Data Stream Systems

Reynold Cheng
12th July, 2002

Based on slides by B. Babcock et al., "Models and Issues in Data Stream Systems", PODS'02.

Outline of this Talk

- An Overview of Streams
- Data and Query Models
- Approximation Queries
- Other Research Issues
Data Streams

- Traditional DBMS – data stored in finite, persistent data sets
- New Applications – data input as continuous, ordered data streams
- A data stream as a growing relational table of potentially infinite size

Using Traditional Database
New Approach for Data Streams

User/Application

Register Query

Stream Query Processor

Results

Scratch Space
(Memory and/or Disk)

Data Stream Management System (DSMS)
Sample Applications

- Network management and traffic engineering (e.g., Sprint)
 - Streams of measurements and packet traces
 - Queries: detect anomalies, adjust routing
- Telecom call data (e.g., AT&T)
 - Streams of call records
 - Queries: fraud, customer call patterns, billing

Sample Applications

- Sensor Networks
 - Large number of cheap, wireless sensors
 - Streams of real-world measurements
 - Queries: monitoring, aggregate, alert
- Web tracking and personalization (e.g., Yahoo, Google)
 - Clickstreams, user query streams, log records
 - Queries: monitoring, analysis, personalization
Challenges

- Multiple, continuous, rapid, time-varying, ordered streams
- Main memory computations
- Queries may be continuous (not just one-time)
 - Evaluated continuously as stream data arrives
 - Answer updated over time
- Queries may be ad-hoc
- Beyond relational queries (scientific, data mining)

Meta-Questions

- Killer-apps
 - Application stream rates exceed DBMS capacity?
 - Can DSMS handle high rates anyway?
- Motivation
 - Need for general-purpose DSMS?
 - Not ad-hoc, application-specific systems?
- Non-Trivial
 - DSMS = merely DBMS with enhanced support for triggers, temporal constructs, data rate mgmt?
DBMS versus DSMS

- Persistent relations
- Transient streams

- Persistent relations
- One-time queries
- Transient streams
- Continuous queries
DBMS versus DSMS

<table>
<thead>
<tr>
<th>DBMS</th>
<th>DSMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent relations</td>
<td>Transient streams</td>
</tr>
<tr>
<td>One-time queries</td>
<td>Continuous queries</td>
</tr>
<tr>
<td>Random access</td>
<td>Sequential access</td>
</tr>
</tbody>
</table>

- Persistent relations
- One-time queries
- Random access
- “Unbounded” disk store

- Transient streams
- Continuous queries
- Sequential access
- Bounded main memory
DBMS versus DSMS

- Persistent relations
- One-time queries
- Random access
- “Unbounded” disk store
- Only current state matters
- Relatively low update rate

- Transient streams
- Continuous queries
- Sequential access
- Bounded main memory
- History/arrival-order is critical
- Possibly multi-GB arrival rate
DBMS versus DSMS

- Persistent relations
- One-time queries
- Random access
- “Unbounded” disk store
- Only current state matters
- Relatively low update rate
- No real-time services

- Transient streams
- Continuous queries
- Sequential access
- Bounded main memory
- History/arrival-order is critical
- Possibly multi-GB arrival rate
- Real-time requirements

- Transient streams
- Continuous queries
- Sequential access
- Bounded main memory
- History/arrival-order is critical
- Possibly multi-GB arrival rate
- Real-time requirements
- Data stale/imprecise
Outline of this Talk

- An Overview of Streams
- Data and Query Models
- Approximation Queries
- Other Research Issues
Data Model

- Append-only
 - Call records
- Updates
 - Stock tickers
- Deletes
 - Transactional data
- Meta-Data
 - Control signals, punctuations

System Internals – probably need all above

Query Model

Query Registration
- Predefined
- Ad-hoc
- Predefined, inactive until invoked

Answer Availability
- One-time
- Event/timer based
- Multiple-time, periodic
- Continuous (stored or streamed)

Stream Access
- Arbitrary
- Weighted history
- Sliding window

DSMS
Example Queries

Query 1 (self-join)

- Find all outgoing calls longer than 2 minutes

SELECT O1.call_ID, O1.caller
FROM Outgoing O1, Outgoing O2
WHERE (O2.time - O1.time > 2
 AND O1.call_ID = O2.call_ID
 AND O1.event = start
 AND O2.event = end)

