
Mining Uncertain Data with Probabilistic Guarantees

Liwen Sun Reynold Cheng David W. Cheung Jiefeng Cheng
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong

{lwsun, ckcheng, dcheung, jfcheng}@cs.hku.hk

ABSTRACT
Data uncertainty is inherent in applications such as sen-
sor monitoring systems, location-based services, and biolog-
ical databases. To manage this vast amount of imprecise
information, probabilistic databases have been recently de-
veloped. In this paper, we study the discovery of frequent
patterns and association rules from probabilistic data under
the Possible World Semantics. This is technically challeng-
ing, since a probabilistic database can have an exponential
number of possible worlds. We propose two efficient algo-
rithms, which discover frequent patterns in bottom-up and
top-down manners. Both algorithms can be easily extended
to discover maximal frequent patterns. We also explain how
to use these patterns to generate association rules. Exten-
sive experiments, using real and synthetic datasets, were
conducted to validate the performance of our methods.
Source codes and data are available at:
http://www.cs.hku.hk/~lwsun/codes/kdd10/

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database applications—
Data Mining

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
uncertain data, frequent pattern, association rule

1. INTRODUCTION
The data managed in many emerging applications is often

uncertain. Integration and record linkage tools, for example,
associate confidence values to the output tuples according to
the quality of matching [11]. In structured information ex-
tractors, confidence values are appended to rules for extract-
ing patterns from unstructured data [28]. In habitat moni-
toring systems, data collected from sensors like temperature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

and humidity are noisy [1]. The locations of users obtained
through RFID and GPS systems are also imprecise [25, 16].
To handle these problems, probabilistic databases have been
recently proposed, where uncertainty is treated as a “first-
class citizen” [8, 11, 21, 10, 15].

Due to its simplicity in database design and query seman-
tics, the tuple-uncertainty model is commonly used in prob-
abilistic databases. Conceptually, each tuple carries an ex-
istential probability attribute, which denotes the confidence
that the tuple exists. Figure 1 illustrates this model, which

Figure 1: A probabilistic database example.
ID location time speed traffic weather prob.
t1 x 8-9pm 30-40 high Rain 0.1
t2 x 7-8am 80-90 low null 1.0
t3 x 8-9pm 80-90 low Foggy 0.5
t4 x 8-9pm 30-40 high Rain 0.2
t5 y 2-3pm 50-60 low Sunny 1.0

records traffic violation events due to red-light running. The
details of each event (e.g., location, and traffic volume) are
captured by a red-light camera system, which contains sen-
sors and cameras mounted in road intersections. Each tuple
is annotated by a probability that a true violation happens.
The probability that a violation occurs is determined by sen-
sor measurement errors, as well as the uncertainty caused by
automatic information extraction of the photographs taken
by the system [30].

To interpret tuple uncertainty, the Possible World Se-
mantics (or PWS in short) is often used [11]. Concep-
tually, a database is viewed as a set of deterministic in-
stances (called possible worlds), each of which contains a set
of zero or more tuples. A possible world for Figure 1 con-
sists of the tuples {t2, t3, t5}, existing with a probability of
(1 − 0.1) × 1.0 × 0.5 × (1 − 0.2) × 1.0 = 0.036. Any query
evaluation algorithm for a probabilistic database has to be
correct under PWS. That is, the results produced by the
algorithm should be the same as if the query is evaluated on
every possible world [11].

Although PWS is intuitive and useful, evaluating queries
under this notion is costly. This is because a probabilistic
database has an exponential number of possible worlds. For
example, the table in Figure 1 has 23 = 8 possible worlds.
Performing query evaluation or data mining under PWS can
thus be technically challenging. In fact, the mining of un-
certain or probabilistic data has recently attracted research
attention [3]. In [18], efficient clustering algorithms were de-
veloped to group uncertain objects that are close to each

273

{location=x} {location=x, speed=80-90, traffic=low}���� ���� ���������	��
��� � � � ��� ���� ���� ����������������	��

� � � �� ��� ��� � � � ��� ���� ���� ����������������	��

� � � �� ��� ��� � � �������

 ��������� ���� ���� ����������������	��

� � � �� ��� ��� � � �������

 ��������� ���� ���� ����������������	��

� � � �� ��� ��� � � �������

 ��������� ���� ���� ����������������	��

� � � �� ��� ��� � � �������

 �����
���� ������������	��
���������� ���� ����

���������������	��
���
� ����������� � � �

���� ����
���������������	��
���

� ����������� �������
 �����

(a) (b)

Figure 2: Sample p-FPs derived from Figure 1

other. Recently, a Näıve Bayes classifier has been devel-
oped [26]. The goals of this paper are: (1) propose a defini-
tion of frequent patterns and association rules for the tuple
uncertainty model; and (2) develop efficient algorithms for
mining patterns and rules that are correct under PWS.

Figure 3: Sample p-ARs derived from Figure 1
Association rule Probability
r1: {location=x} ⇒ {time=8-9pm} 0.15
r2: {location=x} ⇒ {speed=80-90,traffic=low} 0.49

The frequent patterns discovered from probabilistic data
are also probabilistic, to reflect the confidence placed on the
mining results. Figure 1 shows two probabilistic frequent
patterns (or p-FP) extracted from the database in Figure 1.
A p-FP is a set of attribute values that occur frequently
with sufficiently-high probabilities. In Figure 1, the support
probability mass function (or support pmf) for each p-FP is
shown. This is the pmf of the number of tuples (or support
count) that contains a pattern. Under PWS, a database
is a set of possible worlds, each of which records a (differ-
ent) support of the same pattern. Hence, the support of a
frequent pattern is a pmf. In Figure 1, if we consider all pos-
sible worlds where pattern {location=x} occurs three times,
the pmf of {location=x} with a support of 3 is 0.49. For the
p-FPs shown, Figure 3 displays their related probabilistic as-
sociation rules (or p-ARs). Here, rule r2 suggests that with
a 0.49 probability, 1) red-light violations occur frequently at
location x and 2) when this happens, the involved vehicle is
likely driving at a high speed amid low traffic. We will later
explain more about the semantics of p-FP and p-AR.

A simple way of finding p-FPs is to extract frequent pat-
terns from every possible world. This is practically infea-
sible, since the number of possible worlds is exponentially
large. We present simple and effective methods to prune
infrequent patterns. We also adopt dynamic programming
(DP) to compute the support pmf of a pattern. This method,
also used by [31, 27] to derive p-FPs for other probabilis-
tic models, has a complexity of O(n2). We further de-
velop a divide-and-conquer (DC) approach, which achieves
O(n log2 n) time. Based on these methods, we propose the
p-Apriori algorithm to retrieve p-FPs in a bottom-up man-
ner. We further observe that, given patterns X and Y , if
X is a subset of Y , the support pmf of X can be efficiently
derived from that of Y . We realize this by proposing the
TODIS algorithm, which extracts p-FPs in a top-down fash-
ion. We extend p-Apriori and TODIS to retrieve maximal
p-FPs, i.e., those that are not the subsets of other p-FPs.
Our experiments on real and synthetic datasets showed that
DC is more scalable than DP, and TODIS is generally faster

than p-Apriori. When TODIS is used with DC together, it
can outperform p-Apriori by an order of magnitude.

