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Abstract 
 

Volatile data, being vital to digital investigation, 
have become part of the standard items targeted in the 
course of live response to a computer system. In 
traditional computer forensics where investigation is 
carried out on a dead system (e.g. hard disk), data 
integrity is the first and foremost issue for digital 
evidence validity in court. In the context of live system 
forensics, volatile data are acquired from a running 
system. Due to the ever-changing and volatile nature, 
it is impossible to verify the integrity of volatile data. 
Let alone the integrity issue, a more critical problem – 
data consistency, is present at the data collected on a 
live system. In this paper, we address and study the 
consistency issue on live systems forensics. By 
examining the memory data on a Unix system, we 
outline a model to distinguish integral data from 
inconsistent data in a memory dump. 
 
1. Introduction 
 

Traditional computer forensics focuses on the 
examination of non-volatile data that are stored on 
digital storage media (e.g. hard disk) on an inactive 
system. These data exist permanently at a specific 
location under a defined format specified by the file 
system. Due to the static and persistent nature, its 
integrity can be verified in the course of legal 
proceedings starting from the point of acquisition to its 
appearance in court.  

On a live system, some digital evidence exists in the 
form of volatile data, which is managed by the 
operating system in a dynamic environment. One 
example of volatile data is system memory data which 
contain information of processes, network connections 
and temporary data that are used by the operating 
system at a particular point of time. Unlike non-
volatile data, memory data vanish and leave behind no 
trail after powering off the machine. There is no way 

to obtain the original content to verify the digital 
evidence obtained from the live system or the dump. 
For its high volatility and dynamicity, it is generally 
agreed that verifying the integrity of volatile data is 
impossible [20].  

Memory data have become increasingly substantial 
at court proceedings. In particular, it is considered as a 
form of “electronically stored information” in a recent 
US judgment [1]. In order to produce digital evidence 
on a live system in court, it is essential to justify the 
validity of the acquired memory data. Recently, live 
system forensics has drawn remarkable attention 
among the research community of computer forensics. 
A number of research works [11, 12, 13] have been 
developed for conducting forensic investigation 
against a live system. To examine volatile memory 
data, one common approach is to acquire it into a 
dump file for offline examination. Various techniques 
[14, 15] have been proposed to shed light on the 
extraction of memory data from a live system. 
However, data consistency in connection with the 
dumped memory is rarely addressed. The problem of 
data consistency is described as follows: If a system is 
running, it is impossible to freeze the machine states in 
the course of data acquisition. Even the most efficient 
method would introduce a time difference between the 
moments that the first bit and the last bit are acquired. 
For example, the program may execute function A at 
the beginning of the memory dump and execute 
function B at the end of the dump. The data in the 
dump may correspond to different execution steps 
somewhere between function A and function B. As the 
data are not acquired at a unified moment, data 
inconsistency is inevitable on the memory dump.  

Despite the acquired memory is inconsistent by 
itself, a considerable portion may constitute useful 
digital evidence. To moderate the contention and 
disputes in presenting this evidence before court, we 
study the data consistency problem with the view of 
proposing a model to distinguish data from 
inconsistent data in a memory dump. 



The rest of this paper is organized as follows. 
Section 2 presents some common features and 
problems of the tools or techniques for acquiring 
volatile memory data. Section 3 elaborates the data 
consistency problem with respect to the dynamic 
memory structure. Section 4 discusses an experiment 
showing how to locate different segments of a running 
process in the memory. To conclude the paper, we 
suggest some future research directions in Section 5. 

 
2. Literature Review 
 
The concept of collecting volatile memory data is still 
new to computer forensic study and evolving 
researches have been given to this area with a view to 
search for proper ways of investigation into this area. 
Recently, the analysis of volatile memory data 
becomes an item in live incident response and there are 
a number of response toolkits being developed to 
address the needs [2, 3]. The available toolkits are 
often automated programs that run on the live system 
to collect transient data in the memory. However, if the 
response tool is run on a compromised system, the tool 
would heavily rely on the underlying operating system 
and may affect the reliability of the collected data [4]. 
Some of the response tools may even substantially 
alter the digital environment of the original system and 
causes an adverse impact to the dumped memory data. 
As a result, it is often required to study those changes 
to determine if those alterations will affect the acquired 
data [5].  

Carrier and Grand [4] pointed out the potential 
flaws in acquiring volatile data through application 
running at the original system and proposed a 
hardware-based procedure for making a copy of 
memory contents to avoid the collected data being 
compromised by any untrusted code of the operating 
system or its applications. Antonio [6] further 
discussed the problems when acquiring live data 
through a network-based model and suggested a 
forensically sound approach in using firewire device to 
acquire memory data utilizing the Direct Memory 
Access (DMA) controller.  

Notwithstanding, the aforementioned papers focus 
on methods and techniques that could be used for 
collecting reliable memory data, there are fewer 
analysis on the acquired memory data which contained 
transient and discrepant data. The inconsistency of 
memory violates computer forensic principles [16, 17, 
18, 19] because data in the memory are not 
consistently maintained during system operation. This 
issue poses challenge for computer forensics and need 

to be addressed before presenting the evidence to the 
court of laws. 

 
3. Consistency of Memory data 
 

To study the consistent problem, we need to 
understand the basic structure of memory when a 
program is running. When a program is loaded into the 
memory, it will basically be divided into four segments, 
namely Code (C), Data (D), Heap (H) and Stack (S). 
The code segment contains the complied codes and all 
functions of a program, this is the area in which the 
executable instructions of the program reside. 
Normally, the data being stored in this segment are 
static and should not be affected whilst the memory is 
running. The other three segments contain data being 
used and manipulated by the program in running. 