- Result requires unbounded storage
- Can provide result as data stream
- Can output after 2 min, without seeing end
Query 2 (join)

• Pair up callers and callees

 SELECT O.caller, I.callee
 FROM Outgoing O, Incoming I
 WHERE O.call_ID = I.call_ID

• Can still provide result as data stream

• Requires unbounded temporary storage

Query 3 (group-by aggregation)

• Total connection time for each caller

 SELECT O1.caller, sum(O2.time – O1.time)
 FROM Outgoing O1, Outgoing O2
 WHERE (O1.call_ID = O2.call_ID
 AND O1.event = start
 AND O2.event = end)
 GROUP BY O1.caller

• Cannot provide result in (append-only) stream
 • Output updates?
 • Provide current value on demand?
Outline of this Talk

- An Overview of Streams
- Data and Query Model
- **Approximation Queries**
- Other Research Issues

Impact of Limited Memory

- Continuous streams grow unboundedly
- Queries may require unbounded memory
- [ABBMW 02]
 - a priori memory bounds for query
 - Conjunctive queries with arithmetic comparisons
 - Impact of duplication elimination
- Open – general queries
Approximate Query Evaluation

- **Why?**
 - Handling load – streams coming too fast
 - Data stream is archived in a off-site data warehouse, expensive access of archived data
 - Avoid unbounded storage and computation
 - Ad hoc queries need approximate history
 - Try to look at the data items only once and in a fixed order

Approximate Query Evaluation

- **How?** Sliding windows, synopsis, samples, load-shed
- **Major Issues?**
 - Metric for set-valued queries
 - Composition of approximate operators
 - How is it understood/controlled by user?
 - Integrate into query language
 - Query planning and interaction with resource allocation
 - Accuracy-efficiency-storage tradeoff and global metric
Synopses

- Queries may access or aggregate past data
- Need bounded-memory history-approximation
- Synopsis?
 - Succinct summary of old stream tuples
 - Like indexes/materialized-views, but base data is unavailable
- Examples
 - Sliding Windows
 - Samples
 - Sketches
 - Histograms
 - Wavelet representation

Sketching Techniques

- Self-Join Size Estimation
- Stream of values from $D = \{1, 2, \ldots, n\}$
- Let $f_i =$ frequency of value i
- Consider $S = \sum f_i^2$, or Gini’s index of homogeneity.
- Useful in parallel DB applications, error estimation in query result size estimation and access plan costs.
- Equivalent query: count ($R \ |><|_D R$)
Evaluating $S = \sum f_i^2$

- To update S, keep a counter f_i for each value i in the domain $D \Rightarrow \Omega(n)$ space
- Has to be kept for each self-join
- Question – estimating S in sub-linear space? ($O(\log n)$)

Self-Join Size Estimation

- AMS Technique (randomized sketches)
 - Given (f_1, f_2, \ldots, f_N)
 - $Z_i = \text{random}\{-1, 1\}$
 - $X = \sum f_i Z_i$ (X incrementally computable)
- Theorem $\text{Exp}[X^2] = \sum f_i^2$
 - Cross-terms $f_i Z_i f_j Z_j$ have 0 expectation
 - Square-terms $f_i Z_i f_i Z_i = f_i^2$
- Space $= \log (N + \sum f_i)$
- Independent samples X_k reduce variance
Estimation Quality

- How can independent samples X_k improve the quality of estimation?
- Keep $s_1 \times s_2$ samples for X_k
- s_1 reduces variance, s_2 boosts confidence

Sample Run of AMS

$$V = \begin{bmatrix} 3 & 6 & 2 & 5 & 7 \end{bmatrix}$$

$$Z_1 = \begin{bmatrix} 1 & 1 & -1 & 1 & -1 \end{bmatrix} \quad Z_2 = \begin{bmatrix} -1 & 1 & -1 & 1 & 1 \end{bmatrix}$$

$$\sum v_i^2 = 123 \quad X_1 = 5, X_1^2 = 25 \quad X_2 = 14, X_2^2 = 196 \quad \text{Est} = 110.5$$

$$V = \begin{bmatrix} 4 & 6 & 2 & 5 & 7 \end{bmatrix}$$

$$Z_1 = \begin{bmatrix} 1 & 1 & -1 & 1 & -1 \end{bmatrix} \quad Z_2 = \begin{bmatrix} -1 & 1 & -1 & 1 & 1 \end{bmatrix}$$

$$\sum v_i^2 = 130, \quad X_1 = 6, X_1^2 = 36, \quad X_2 = 12, X_2^2 = 144, \quad \text{Est} = 90$$
Comments on AMS

