Title: On Optimality of Jury Selection Problem in Crowdsourcing

Yudian, Reynold, Silviu, Luyi

EDBT 2015
Outline

- Introduction (Crowdsourcing)
- Problem Definition (Jury Selection Problem)
- Our Solution (Optimality)
- Conclusion
Why do we need crowd?

- **Problems**
 - Which picture visualizes better "Golden Gate Bridge"?
 - ![Golden Gate Bridge pictures]
 - Submit

- **Possible Solutions**
 - ![Bill Gates CEO of Microsoft?](yes-no.png)

Crowdsourcing Definition

Definition

Coordinating a **crowd** to do **micro-tasks** that solve **problems**.

Example

- **problems:** entity resolution
- **An example micro-task:**

 Are they the same?

 iPad 2 = iPad Two

 [] YES [] NO

 [SUBMIT]
Amazon Mechanical Turk

- **Requesters**
 - Get Results from Mechanical Turk Workers
 - As a Mechanical Turk Requester you:
 - Have access to a global, on-demand, 24 x 7 workforce
 - Get thousands of HITs completed in minutes
 - Pay only when you're satisfied with the results
 - Fund your account, Load your tasks, Get results

- **Micro-Tasks**
 - Are they the same? iPad 2 = iPad Two
 - YES ☐ NO ☐

- **Workers**
 - Is Bill Gates now the CEO of Microsoft?
 - YES ☐ NO ☐

- **Official Amazon Mechanical Blog (August, 2012)**

 more than **500,000 workers** from **190 countries**

 http://mechanicalturk.typepad.com/blog/2012/08/mechanical-turk-featured-on-aws-report.html
Outline

- Introduction (Crowdsourcing)
- Problem Definition (Jury Selection Problem)
- Our Solution (Optimality)
- Conclusion
Problem Intuition (Worker Selection) - VLDB 12

Given (1) a Task
(2) a fixed Budget B
(3) a set of workers

Worker Selection Problem:
Choose a subset of workers, such that the task can be completed successfully (i.e., with high quality), in the most economical manner?

Next: Task and Worker

Task: Decision Making Task

- Answers are “yes” and “no”
- One (unknown) ground truth

Decision Making Task

<table>
<thead>
<tr>
<th>Is Bill Gates now the CEO of Microsoft?</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES 🟢</td>
</tr>
</tbody>
</table>

- Simplicity
- (Extensions) Multiple Choice Tasks

Worker - (quality, cost)

- Each Worker: (quality, cost)
 Ex: A (0.77, $9)

- Jury: a subset of workers (Ex: \{A,B,D\})

Jury Selection Problem

Task:

- **Budget:** $20
- **Workers:**

For each Jury:

1. **Jury Cost:** $5 + $7 + $6 = $18
2. **Jury Quality:** JQ (0.7, 0.65, 0.2),

 Pr (correctly deriving a result based on workers’ answers)

Select a Jury (subset of workers) such that the Jury Quality is maximized in all Jury whose cost does not exceed the Budget.
Jury Quality Computation (MV) – VLDB12

- **Jury Quality for Majority Voting Strategy**

 - **MV** : return the answer which receives the highest votes

 - **Cost**({$5, $7, $6}) = 18 ≤ 20

 - **JQ**({0.7, 0.65, 0.2}, MV) = 54.3%

 \[
 \text{JQ}({0.7, 0.65, 0.2}, \text{MV}) = 0.7 \times 0.65 \times 0.8 + 0.7 \times 0.35 \times 0.2 + 0.3 \times 0.65 \times 0.2 + 0.7 \times 0.65 \times 0.2 = 54.3\%
 \]
Enumerating all Jury set satisfying budget constraint

optimal jury set

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.77, $9)</td>
<td>(0.7, $5)</td>
<td>(0.6, $2)</td>
</tr>
</tbody>
</table>

- Cost({$9, $5, $2}) = 16 ≤ 20
- JQ({0.77, 0.7, 0.6}, MV) = 77.42%

Question: Is it optimal?