The data segment is used for global variables and 
static variables. The data in the data segment is quite 
stable and remains in existence for the duration of the 
process. 

The heap segment is where dynamic memory for 
the program comes from. When dynamic memory is 
requested by the process using memory allocator such 
as malloc, the address space of the process grows 
upward. The data in the heap area can exist between 
function calls. They are less stable than the data in the 
data segment because the memory allocator may reuse 
memory that has released by the process.  

The stack segment is where memory is allocated to 
local variables and parameters within each function 
and its data structure based on Last In First Out (LIFO) 
principle. When the program is running, the memory 
allocated to the stack area will be used by program 
variables again and again. This segment is the most 
dynamic area of the memory process and the data 
within the segment are discrepant and influence by 
various function calls of the program. 

When the program is running, the code, data and 
heap segments are usually placed into a single 
contiguous area, whilst the stack segment is separated 
from those two segments and grows downward within 
the memory allocated space. The relationship among 
code, data, heap and stack segments is illustrated in 
Figure 1. 

Indeed, the memory comprises a number of 
processes of the operating system or the applications 
running on top of it. It can be viewed as a large array 
that contains many segments for respective memory 
processes. In a live system, process memory “grows 
and shrinks” according to the system usage as well as 
user activities. As we can see from the above, the 
“grows and shrinks” of memory is either related to the 



growth of heap data or the expansion/release of stack 
data, whilst the data in code segment should be static 
and remain intact at all time. Apparently, data in the 
growing heap segment and stack segment cause 
inconsistency to the data that are contained in the 
memory as a whole, and the stack data affect more due 
to its vivid nature. Nevertheless, consistent data can be 
found at the code segment. By studying the behavior of 
data being contained in code, data, stack and heap 
segments, we may draw inference on the 
characteristics of consistent data that are existed at the 
memory being used by a specific operating system or 
application. These consistent data are usually dormant 
in nature and would not be affected when the process 
is running in the memory. 

 
When obtaining a process dump of a running 

program, data in C remain unchanged because the 
memory segment only contain codes and functions of 
the program. Let’s consider the global and static data, 
heap data and stack data which can be partitioned 
within a running process such that Di, Hi, Si (where i 
=1, 2, 3…) exist in different segments. In the ideal 
case, a snapshot is taken at a process at time t, the 
memory dump is consistent with respect to that point 
of time. The dump obtained would look like the one in 
Figure 2a.  

In reality, however, it is impossible to obtain a 
memory snapshot as memory dumping takes time. The 
dumping process would span over a time interval δ. 

Should we obtain the dump at t, the actual dump 
obtained would look like Figure 2b, where xi satisfies 
the following equation: 

t    ≤  xi   ≤   t +δ (1) 

 
 

 
For a very fast memory dump, we should be able to 

have consistent data in C, whilst data in D may be 
consistent yet depends on the program usage. For the 
data in H, they are likely to be inconsistent because the 
segment may grow upon a call by the program. The 
data in S are highly likely to be changing due to its 
dynamic data structure, variables for the process 
functions are continually used and reused in this 
segment. This causes inconsistency to part of the 
dumped data collected.  

In summary, it is considered the data exist in C is 
relatively static and their consistency should be 
preserved in the context of dumping the memory. The 
global and static data in D are less volatile, we may 
have a consistent view of them. Due to the special 
functionality of heap and stack, the data that are stored 
within those segments are more dynamic in nature and 
their consistency may give rise to new challenges 
under today’s computer forensic standard. 
 
4. How to locate different segments in Unix 
 

Each memory process has its own allocated space at 
the system memory which may include both physical 
and virtual addresses. To locate the heap segment, we 
can use the system call sbrk [8] to reveal the address 
space of a process. When sbrk is invoked with zero as 
the parameter, it returns a pointer to the current end of 
the heap segment.  

We can also use the system command pmap [9] to 
display information about the address space of a 
process as well as the size and address of heap and/or 
stack segment. By using this information, we could 
eliminate the segment of heap/stack within a logical 
process dump [10] to achieve maximum data validity. 

To identify the relevant parts of a memory process, 
a small program [21] is written to identify the Code, 
Data, Heap and Stack segments for the function main(). 
The corresponding code snippet is reproduced in 

  
(a) (b) 

 
Fig. 2. (a) Memory dump obtained in ideal case. (b) Memory dump 
obtained in real case where xi takes any value between t and t +δ. 

 
Fig. 1. Code, data, heap and stack segments in memory of a running 
process. 



Appendix. The result of running the program is shown 
in Figure 3.  

 
One can see the code segment for main()starts at the 

address 0x8048414, which is followed by the data 
segment at the address 0x804a020. The heap segment 
starts at the address 0x804b000, which is immediately 
above the data segment. The stack segment grows 
downward from the initial address 0xbfe4ad20 to 
0xbfe4ad3f. 

 
5. Conclusion and future works 
 

It is no doubt that we require reliable tool and 
proper procedures to acquire memory data from live 
system to minimize any possible contamination to the 
collected data. Notwithstanding, due to the inconsistent 
nature of memory, the acquired memory data may raise 
challenge on its validity in the context of court 
proceedings. To overcome the problem, we discuss the 
component of memory and recommend the way of 
identifying consistent data that are contained within a 
memory process, such data are static in nature with its 
consistency is well-maintained. However, this research 
is only done on analyzing consistent data within a 
logical memory process, more work should be 
conducted to derive a method of identifying same kind 
of consistent data within the whole memory. 

Volatile memory and live data collection are still 
green to the field of computer forensics and a 
substantial amount of researches still need to be 
conducted to secure the validity of the digital evidence 
collected from a live system.  
 
 
 
 
 
 
 
 
 
6. Appendix - Code snippet of main() 
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