In exact databases, deriving association rules from fre-
quent patterns is not difficult. Given two frequent patterns
X and XY , the confidence of X ⇒ Y can be calculated with
an arithmetic division on their supports. This is no longer
true for probabilistic data. Here, the support of X and XY
become correlated random variables. It is not clear how to
define and compute the “confidence” of X ⇒ Y . We propose
the concept of p-AR, which naturally extends the association
rule semantics. We also study an efficient method, which
uses deconvolution operations, to evaluate the probability
of p-AR based on the support pmfs of p-FPs. We further
develop a new algorithm for generating p-ARs, which ex-
ploits the anti-monotonicity property of p-ARs, and attain
a 80% performance gain in our experiments.

Prior work. [7] studied approximate frequent patterns
on noisy data, while [19] examined association rules on fuzzy
sets. The notion of a “vague association rule”was developed
in [20]. These solutions were not developed on probabilis-
tic data models. For probabilistic databases, [9, 2] derived
patterns based on their expected support counts. [31, 27]
found that the use of expected support may render impor-
tant patterns missing. They discussed the computation of
the probability that a pattern is frequent. While [31] han-
dled the mining of single items, our solution can discover
patterns with more than one item. The data model used in
[27] assumes that for each tuple, each attribute value has
a probability of being correct. This is different from the
tuple-uncertainty model, which describes the joint probabil-
ity of attribute values within a tuple. Moreover, our DC
algorithm is asymptotically faster than the DP algorithms
used in [31, 27], and is thus more scalable for large and dense
datasets. To our best knowledge, none of the above works
considered the important problem of generating association
rules on probabilistic databases.

This paper is organized as follows. Section 2 introduces
the notions of p-FPs and p-ARs. Sections 3 and 4 present
two algorithms for mining p-FPs. In Section 5, we develop
an algorithm for generating p-ARs. Section 6 presents our
experimental results. We conclude in Section 7.

2. PROBLEM DEFINITION
We first review frequent patterns and association rules in

Sections 2.1. Then, we discuss the uncertain data model in
Section 2.2. We present the problems of mining p-FPs and
p-ARs, in Sections 2.3 and 2.4.

2.1 Frequent Patterns and Association Rules
A transaction is a set of items (e.g., goods bought by a

customer in a supermarket). A set of items is also called an
itemset or a pattern. Given a transaction database of size n
and a pattern X, we use sup(X) to denote the support of X,
i.e., the number of times that X appears in the database. A
pattern X is frequent if:

sup(X) ≥ minsup (1)

where minsup ∈ N ∩ [1, n] is the support threshold [4]. Given
patterns X and Y (with X ∩ Y = ∅), if pattern XY is fre-
quent, then X is also frequent (called the anti-monotonicity
property). Also, X ⇒ Y is an association rule if the follow-

274

ing conditions hold:

sup(XY) ≥ minsup (2)

sup(XY)

sup(X)
≥ minconf (3)

where sup(XY)
sup(X)

, denoted by conf(X ⇒ Y), is the confi-

dence of X ⇒ Y , and minconf ∈ R∩ (0, 1] is the confidence
threshold. To verify Equation 3, the values of sup(XY) and
sup(X) have to be found first.

We remark that a transaction database is essentially a re-
lational table with asymmetric binary attribute values. For
example, the existence of item “apple” in a transaction is
equivalent to a binary attribute of a tuple with a value of
1. This kind of attributes, assumed in this paper, is also
considered by some mining algorithms (e.g., [4, 5]). To han-
dle other attribute types (e.g., continuous and categorical),
discretization and binarization techniques can be used to
convert them to binary attributes [29].

2.2 The Possible World Semantics
We assume that each transaction has an existential proba-

bility, which specifies the chance that the transaction exists.
Figure 4(a) illustrates this database, in which each trans-

Figure 1: A probabilistic database
ID set of items prob.

T1 {a, c, e, g, i} 0.6
T2 {a, c, f, h} 0.5
T3 {a, d, e, g, j} 0.7
T4 {b, d, f, h, i} 1.0

���� ���� ���� �������	��
��������
� 	
 �� ��� ����� � � � ��� ���� ���� �������	��
��������
� 	
 �� ��� ����� � �

Figure 4: (a) PDB example; and (b) f{a}

action is a set of items represented by letters. This model
has been used to capture uncertainty in many applications,
including data streams [10] and geographical services [22].
Now, let P (E) be the probability that an event E occurs,
and PDB be a probabilistic database of size n. Also, let Ti

(where i = 1, . . . , n) be the ID of each tuple in PDB. Sup-
pose Ti.S is the set of items contained in Ti, and Ti.p is the
existential probability of Ti.

Figure 5: Possible worlds for Figure 4(a)
W Tuples in W Prob. W Tuples in W Prob.
W1 T4 0.06 W5 T1, T2, T4 0.09
W2 T1, T4 0.09 W6 T1, T3, T4 0.21
W3 T2, T4 0.06 W7 T2, T3, T4 0.14
W4 T3, T4 0.14 W8 T1, T2, T3, T4 0.21

Under PWS, PDB is a set of possible worlds W. Figure 5
lists all possible worlds for Figure 4(a). Each world Wi ∈
W exists with probability P (Wi). For example, P (W2) =
T1.p × (1 − T2.p) × (1 − T3.p) × T4.p, or 0.09. The sum
of possible world probabilities is one. Also, the number of
possible worlds is exponentially large, i.e., |W| = O(2n).
Our goal is to discover patterns and rules without expanding
PDB into possible worlds. Table 1 summarizes the symbols
used.

Table 1: Summary of Notations
Notation Meaning

Prob. Database
PDB a probabilistic database of size n
Ti ID of a tuple in PDB, where i = 1, . . . , n
Ti.S set of items contained in Ti

Ti.p existential probability of Ti

W set of possible worlds expanded from PDB
Wi a possible world, where Wi ∈ W
P (E) probability of event E

Prob. Frequent Patterns
minsup support threshold
minprob probability threshold
sup(X) support count of pattern X
fX(k) support pmf of X in PDB
cnt(X) No. of tuples for which pX

i > 0
esup(X) expected support of pattern X
pX

i prob. that X occurs in Ti

LX inverted probability list of X
X.exItem exclusive item of X
X.cnt length of LX

Prob. Association Rules
minconf confidence threshold
conf(X ⇒ Y) confidence of X ⇒ Y

2.3 Probabilistic Frequent Patterns
We first explain the concept of “support” for probabilistic

data. Given a pattern X, we denote its support in each
world Wi as supi(X). Note that supi(X) is obtained by
counting the number of times X appears in Wi. Since each
Wi exists with a probability, the support of X in PDB, i.e.,
sup(X), is a random variable. We denote by fX(k) that
the probability mass function (pmf) of sup(X), where k is
a non-negative integer that sup(X) can take. Specifically,
fX(k) is the probability that sup(X) = k, and fX(k) = 0 for
any k /∈ [0, n]. We use an array to store the non-zero values
of fX , where fX [k] = P (sup(X) = k). Figure 4(b) depicts
the support pmf of {a} for Figure 5. The probability that
sup({a}) = 1 is 0.29.