Is it possible to provide a better solution for JSP, by replacing MV with another strategy?
Outline

- Introduction (Crowdsourcing)
- Problem Definition (Jury Selection Problem)
- Our Solution (Optimality)
- Conclusion
Classification of Voting Strategies

Based on whether the result is returned with degree of randomness, we can classify the voting strategies into two categories:

deterministic voting strategy (left part in the graph) and
randomized voting strategy (right part in the graph).

Example:
{0,1,1} 0.7,0.6,0.2

Majority Voting (Deterministic):
return 1

Randomized Majority Voting (Randomized):
return 0 with probability 1/3
return 1 with probability 2/3
Existence of Optimal Voting Strategy

Given a Jury set \(J \) and a strategy \(S \), the corresponding Jury Quality \(JQ(J,S) \) can be computed. An important question is:

Does there exists an optimal strategy \(S^* \), such that given a Jury set \(J \), the JQ for this strategy is not lower than the JQ for any strategy (including all deterministic and randomized strategies)?

\[
JQ(J, S^*) \geq JQ(J, S) \text{ for any } S
\]

We formally prove that the \textit{Bayesian Voting Strategy (BV)} is the optimal strategy, i.e., \(S^* = BV \).
Proof of Optimality

To answer this question, let us reconsider Definition 3. Let $h(V) = \mathbb{E}[\mathbb{1}_{S(V) = 0}]$. We have (i) $h(V) \in [0, 1]$; and (ii) $\mathbb{E}[\mathbb{1}_{S(V) = 1}] = 1 - h(V)$. Also, let $P_0(V) = \Pr(V = V, t = 0)$, and $P_1(V) = \Pr(V = V, t = 1)$. Hence, $JQ(J, S, \alpha)$ can be rewritten as

$$\sum_{V \in \Omega} \left[P_0(V) \cdot h(V) + P_1(V) \cdot (1 - h(V)) \right]$$

$$= \sum_{V \in \Omega} \left[h(V) \cdot (P_0(V) - P_1(V)) + P_1(V) \right]$$

This gives us a hint to maximize $JQ(J, S, \alpha)$ and find the optimal voting strategy S^*. Let $h^*(V) = \mathbb{E}[\mathbb{1}_{S^*(V) = 0}]$. It is observed that $P_1(V)$ is constant for a given V and $h(V) \in [0, 1]$ for all S’s (no matter it is a deterministic one or a randomized one). Thus, to optimize $JQ(J, S, \alpha)$, it is required that

1. if $P_0(V) - P_1(V) < 0$, $h^*(V) = 0$, and so, $S^*(V) = 1$;
2. if $P_0(V) - P_1(V) \geq 0$, $h^*(V) = 1$, and so, $S^*(V) = 0$.
Bayesian Voting Strategy

Example:
{0,1,1} 0.7,0.6,0.2

Majority Voting Strategy:
give 1 vote for the supported answer

0: 1 (by worker 1)
1: 1 (by worker 2) + 1 (by worker 3) = 2

Bayesian Voting Strategy (Deterministic Strategy):
give \(\log\frac{p}{1-p} \) vote for the supported answer

0: \(\log\frac{0.7}{0.3} = 0.8473 \)
1: \(\log\frac{0.6}{0.4} + \log\frac{0.2}{0.8} = -0.981 \)

JQ({0.77,0.7,0.6}, MV) = 77.42%
JSP solution: {A, B, E}

JQ({0.77,0.6,0.25,0.2}, BV) = 86.95%
JSP solution: {A, E, F, G}
1. Given Jury J, JQ computation for BV, or JQ(J,BV)

Recall that the JQ computation requires enumerating exponential number (w.r.t $|J|$) of states, i.e.,

$$|\{0,1\}|^*|\{0,1\}|^{|J|} = 2^{|J|+1}$$

2. The number of Jury set satisfying Budget Constraint is

Exponential w.r.t. N, in the worst case 2^N
Complexity 1 of JSP

1. Given Jury J, JQ computation for BV, or $\text{JQ}(J,BV)$

Recall that the JQ computation requires enumerating exponential number (w.r.t $|J|$) of states, i.e.,

\[|\{0,1\}| \times |\{0,1\}| \times |J| = 2^{|J|+1} \]

- **NP-hardness of JQ computation**
- **Polynomial Approximation Algorithm** (with Pruning Technique)
- **Bounded by 1% Error**
*Q1: Computing JQ for BV is NP-hard

In order to prove the NP-hardness of computing JQ for BV, we can reduce the partition problem, a well-known NP-Complete Problem (also a decision problem) to the problem of computing JQ for BV.