- The self-join size can be computed on-line
- Sufficiently small variance (controlled by s_1 and s_2)
- Can this method be extended to answer other queries?

Complex Aggregate Queries

- A. Dobra et al. extend the idea of AMS to provide approximate answers to complex aggregate queries.
- SELECT AGG FROM $R_1, R_2, …, R_r$ where E
- AGG: COUNT/SUM/AVERAGE
- E: conjunction of $(R_i.A_j = R_k.A_l)$
- It is proved that the error of these estimates is at most ε with probability $1-\delta$.
Basic Notions of Approximation

- For aggregate queries (e.g., SUM, COUNT), approximation quality can be measured by relative error:
 - \(\frac{(\text{Estimated value} - \text{Actual value})}{\text{Actual value}} \)
- Open question: for queries involving more than simple aggregation, how should we define approximation?
- Consider \(S |<|_{B} T: (S: \{A,B\}, T: \{B,C\}) \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20.5</td>
<td>Doctor</td>
<td>8</td>
<td>10.3</td>
<td>Lawyer</td>
</tr>
<tr>
<td>8</td>
<td>10.3</td>
<td>Lawyer</td>
<td>3</td>
<td>10.2</td>
<td>Teacher</td>
</tr>
</tbody>
</table>

Actual Result | Approximate Result

Basic Notions of Approximation (2)

- Can we accept this kind of approximation?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20.5</td>
<td>Doctor</td>
<td>11</td>
<td>21.6</td>
<td>Doctor</td>
</tr>
<tr>
<td>8</td>
<td>10.3</td>
<td>Lawyer</td>
<td>8</td>
<td>10.3</td>
<td>Student</td>
</tr>
<tr>
<td>3</td>
<td>10.2</td>
<td>Teacher</td>
<td>3</td>
<td>10.2</td>
<td>Teacher</td>
</tr>
</tbody>
</table>

Actual Result | Approximate Result
Basic Notions of Approximation (3)

- Can we provide useful (semantically correct) but stale results?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20.5</td>
<td>Doctor</td>
</tr>
<tr>
<td>8</td>
<td>10.3</td>
<td>Lawyer</td>
</tr>
<tr>
<td>3</td>
<td>10.2</td>
<td>Teacher</td>
</tr>
</tbody>
</table>

Table: Actual Result (at time t)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20.5</td>
<td>Doctor</td>
</tr>
<tr>
<td>8</td>
<td>10.3</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Table: Approximate Result (correct result at time t - 6)

Outline of this Talk

- An Overview of Streams
- Data and Query Model
- Approximation Queries
- Other Research Issues
Data Mining

- High-Speed Stream Data Mining
 - Association Rules
 - Stream Clustering
 - Decision Trees
- **Single-pass** algorithms for inferring interesting patterns *on-line* (as the data stream arrives)
- Useful for mission-critical tasks like telecom fraud detection

Conclusion: Future Work

- Query Processing
 - Stream Algebra and Query Languages
 - Approximations
 - Blocking Operators, Constraints, Punctuations
- Runtime Management
 - Scheduling, Memory Management, Rate Management
 - Query Optimization (Adaptive, Multi-Query, Ad-hoc)
 - Distributed processing
- Synopses and Algorithmic Problems
- Systems
 - UI, statistics, crash recovery and transaction management
 - System development and deployment
References

A. Arasu, B. Babcock, S. Babu, J. McAlister, J. Widom. *Characterizing Memory Requirements for Queries over Continuous Data Streams, PODS ‘02.*

A. Dobra, M. Garofalakis, J. Gehrke, R. Rastogi. *Processing Complex Aggregate Queries over Data Streams, SIGMOD ‘02.*

Thank You!