Definition 1. A pattern X is a probabilistic frequent pat-
tern (or p-FP) in PDB if

P (sup(X) ≥ minsup) ≥ minprob (4)

where minprob ∈ R ∩ (0, 1] is the probability threshold.

Problem 1 (p-FP Mining). Given PDB, minsup and
minprob, return a set of {X, fX(k)}, where X is a p-FP.

As we will discuss, the pmfs obtained with p-FPs are es-
sential to generating probabilistic association rules. There
are methods to approximating and compressing pmfs (e.g.,
see [12]). Here we assume that the pmf is exact, but our
solutions can be extended to support these schemes. Next,
we present a useful lemma.

Lemma 1 (Anti-monotonicity). If pattern X is a p-
FP, then any pattern X ′ ⊂ X is also a p-FP.

Proof. Let X ′ be a sub-pattern of X. Suppose that WX

and WX′ are the sets of possible worlds where X and X ′ are
frequent respectively. For each possible world Wi ∈ WX , if
X is frequent in Wi, then X ′ is also frequent. Hence, we have

WX ⊆ WX′ . Then P (sup(X)≥minsup)=
∑

Wi∈WX P (Wi),

275

and P (sup(X ′) ≥ minsup) =
∑

Wi∈WX′ P (Wi). Since X

is a p-FP, we have: P (sup(X ′) ≥ minsup) ≥ P (sup(X) ≥
minsup)≥minprob. Therefore, X ′ is also a p-FP.

The anti-monotonicity property is true for frequent pat-
terns in exact data [4]. Lemma 1 allows us to stop examining
a pattern, if any of its sub-pattern is not a p-FP. A p-FP X
is said to be maximal if we cannot find another p-FP Y such
that X ⊂ Y . A maximal p-FP can succinctly represent a
set of p-FPs when their supports are not concerned. Since
the mining of maximal frequent patterns is an important
problem [5] for exact data, we also study maximal p-FPs:

Problem 2 (Maximal p-FP Mining). Given a database
PDB, minsup and minprob, return all maximal p-FPs.

2.4 Probabilistic Association Rules
In a probabilistic database, the support counts of patterns

are random variables. Let P (X ⇒ Y) be the probability
that X ⇒ Y is an association rule. By Equations 2 and 3,
we have:

P (X⇒Y)=P [sup(XY)>minsup∧conf(X⇒Y)≥minconf] (5)

Definition 2. X ⇒ Y is a probabilistic association rule
(p-AR in short) if

P (X ⇒ Y) ≥ minprob (6)

The problem of p-AR mining is defined as follows.

Problem 3 (p-AR Mining). Given minsup, minprob,
minconf, and the p-FPs and their support pmfs obtained
from Problem 1, derive all p-ARs and their probabilities.

A simple way of solving Problems 1, 2 and 3 is to ex-
pand PDB into all possible worlds, compute patterns and
rules from each world, and then combine the results. If
minsup = 2, minconf = 0.5, and minprob = 0.2, for Fig-
ure 4(a), {a} ⇒ {c} is an association rule only in worlds
W5 and W8 (Figure 5), with P ({a} ⇒ {c}) = Pr(W5) +
Pr(W8) = 0.09 + 0.21 = 0.3. Since this is larger than 0.2,
{a} ⇒ {c} is a p-AR. This method is not practical, due to
the large number of possible worlds. To tackle Problems 1
and 2, we propose two efficient algorithms, namely p-Apriori
and TODIS, in respectively Sections 3 and 4. Then we ad-
dress Problem 3 in Section 5.

3. THE P-APRIORI ALGORITHM
To solve Problem 1, we propose the p-Apriori algorithm,

which is an adaptation of the Apriori algorithm [4] for proba-
bilistic databases. Specifically, p-Apriori uses the bottom-up
framework [4]: each item is tested to see whether it is a p-FP.
All probabilistic frequent singletons then have their support
pmfs computed, and are used to generate size-2 patterns
(called candidate patterns). These patterns are examined
to see which are frequent patterns. The size-2 p-FPs again
have their support pmfs evaluated, and are used to create
size-3 candidate patterns. The process is repeated until no
more frequent patterns are found. In general, to create a
size-(m+1) candidate patterns from size-m p-FPs, we use
the anti-monotonicity property (Lemma 1), which implies
that a size-(m+1) pattern can be a candidate only if all its
size-m sub-patterns are frequent. Finally, the p-FPs and
their support pmfs are returned.

The p-Apriori can also solve Problem 2, by returning only
the maximal p-FPs that appear in p-Apriori’s mining result.

For p-Apriori to work well, we have to efficiently check
whether a given pattern X is frequent. When the database is
exact, we can scan the database once, find the support count
of X, and test it with Equation 1. For p-Apriori, we have to
(1) find X’s support pmf; (2) derive P (sup(X) ≥ minsup)
and test against Equation 4. To find X’s support pmf, we
may consider its support from all possible worlds; however,
this is practically infeasible. In Sections 3.1, we discuss how
to prune infrequent patterns without deriving support pmfs.
For patterns that cannot be pruned, we discuss two efficient
methods for generating support pmfs, in Sections 3.2 and
3.3. We present a data structure to improve our algorithms,
in Section 3.4.

3.1 Pruning Infrequent Patterns
Let cnt(X) be the number of tuples that contain pattern

X regardless of the tuple probabilities (i.e., Ti.p). Also, let
esup(X) be the expected support of X, which can be found
by summing up all Ti.p’s in PDB [9]. The lemmas below
describe how to prune X without knowing its support pmf.

Lemma 2. If cnt(X) < minsup, then X is not a p-FP.

Proof. The maximum possible value of sup(X) is cnt(X),
which happens when all tuples that contain X exist. Hence,
P [sup(X) > cnt(X)] = 0. Since cnt(X) < minsup, we have
P [sup(X) ≥ minsup] ≤ Pr[sup(X) > cnt(X)] = 0. There-
fore, for any minprob > 0, X cannot be a p-FP according to
Equation 4.

Lemma 3. Let µ = esup(X), and σ = minsup−µ−1
µ

. Then

X is not a p-FP if:

• σ ≥ 2e− 1 and 2−σµ < minprob, or

• 0 < σ < 2e− 1 and e
−σ2µ

4 < minprob

Proof. Notice that the probability P [sup(X) ≥ minsup]
is equal to Pr[sup(X) > minsup− 1], or Pr[sup(X) > (1 +
σ)µ]. Using the Chernoff Bound [23], we have:

Pr[sup(X) > (1 + σ)µ] <

{
2−σµ, if σ ≥ 2e− 1

e
−σ2µ

4 , if 0 < σ < 2e− 1

which is less than minprob. Hence, according to Equation 4,
X is not a p-FP.

