C remain unchanged because the
memory segment only contain codes and functions of
the program. Let’s consider the global and static data,
heap data and stack data which can be partitioned
within a running process such that Di, Hi, Si (where i
=1, 2, 3…) exist in different segments. In the ideal
case, a snapshot is taken at a process at time t, the
memory dump is consistent with respect to that point
of time. The dump obtained would look like the one in
Figure 2a.

In reality, however, it is impossible to obtain a
memory snapshot as memory dumping takes time. The
dumping process would span over a time interval δ.

Should we obtain the dump at t, the actual dump
obtained would look like Figure 2b, where xi satisfies
the following equation:

t ≤ xi ≤ t +δ (1)

For a very fast memory dump, we should be able to

have consistent data in C, whilst data in D may be
consistent yet depends on the program usage. For the
data in H, they are likely to be inconsistent because the
segment may grow upon a call by the program. The
data in S are highly likely to be changing due to its
dynamic data structure, variables for the process
functions are continually used and reused in this
segment. This causes inconsistency to part of the
dumped data collected.

In summary, it is considered the data exist in C is
relatively static and their consistency should be
preserved in the context of dumping the memory. The
global and static data in D are less volatile, we may
have a consistent view of them. Due to the special
functionality of heap and stack, the data that are stored
within those segments are more dynamic in nature and
their consistency may give rise to new challenges
under today’s computer forensic standard.

4. How to locate different segments in Unix

Each memory process has its own allocated space at
the system memory which may include both physical
and virtual addresses. To locate the heap segment, we
can use the system call sbrk [8] to reveal the address
space of a process. When sbrk is invoked with zero as
the parameter, it returns a pointer to the current end of
the heap segment.

We can also use the system command pmap [9] to
display information about the address space of a
process as well as the size and address of heap and/or
stack segment. By using this information, we could
eliminate the segment of heap/stack within a logical
process dump [10] to achieve maximum data validity.

To identify the relevant parts of a memory process,
a small program [21] is written to identify the Code,
Data, Heap and Stack segments for the function main().
The corresponding code snippet is reproduced in

(a) (b)

Fig. 2. (a) Memory dump obtained in ideal case. (b) Memory dump
obtained in real case where xi takes any value between t and t +δ.

Fig. 1. Code, data, heap and stack segments in memory of a running
process.

Appendix. The result of running the program is shown
in Figure 3.

One can see the code segment for main()starts at the

address 0x8048414, which is followed by the data
segment at the address 0x804a020. The heap segment
starts at the address 0x804b000, which is immediately
above the data segment. The stack segment grows
downward from the initial address 0xbfe4ad20 to
0xbfe4ad3f.

5. Conclusion and future works

It is no doubt that we require reliable tool and
proper procedures to acquire memory data from live
system to minimize any possible contamination to the
collected data. Notwithstanding, due to the inconsistent
nature of memory, the acquired memory data may raise
challenge on its validity in the context of court
proceedings. To overcome the problem, we discuss the
component of memory and recommend the way of
identifying consistent data that are contained within a
memory process, such data are static in nature with its
consistency is well-maintained. However, this research
is only done on analyzing consistent data within a
logical memory process, more work should be
conducted to derive a method of identifying same kind
of consistent data within the whole memory.

Volatile memory and live data collection are still
green to the field of computer forensics and a
substantial amount of researches still need to be
conducted to secure the validity of the digital evidence
collected from a live system.

6. Appendix - Code snippet of main()

7. References

[1] Judgment from Honorable Jacqueline Chooljian, Verdict

of United States District Court, http://i.i.com.com/cnwk.
1d/pdf/ne/2007/Torrentspy.pdf

[2] Harlan Carvey, Windows Forensics and Incident
Recovery, Addison Wesley, 2005.

[3] Kevin Mandia, Chris Prosise, and Matt Pepe, Incident
Response and Computer Forensics, McGraw-Hill
Osborne Media, 2 edition, 2003.

[4] Brian D. Carrier and Joe Grand, A Hardware-Based
Memory Aquisition Procedure for Digital Investigations,
Journal of Digital Investigations, 901(1), 2004.

[5] A.Walters and N. Petroni, Jr, Volatools: Integrating
Volatile Memory Forensics into the Digital
Investigation Process Komoku, Inc., College Park, MD,
USA, Jan 2006, http://www.komoku.com/forensics/
asic/bh-fed-07-walters-paper.pdf

[6] A. Martin, FireWire Memory Dump of Windows XP: A
Forensic Approach, Boston University, April 2007,
http://www.friendsglobal.com/papers/FireWire%20Mem
ory%20Dump%20of%20Windows%20XP.pdf

[7] III Golden G. Richard and Vassil Roussev, Next-
generation digital forensics, Commun, ACM, 49(2):76–
80, 2006.

[8] Unix Manual for command sbrk, http://www.scit.wlv.ac.
uk/cgi-bin/mansec?2+sbrk

[9] Unix Manual for command pmap, http://www.scit.wlv.
ac.uk/cgi-bin/mansec?1+pmap

[10] S.H. Lam, Computer Forensic Analysis, Chinese
University of Hong Kong, October 2000, http://home.
ie.cuhk.edu.hk/~shlam/ssem/for/

Fig. 3. Locating various segments in a process

[11] F. Adelstein, Live forensics: Diagnosing your system
without killing it first. Feb 2006/ Vol.49, Communi-
cations of the ACM, 49(2), 63-66.

[12] M. Burdach, Forensic Analysis of a Live Linux System
(2 parts). http://www.securityfocus.com/infocus/1769,
http://www.securityfocus.com/infocus/1773

[13] M. Burdach, An introduction to Windows memory
forensic. http://forensic.seccure.net/pdf/introduction_to_
windows_memory_forensic.pdf

[14] B. D. Carriera, J. Grand, A Hardware-Based Memory
Acquisition Procedure for Digital Investigation, Digital
Investigation Journal 1(1):50-60, ISSN 1742-2876,
February 2004.

[15] G. M. Garner, Forensic Acquisition Utilities. http://users.
erols.com/gmgarner/forensics/

[16] Information Security and Forensics Society (ISFS),
Computer Forensics, Part 2: Best Practices, May 2004,
http://www.isfs.org.hk/publications/ComputerForensics/
ComputerForensics_part2.pdf

[17] Thomas Sudkamp, Inference propagation in emitter,
system hierarchies, Proceedings of the ACM SIGART
international symposium on Methodologies for

intelligent systems, International Symposium on
Methodologies for Intelligent Systems, 1986, ACM Press
New York, NY, USA, pp 165-173

[18] B. Westbrook and B. Zornado, Proposal for electronic
records management task force, 18 October 2001, http://
ww.uclibraries.net/sopag/erm/ERMTFReport.pdf

[19] Amihai Motro, Philipp Anokhin and Aybar C. Acar,
Utility-based Resolution of Data Inconsistencies
Information Quality in Informational Systems,
Proceedings of the 2004 international workshop on
Information quality in information systems, ACM Press
New York, NY, USA, pp 35 – 43.

[20] M. Burdach Finding Digital Evidence in Physical
Memory, BlackHat Federal, January 2006. http://www.
blackhat.com/presentations/bh-federal-06/BH-Fed-06-
Burdach/bh-fed-06-burdach-up.pdf

[21] A. Robbins, User-level Memory Management in Linux
Programming, 13 May 2004, http://www.phptr.com/
articles/article.asp?p=173438&seqNum=2&rl=1