To prune X, we first scan the database once and obtain
the values of cnt(X) and esup(X), in O(n) time. Then,
the lemmas are used to prune away X, in O(1) time. For
patterns that cannot be pruned, we next present two efficient
techniques to derive their support pmfs.

3.2 The Dynamic-Programming Algorithm
Algorithm 1 (DP) finds support pmf by dynamic program-

ming. The pmf fX of pattern X is initialized to {1, 0, . . . , 0}
in Step 2 (i.e., sup(X) is zero before PDB is visited). Then,
each fX [k] is updated by the information of every tuple Ti

(Steps 3-7). Here, pX
i is the probability that X occurs in

tuple Ti, where pX
i = Ti.p if X ⊆ Ti.S, or zero otherwise.

The array f ′X is a temporary buffer. Step 6 is a recursive
equation. It means that sup(X) can be i when either 1) X
occurs in the current tuple and had (i − 1) occurrences in
visited tuples, or 2) X does not occur in the current tuple

276

Algorithm 1: DP

Input: probabilistic database PDB, pattern X
Output: support pmf fX

begin1

Initialize fX ← {1, 0, . . . , 0}2

for each tuple Ti in PDB do3

f ′X [0] ← (1− pX
i)× fX [0]4

for k ← 1 to n do5

f ′X [k] ← pX
i × fX [k-1] + (1− pX

i)× fX [k]6

fX ← f ′X7

return fX ;8

end9

but occurred in visited tuples for exactly i times. This step
is repeated until all tuples have been processed. The time
and space complexity of DP are O(n2) and O(n) respectively.

3.3 The Divide-and-Conquer Algorithm

Algorithm 2: DC

Input: probabilistic database PDB, pattern X
Output: support pmf fX

begin1

if n = 1 then2

fX [0] ← 1− pX
1 , fX [1] ← pX

13

return fX4

Horizontally partition PDB into D1 and D2, where5

|D1| = bn
2
c and |D2| = dn

2
e

f1
X ← DC (D1, X)6

f2
X ← DC (D2, X)7

fX ← Convolution (f1
X , f2

X)8

return fX ;9

end10

Algorithm 2 (DC) is another way of evaluating support
pmf. Given a pattern X, Steps 2-4 compute the pmf for
the case where PDB has only one tuple. Otherwise, PDB
is horizontally partitioned into two databases (D1 and D2)
in Step 5. Then, DC is recursively invoked on D1 and D2 to
obtain X’s pmf for each database (Steps 6-7). The two pmfs
are used to generate the support pmf of X (Step 8).

To understand Step 8, let supD1(X) and supD2(X) be
the support of X in D1 and D2 respectively. Since supD1(X)
and supD2(X) are independent random variables, sup(X) =
supD1(X) + supD2(X). Let f1

X and f2
X be the pmfs of

supD1(X) and supD2(X) respectively. Then,

fX [k] =

k∑
i=0

f1
X [i]× f2

X [k − i] (7)

In fact, fX is the convolution of f1
X and f2

X , denoted by
fX = f1

X ∗ f2
X [14]. While a näıve way of evaluating Equa-

tion 7 requires O(n2) time, this can be improved by applying
Discrete Fourier Transform (DFT) on fX

1 and fX
2 , comput-

ing the pairwise products of the two transformed sequences,
and performing an inverse DFT on the product. With the
use of the Fast Fourier Transform (FFT) algorithm, Equa-
tion 7 can be evaluated in O(n log n) time [24].

Complexity. Let c(n) be the time cost of Algorithm 2
with database size n. Steps 6 and 7 both need c(n/2) time,
and Step 8 takes O(n log n) time with the use of the FFT
algorithm. Then, c(n) = 2c(n/2) + O(n log n), which yields

O(n log2 n). Thus, DC is more efficient and scalable than DP

for large datasets. The space complexity is O(n).

{a}

0.6

0.7

0.5

{ae}

0.6

0.7

{aeg}

0.6

0.7

{a}

0.6

0.5

0.7

T1

T3

T2

T1

T3

T1

T3

T1

T2

T3

(a) L{a} (b) L{a}, L{ae}, and L{aeg}

Figure 6: Inverted Probability List (ip-list)

3.4 Inverted Probability List
So far, all tuples in PDB are used to prune a pattern X,

or to find X’s support pmf. This is not always necessary.
Consider a tuple Ti, where X does not appear in Ti.S. Since
Ti does not contribute to the values of cnt(X) and esup(X),
the absence of Ti will not affect the correctness of Lemmas 2
and 3. Since pX

i = 0, Algorithms 1 and 2 also work without
Ti. In fact, our pruning lemmas and support pmf algorithms
can be used on only the list of tuples which contain X. We
call this the inverted probability list (or ip-list) of X, denoted

by LX . Figure 6(a) shows L{a} for pattern {a}. Now let
l = |LX |. If (1) PDB is sparse, and (2) X is long, then l
can be much smaller than n. In this case, the algorithms
executed on LX can be faster than PDB. From now on, we
assume that LX is used in our algorithms.

Let us summarize the process of handling a pattern X in
p-Apriori. We first scan the database to obtain LX , cnt(X)
and esup(X). Then, Lemmas 2 and 3 are used to check
whether X can be pruned. If not, either Algorithm 1 or 2 is
used to find the support pmf, which is passed to Equation 4
for checking the frequentness of X. Finally, LX is discarded,
so that the memory can be reused to store other lists.

Complexity. Let l = |LX |. We can generate LX by scan-
ning the database in O(n) time. Notice that cnt(X) = l, and
esup(X) can be found by summing up all the tuple probabil-
ities on LX . Afterwards, Lemmas 2 and 3 can be evaluated
in O(l) time. If X cannot be pruned, and Algorithm 1 (DP)
is used on LX , then O(l2) operations are needed. If Algo-
rithm 2 (DC) is used instead, a O(l log2 l) cost is required.
Finally, we discard LX . Hence, the overall cost of evaluat-
ing a pattern in p-Apriori is O(n+l2) when Algorithm DP

is used, or O(n+l log2 l) when Algorithm DC is used. The
space complexity is O(n).

While Lemmas 2 and 3 can prune infrequent patterns ef-
fectively, our experiments revealed that p-Apriori spends a
lot of time to compute pmfs for the remaining patterns.
Moreover, to extract maximal p-FPs, p-Apriori cannot avoid
deriving the pmfs of all their sub-patterns. We next study
a novel algorithm that alleviates these problems.

4. THE TODIS ALGORITHM
We call the second p-FP mining algorithm TODIS, which

stands for “TOp-Down Inheritance of Support pmf”. It in-
volves the execution of two phases: (1) extract patterns that
are supersets of p-FPs; and (2) derive p-FPs in a top-down
manner (i.e., in descending order of pattern size).

We first explain the intuition behind TODIS. Let X ′ be
a sub-pattern of X. Then, any tuple that consists of X

277

must also contain X ′. Hence, the ip-list of X, i.e., LX ,

is a subset of LX′ . In Figure 6(b), for instance, L{aeg} ⊆
L{ae} ⊆ L{a}. Notice that these ip-lists, with their common
entries shadowed, are quite similar. Since ip-lists are used to
generate support pmfs, these pmfs should be similar too. We
exploit this observation by incrementally deriving support
pmfs. For example, L{aeg} is first used to generate f{aeg}.
We next use f{aeg} to derive f{ae}, which then produces
f{a}. This new approach, as we will explain, is faster than
generating each pmf from scratch. In Section 4.1, we discuss
how TODIS makes use of this technique. We explain how to
adapt TODIS to solve Problem 2 (i.e., find maximal p-FPs)
in Section 4.2.

4.1 Algorithm Design
Phase 1: Generate candidate patterns. We first

swiftly identify a set of patterns which contains all p-FPs.
This is done by slightly modifying p-Apriori. Specifically,
for patterns that cannot be pruned by lemmas 2 and 3, we
assume that they are candidate p-FPs, without evaluating
their exact support pmfs. All these candidate p-FPs gener-
ated are then passed to the next phase for verification.

 !"#

 "#

 $!"#

 $!# $"#

 !# $#

 $%# &'#

 '# &# %#

level-3

level-1

level-2

Figure 7: Illustrating the TODIS algorithm.

Phase 2: Top-down support inheritance. To illus-
trate this step, we suppose that the patterns in Figure 7 are
those generated by Phase 1. Since TODIS examines patterns
in descending order of their lengths, the longest pattern, i.e.,
{aeg}, is considered first. Specifically, the support pmf of
{aeg}, or f{aeg}, is created “from scratch”, by Algorithms
DP or DC. Then f{aeg} is inherited by its three sub-patterns:
{ae}, {ag} and {eg}. That is to say, we use f{aeg} to derive
the pmf for these sub-patterns. For other size-2 patterns,
{ac} and {fh}, we also generate their pmfs from scratch.
After all the support pmfs for size-2 patterns are generated,
the pmfs are inherited by size-1 patterns that are subsets
of them. For example, {a} inherits the pmf of {ae}. All
patterns that are true p-FPs (Equation 4) are returned. In
this example, all patterns except {ac} and {c} are p-FPs.

How to use the “inherited support pmf” to generate a pmf
of a given pattern X? We define the exclusive item of X, de-
noted by X.exItem, to be the set difference between X and
the pattern from which X inherits the pmf. In Figure 7, for
example, {ae} is a sub-pattern of {aeg} and inherits f{aeg}.
Then, {ae}.exItem is {aeg} − {ae}, or {g}. To derive f{ae}
given f{aeg} and {g}, we first evaluate the pmf f{aeg}, with
algorithms DP or DC. Since the sets of tuples that contain
{aeg} and {aeg} are disjoint, sup({aeg}) and sup({aeg})
are independent. As discussed in Section 3.3, f{ae} is the
convolution f{aeg} and f{aeg}. We call the above proce-

dure the update of support pmf. Observe that list L{aeg}

is empty, and is shorter than L{ae} that contains T1 and
T3 (Figure 6(b)). Hence, with the efficient convolution of

f{aeg} and f{aeg}, updating f{ae} is generally faster than
computing it from scratch.

Inheriting from the “best” pmf. A pattern may be
able to inherit pmf from two or more patterns. In Figure 7,
for instance, {a} can inherit the support pmf from either
{ae} and {ag}, since {a} is a sub-pattern of both of them.
Which pmf should {a} inherit then? We make the decision
based on the lengths of the ip-lists. To understand, let X ′′ be
a parent of pattern X. Then, X ′′ = X∪X.exItem. Also, let
L be the ip-list where X ⊆ Ti.S but X.exItem /∈ Ti.S. Then,
L is used by the support pmf update operation to compute
X. For example, L = L{aeg} in the previous paragraph.

Notice that |L| = |LX | − |LX′′ |. If LX′′ is longer, then L is
shorter and the pmf update is more efficient. For example,
suppose |L{ag}| > |L{ae}|, then {a} inherits f{ag} instead of
f{ae}. Hence, a pattern should choose to inherit from the
parent whose ip-list is the longest, in order to minimize the
cost of updating its pmf.

Algorithm 3: TODIS

Input: PDB, minsup, minprob
Output: Set of p-FP Sets: F = {F1, F2, . . . , Fm}
begin1

F ← FindCandidatePFP(PDB, minsup, minprob)2

¤ Fk ∈ F is the set of patterns of length k3

¤ X.exItem is initialized as null for every X ∈ Fk4

¤ X.cnt is initialized as 0 for every X ∈ Fk5

for k ← m to 1 do6

for each X ∈ Fk do7

X ← UpdateSupPMF(PDB, X, fX)8

for each (k-1)-subpattern X′ of X do9

if X′.cnt < X.cnt then10

fX′ ← fX ¤ search X′ in Fk−111

X′.exItem← X −X′12

X′.cnt← X.cnt13

if isPFP(X.pmf , minsup, minprob) = FALSE then14

remove X from Fk15

return F16

end17

Algorithms. Based on the above discussions, we propose
Algorithm 3. Let Fk(k = 1, . . . , m) be the set of p-FPs of
length k, where m is the size of the largest p-FP. Also, let F
be the set of all Fk’s. For each pattern X ∈ Fk, let X.cnt be
the length of LX . In Step 2, we execute Phase 1 and store
all candidate p-FPs in F . Then, Steps 6-15 execute Phase
2, by examining each pattern in Fk in descending order of k.
Step 8 updates X’s support pmf, based on X.exItem and the
pmf inherited from its parent. Steps 11-13 select the best
support pmf for X to inherit, where a pattern’s inherited
pmf is replaced by another one if there exists a longer ip-
list. In Steps 14-15, X is removed from Fk if it is not a p-FP
(Equation 4). The final result, F , is returned in Step 16.

Algorithm 4 shows the routine for updating support pmf.
Steps 3-5 generate L, the ip-list used by the support pmf
update operation. If X has no exclusive item, X is not a
subset of any candidate p-FP. Then L = LX , and we evalu-
ate fX with the DP or DC algorithm (Steps 6-7). Otherwise,
we compute the support pmf on L, perform convolution with
the inherited pmf of X (i.e., f ′), in order to generate fX .
Step 11 updates the length of LX . Finally, L is discarded
and X is returned (Steps 12-13).

Complexity. In Algorithm 3, evaluating a maximal p-
FP’s pmf requires executing DP/DC alone, and so the cost

278

Algorithm 4: UpdateSupPMF

Input: PDB, pattern X, inherited pmf f
Output: support pmf of X
begin1

Set L as an empty list2

for each tuple Ti ∈ PDB do3

if X ⊆ Ti.S ∧X.exItem /∈ Ti.S then4

Add Ti.p to L5

if X.exItem = NULL then6

fX ← CompSupPMF(L) ¤ invoke Algo. 1 or Algo. 27

else8

f ′ ← CompSupPMF(L) ¤ invoke Algo. 1 or Algo. 29

fX ← Convolution(f , f ′)10

X.cnt ← X.cnt + |L|11

Discard(L)12

return X13

end14

is the same as that of DP/DC. For a non-maximal p-FP X,
its pmf is obtained by updating the inherited pmf, with
a cost of O(n + l′2) (for DP) or O(n + l′ log2 l′) (for DC).

Here, l′ = |LX | −max{|LX′′ | | X ⊆ X ′′}. When l′ ¿ |LX |,
TODIS computes pmfs much faster than p-Apriori. To facil-
itate searching of sub-patterns for inheritance (Step 9) and
deletion of patterns (Step 15), we build a trie [17] of depth k
for each Fk, in which each non-leaf node uses a hash map to
store the addresses of its child nodes. The cost of a pattern
retrieval and deletion in Fk is O(k).

Since we only need the maximal candidates for top-down
generation in Phase 2, we remark that it is possible to adapt
existing algorithms of maximal FP mining (e.g., [6, 13]) to
achieve a faster candidate generation in Phase 1.

4.2 Finding Maximal p-FPs
To discover only maximal p-FPs, TODIS can be modi-

fied as follows. First, the same Phase 1 is used to find the
candidate patterns. In Phase 2, once we have identified a p-
FP, we do not compute the support pmf of its sub-patterns.
Finding maximal p-FPs with TODIS is generally faster than
p-Apriori, since (1) long patterns that are potentially max-
imal p-FPs can be quickly yielded in Phase 1; and (2) to
obtain a maximal pattern, there is no need to generate the
support pmf for any of its sub-patterns. Next, we examine
how association rules can be generated from p-FPs.

5. PROBABILISTIC ASSOCIATION RULES
We now discuss efficient techniques for tackling Problem 3.

In Section 5.1 we present an algorithm to compute the prob-
ability of an association rule. Then, Section 5.2 explains how
p-ARs can be obtained.

5.1 Computing Association Rule Probability
Let X and Y be disjoint patterns, i.e., X ∩ Y = ∅. To

check whether X ⇒ Y is a p-AR, we have to compute the
probability P (X ⇒ Y), and compare it against minprob

(Equation 6). As discussed, computing this probability by
expanding possible worlds is not practical. Given that X
and XY are p-FPs, and their support pmfs are fX and fXY ,
we now explain how to efficiently evaluate P (X ⇒ Y).

Step 1. Find fXY . Notice that the sets of tuples that

contain XY and XY are disjoint. Hence, sup(XY) and
sup(XY) are independent random variables. Since sup(X) =
sup(XY)+sup(XY), fX is the convolution of fXY and fXY .

Conversely, fXY is the deconvolution of fX and fXY . By us-
ing Fast Fourier Transform methods, deconvolution can also
be implemented in O(n log n) time. The details can be found
in [24].

Step 2. Compute P (X ⇒ Y) by using the values of fXY

and fXY , based on the following lemma:

Lemma 4. The probability of X ⇒ Y is:

P (X ⇒ Y) =
n∑

i=minsup

fXY [i]

(1−minconf)i
minconf∑

j=0

fXY [j] (8)

Proof.

P (X ⇒ Y)

= P

[
sup(XY)≥minsup∧ sup(XY)

sup(X)
≥minconf

]

= P

[
sup(XY)≥minsup∧ sup(XY)

sup(XY) + sup(XY)
≥minconf

]

= P

[
sup(XY)≥minsup∧sup(XY)≤ 1− minconf

minconf
sup(XY)

]

=
n∑

i=minsup

(1−minconf)i
minconf∑

j=0

P [sup(XY) = i ∧ sup(XY) = j]

Since XY and XY are disjoint, the above becomes:

n∑

i=minsup

(1−minconf)i
minconf∑

j=0

P [sup(XY) = i]P [sup(XY) = j]

=
n∑

i=minsup

fXY [i]

(1−minconf)i
minconf∑

j=0

fXY [j]

Hence, Lemma 4 is correct.

Algorithm 5: Computing prob. of a p-AR

Input: support pmf fXY and fX

Output: Pr[X ⇒ Y]
begin1

fXY ← Deconvolution(fXY , fX)2

¤ fXY = {fXY [0], fXY [1], . . . , fXY [h1]} (h1 ≤ n)3

¤ fXY = {fXY [0], fXY [1], . . . , fXY [h2]} (h2 ≤ n)4

Initialize prAR and prCum to be 05

Initialize j to be 06

for i ← minsup to h1 do7

while j < h2 do8

if j > 1−minconf
minconf

× i then9

break loop10

else11

prCum ← prCum + fXY12

j ← j + 113

prAR ← prCum + prCum× fXY [i]14

return prAR15

end16

Algorithm 5 implements the above procedures. We first
evaluate the deconvolution fXY (Step 2). Then, Steps 7-
14 compute P (X ⇒ Y) with Equation 8. While a basic
implementation of Equation 8 requires O(n2) time, we use
a variable, prCum, to accumulate the temporary sum of
fXY [j]. Then Equation 8 can be evaluated in O(n) time.
Hence, Algorithm 5 has a O(n log n) cost.

279

5.2 Deriving Association Rules
We now explain how to obtain the p-ARs from the p-FPs

generated by p-FP mining algorithms. We first present the
following lemma.

Lemma 5 (Anti-monotonicity). Let X be a p-FP, X ′

and X ′′ be non-empty patterns where X ′′ ⊂ X ′ ⊂ X. If
X −X ′ ⇒ X ′ is a p-AR, then X −X ′′ ⇒ X ′′ is a p-AR.

Proof. Let X be a p-FP, and X ′ and X ′′ be non-empty
sub-patterns of X, where X ′′ ⊆ X ′. Suppose that W ′ and
W ′′ are the set of possible worlds where X − X ′ ⇒ X ′

and X − X ′′ ⇒ X ′′ are association rules respectively. For
each possible world Wi ∈ W, if X − X ′ ⇒ X ′ is an asso-
ciation rule, then so is X − X ′′ ⇒ X ′′, based on the anti-
monotonicity property of association rules for exact data [4].
We know that P (X − X ′ ⇒ X ′) =

∑
Wi∈W′ P (Wi), and

P (X −X ′′ ⇒ X ′′) =
∑

Wi∈W′′ P (Wi). Since X −X ′ ⇒ X ′

is an association rule, we have: P (X−X ′′ ⇒ X ′′) ≥ P (X−
X ′ ⇒ X ′) ≥ minprob. By Equation 6, X − X ′′ ⇒ X ′′ is
therefore also a p-AR.

This lemma implies that if XY Z is a p-FP and X ⇒ Y Z
is a p-AR, then so is XY ⇒ Z and XZ ⇒ Y .

To generate p-ARs, we adopt the framework of the Apriori
algorithm [4], which was developed for exact data. Specif-
ically, let Xi be a size-i sub-pattern of X. For a p-FP X,
we enumerate all X1’s as the consequent of the rule. Then
we check whether X − X1 ⇒ X1 is a p-AR by computing
its probability with Algorithm 5. If X −X1 ⇒ X1 is not a
p-AR, then for any Xi where X1 ∈ Xi, X−Xi ⇒ Xi cannot
be a p-AR (by Lemma 5). Hence, we can stop examining
the rules that contain the superset of X1 as the consequent.
Otherwise, we check the validity of X −X2 ⇒ X2, for every
X2 such that X1 ⊂ X2. The checking goes on with larger
Xis, until we find that X − Xi ⇒ Xi is not a p-AR, or
Xi = X. We repeat this for every p-FP X.

6. EXPERIMENTAL RESULTS
We evaluated the performance of our solutions on two

datasets. The first one, called T25I10D500, is provided by
the IBM data generator1. The average length of a trans-
action is 25, the average length of a frequent pattern is 10,
and the dataset size n is 500k. The existential probability of
each tuple is randomly drawn between [0, 1]. Since no item
has support larger than 10% of n, this dataset is sparse, and
we set minsup to be 0.65% · n.

The second dataset, called Accident, comes from the Fre-
quent Itemset Mining (FIMI) Dataset Repository 2. It con-
tains 340k transactions, which record traffic accidents in the
Flanders-Belgium region during 1991-2000. Each transac-
tion stores the attributes (e.g., time, place and car type) of
an accident. The average length of a frequent pattern is 45,
and the number of items is 572. The existential probabil-
ity of each transaction is a random variable, drawn from a
Gaussian distribution with mean 0.5 and variance 0.02. The
default value of minsup is 35% of n.

For both datasets, the default values of minprob and min-

conf are 0.5 and 0.9 respectively. All the experiments were
carried out on the Windows XP operating system, on a ma-
chine with a 2.66 GHz Intel Core Duo processor and 2GB

1http://www.almaden.ibm.com/cs/disciplines/iis/
2http://fimi.cs.helsinki.fi/data/

memory. The programs were written in C++ and compiled
on Microsoft Visual Studio 2005. We next present the re-
sults for the two datasets in Sections 6.1 and 6.2.

6.1 Results on the Synthetic Dataset
(a)Basic solution. We compared the running time of

p-Apriori and the “basic” solution, which finds p-FP by ex-
panding possible worlds. For p-Apriori, we used DP to com-
pute support pmf. Figure 8(a) shows that the performance
of the basic solution degrades sharply with a slight increase
of n, due to the exponential growth of the number of possi-
ble worlds. p-Apriori does not expand possible worlds, and
so its performance is much better. In fact, all our solutions
(i.e., p-Apriori and TODIS) significantly outperform the ba-
sic solution. Next, we focus on our solutions.

(b)ip-list. We then studied the benefit of using the ip-list
in p-Apriori. We used DP-n and DC-n to denote the versions
of DP and DC that do not use the ip-list. Figure 8(b) shows
that DP (DC) perform better than DP-n (correspondingly DC-

n). Hence, it is worthwhile to build and maintain the ip-list.
For example, when n = 8k, DC is two order of magnitudes
faster than DC-n. We next assume that the ip-list is used.

(c)Scalability. We compared p-Apriori and TODIS over
a wide range of n in Figure 8(c). For both algorithms, we
examined DP and DC. The four variants scale well with n.
Also, DC is always better than DP. When TODIS and DC
are used together, the best result is yielded. At n = 1000k,
TODIS-DC is more than one order of magnitude faster than
pApriori-DP.

(d)Effect of minsup. Figure 8(d) compared p-Apriori
and TODIS under different minsup values. When minsup

decreases, the performance gap between pApriori-DP and
TODIS-DP increases. With a smaller minsup, longer patterns
have to be tested, and so computing their pmf from scratch
is more expensive. TODIS, which updates pmfs instead, ben-
efits more in handling long patterns. The same can be said
for pApriori-DC and TODIS-DC. Again TODIS-DC is the best.

(e)Analysis of TODIS. Recall that TODIS spends some
effort (in Phase 1) to generate candidate patterns, so that
they can be used to identify p-FPs in Phase 2. Over differ-
ent values of minsup, the time spent on Phase 1 is a small
fraction of that of Phase 2 (Figure 8(e)). The effort of find-
ing candidate patterns in Phase 1 is thus worthwhile, since
this facilitates the top-down pmf update in Phase 2. Hence
TODIS outperforms p-Apriori. We also investigate the ef-
fectiveness of pruning lemmas used in Phase 1. Let r be the
number of true p-FPs. The number of candidates generated
in Phase 1 is less than 2r under different minsup settings.

(f)Effect of minprob. Figure 8(f) showed that the run-
ning times of p-Apriori and TODIS increase with a lower
minprob. A lower minprob implies that more patterns can
become p-FPs. Hence both algorithms spend more time to
compute their pmfs. Again, TODIS outperforms p-Apriori.

(g)Maximal p-FPs. Figure 8(g) studied algorithms for
finding maximal p-FPs. Since the results produced by TODIS
and p-Apriori contain the maximal p-FPs, these p-FPs can
be obtained from their results. We also see that TODIS-MAX

(Section 4.2) is faster than TODIS, since not all p-FPs have
their pmfs evaluated. At minsup = 0.7% · n, TODIS-MAX is
20% faster than TODIS.

(h)Finding p-ARs. In Figure 8(h), we examined the use
of the anti-monotonicity property (Lemma 5) for generating
p-ARs. The running time increases with smaller minprob,

280

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

database size (k)

ru
n
n
in
g
 t
im
e
 (
s
e
c
)

Basic

pApriori−DP

4 6 8 10 12
10

−1

10
0

10
1

10
2

10
3

10
4

database size (k)

ru
n
n
in
g
 t
im
e
 (
s
e
c
)

DC

DP

DC−n

DP−n

200 400 600 800 1000
10

1

10
2

10
3

database size (k)

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

TODIS−DC

pApriori−DC

TODIS−DP

pApriori−DP

0.70.750.80.850.9
0

50

100

150

200

250

300

minsup / n (%)

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

TODIS−DC

pApriori−DC

TODIS−DP

pApriori−DP

(a) Scalability (b) Effect of ip-list (c) Scalability (d) Running time vs. minsup

0.70.750.80.850.9
0

10

20

30

40

minsup / n (%)

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

Phase 1

Phase 2

00.20.40.60.81
50

100

150

200

minprob

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

TODIS

p−Apriori

0.70.750.80.850.9
0

20

40

60

80

minsup / n (%)

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

TODIS−MAX

TODIS

pApriori

00.20.40.60.81
25

30

35

40

45

50

minprob

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

with Lemma5

without Lemma5

(e) Analysis of TODIS. (f) Running time vs. minprob (g) Finding maximal p-FPs (h) Finding p-ARs

353739414345
0

1000

2000

3000

4000

5000

minsup / n (%)

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

TODIS

pApriori

353739414345
0

200

400

600

800

1000

1200

minsup / n (%)

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

TODIS−MAX

TODIS

pApriori

00.20.40.60.81
200

400

600

800

1000

1200

minprob

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

with Lemma5

without Lemma5

0.70.750.80.850.9
200

400

600

800

1000

1200

minconf

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

minprob=0.9

minprob=0.5

minprob=0.1

(i) Running time vs. minsup (j) Finding maximal p-FPs (k) Finding p-ARs (l) Running time vs. minconf

Figure 8: Performance Evaluation

since more rules become p-ARs. Under a wide range of
minprob, Lemma 5 prunes a lot of rules without computing
their probabilities. Hence, the speed of generating p-ARs
increases significantly.

6.2 Results on the Real Dataset
Since most experiments on the real dataset show a sim-

ilar trend as the synthetic data, we only present the most
representative ones.

(i)Effect of minsup. Figure 8(i) compared p-Apriori
and TODIS using DC. We do not show the results for DP,
since they take more than three hours to complete. TODIS
substantially outperforms p-Apriori; at minsup = 35% · n,
TODIS is 75% faster than p-Apriori. This big difference
is due to the fact that the real dataset is dense – regard-
less of the tuple probability, 11 singletons have a support of
more than 80%. This results in long ip-lists, which benefits
TODIS more than p-Apriori.

(j)Maximal p-FPs. As shown in Figure 8(j), TODIS-MAX
is much better than TODIS. When minsup is 35% ·n, TODIS-
MAX is 70% faster than TODIS. The dense dataset implies that
the maximal p-FPs can be large. A maximal p-FP contains
many subpatterns. While TODIS has to compute pmfs for all
subpatterns, TODIS-MAX does not do so. Hence TODIS-MAX is
better than TODIS.

(k)Finding p-ARs. From Figure 8(k), we observed that
Lemma 5 effectively reduces its running time under differ-
ent minprob values. Finally, Figure 8(l) showed that the
p-AR algorithm needs more time to complete with a lower

minconf. When minconf decreases, more rules can become
p-ARs, and so more time is spent on computing their prob-
abilities. The running time flattens when minconf ≤ 0.75.
We found that most rules generated have confidence higher
than 0.75, and so a decrease of minconf does not have much
effect on the performance.

7. CONCLUSIONS
We studied efficient algorithms for extracting frequent

patterns from probabilistic databases. The TODIS algo-
rithm, when used together with DC, yields the best perfor-
mance. We examined the efficient mining of p-ARs, which,
to our knowledge, has not been studied before. We plan to
study the discovery of association rules for other uncertain
data models. We will also consider to extend existing mining
methods on exact databases, to handle probabilistic data.

8. ACKNOWLEDGMENTS
This work was supported by the Research Grants Coun-

cil of Hong Kong (GRF Projects 513508 and 711309E). We
would like to thank the anonymous reviewers for their in-
sightful comments.

9. REFERENCES

[1] A. Deshpande et al. Model-driven data acquisition in
sensor networks. In VLDB, 2004.

281

[2] C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent
pattern mining with uncertain data. In KDD, 2009.

[3] C. Aggarwal and P. Yu. A survey of uncertain data
algorithms and applications. IEEE Transactions on
Knowledge and Data Engineering, 21(5), 2009.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. Technical report,
RJ 9839, IBM, 1994.

[5] R. Bayardo, Jr. Efficiently mining long patterns from
databases. In SIGMOD, 1998.

[6] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and
T. Yiu. MAFIA: A maximal frequent itemset
algorithm. IEEE Transactions on Knowledge and Data
Engineering, 17, 2005.

[7] H. Cheng, P. Yu, and J. Han. Approximate frequent
itemset mining in the presence of random noise. Soft
Computing for Knowledge Discovery and Data
Mining, 2008.

[8] R. Cheng, D. Kalashnikov, and S. Prabhakar.
Evaluating probabilistic queries over imprecise data.
In SIGMOD, 2003.

[9] C. K. Chui, B. Kao, and E. Hung. Mining frequent
itemsets from uncertain data. In PAKDD, 2007.

[10] G. Cormode and M. Garofalakis. Sketching
probabilistic data streams. In SIGMOD, 2007.

[11] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[12] M. Garofalakis and A. Kumar. Wavelet synopses for
general error metrics. ACM Transactions on Database
Systems, 30(4), 2005.

[13] K. Gouda and M. J. Zaki. GenMax: An efficient
algorithm for mining maximal frequent itemsets. Data
Mining and Knowledge Discovery, 11(3), 2005.

[14] R. Hogg, A. Craig, and J. Mckean. Introduction to
Mathematical Statistics (6th ed.). Prentice Hall, 2004.

[15] J. Huang et al. MayBMS: A Probabilistic Database
Management System. In SIGMOD, 2009.

[16] N. Khoussainova, M. Balazinska, and D. Suciu.

Towards correcting input data errors probabilistically
using integrity constraints. In MobiDE, 2006.

[17] D. Knuth. The art of computer programming, vol. 3.
Addison Wesley, 1998.

[18] H. Kriegel and M. Pfeifle. Density-based clustering of
uncertain data. In KDD, 2005.

[19] C. Kuok, A. Fu, and M. Wong. Mining fuzzy
association rules in databases. SIGMOD Record, 1998.

[20] A. Lu, Y. Ke, J. Cheng, and W. Ng. Mining vague
association rules. In DASFAA, 2007.

[21] M. Mutsuzaki et al. Trio-one: Layering uncertainty
and lineage on a conventional dbms. In CIDR, 2007.

[22] M. Yiu et al. Efficient evaluation of probabilistic
advanced spatial queries on existentially uncertain
data. IEEE Transactions on Knowledge and Data
Engineering, 21(9), 2009.

[23] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge University Press, New York, NY, USA,
1995.

[24] A. Oppenheim, R. Schafer, and J. Buck. Discrete-time
signal processing (2nd ed.). Prentice Hall, 1999.

[25] P. Sistla et al. Querying the uncertain position of

moving objects. In Temporal Databases: Research and
Practice. Springer Verlag, 1998.

[26] J. Ren, S. Lee, X. Chen, B. Kao, R. Cheng, and
D. Cheung. Näıve Bayes Classification of Uncertain
Data. In ICDM, 2009.

[27] T. Bernecker et al. Probabilistic frequent itemset
mining in uncertain databases. In KDD, 2009.

[28] T. Jayram et al. Avatar information extraction
system. IEEE Data Engineering Bulletin, 29(1), 2006.

[29] P. Tan, M. Steinbach, and V. Kumar. Introduction to
Data Mining. Pearson Education, 2006.

[30] C. Yang and W. Najm. Examining driver behavior
using data gathered from red light photo enforcement
cameras. Journal of Safety Research, 38(3), 2007.

[31] Q. Zhang, F. Li, and K. Yi. Finding frequent items in
probabilistic data. In SIGMOD, 2008.

282