Partition Problem (NP-Complete Problem)

Input: \(W = \{ w_1, w_2, \ldots, w_n \} \), \(w_i \) is integer (\(1 \leq i \leq n \))

Output: yes/no

Decide whether \(W \) can be partitioned into two disjoint multi-sets \(W_1 \) and \(W_2 \), such that the sum of elements in \(W_1 \) is equal to the sum of elements in \(W_2 \).

Reduction

Input: \(W = \{ w_1, w_2, \ldots, w_n \} \), \(w_i \) is integer (\(1 \leq i \leq n \))

Construct \(J = \{ j_1, j_2, \ldots, j_n \} \) and \(J' = \{ j_1, j_2, \ldots, j_{n+1} \} \) based on \(W \), then

1. If \(JQ(J', BV) > JQ(J, BV) \), then the output for partition problem of \(W \) is "yes";
2. If \(JQ(J', BV) \leq JQ(J, BV) \), then the output for partition problem of \(W \) is "no";

Since computing JQ for BV is not in NP (it is not a decision problem), then it is a NP-hard problem.
Q1: Bucket-Based Approx. Alg. (Pruning)

Settings:

\[
\sigma(q_1) = \sigma(q_2) = 1.2 \quad \sigma(q_i) = \log \frac{q_i}{1-q_i}
\]

Compute JQ(J,BV):

\[
\begin{align*}
\sigma(q_i) & \quad \rightarrow \quad (0,1) \\
\neg \sigma(q_i) & \quad \rightarrow \quad (-1.2,1-q_i) \\
\end{align*}
\]

\[
\begin{align*}
\sigma(q_2) & \quad \rightarrow \quad (1.2,q_1) \\
\neg \sigma(q_2) & \quad \rightarrow \quad (-1.2,1-q_1) \\
\end{align*}
\]

\[
\begin{align*}
\neg \sigma(q_2) & \quad \rightarrow \quad (-2.4,(1-q_1)(1-q_2)) \\
\end{align*}
\]

Real Computed JQ(J,BV):

\[
q_1q_2 + \left[q_1(1-q_2) + (1-q_1)q_2 \right]/2
\]

Approximations

\[
\log \frac{0.99}{1-0.99} < 4.6
\]

Aggregated bucket number

Represent it as a bucket number

\[
\begin{align*}
A & = \log \frac{q_1}{1-q_1} \\
B & = \log \frac{q_2}{1-q_2}
\end{align*}
\]

numBuckets
Q1: Approximation Error Bound

Notations:
Let \(\hat{JQ}(J, BV) \) denote the estimated JQ of the approximation algorithm, and \(JQ(J, BV) \) denote the real JQ.

We can prove:

1. \(\hat{JQ}(J, BV) \leq JQ(J, BV) \)
2. \(JQ(J, BV) - \hat{JQ}(J, BV) < e^{\frac{5}{4d}} - 1 \)

The time complexity of approximation algorithm is \(O(dn^3) \) and if \(d \geq 200 \), the approximation error is bounded within 1%.

\[d = \frac{\text{numBuckets}}{n} \]

The polynomial algorithm will give within 1% approximation error bound.

Real: 80%
Estimated: 79-80%
Complexity 2 of JSP

2. The number of Jury set satisfying Budget Constraint is

Exponential w.r.t. N, in the worst case 2^N

- NP-hardness of JSP
- Simulated Annealing Heuristic for general JSP
Combinatorial Optimization Problem

- Similar to Knapsack Problem, with the difference in the Objective Function

*NP-hard, intuitively as computing the JQ (Objective Function) is NP-hard

*Even though regarding it as an oracle, deriving the optimal solution is also NP-hard

=> N-th order knapsack problem
Simulated Annealing Heuristic

- Heuristic solving combinatorial optimization problem
- Avoid local minimum, probability of accepting a worse place

Minimize the cost function: \(c(x) \)

Starting point: \(x_0 \)

Global minimum

Local minimum
*Simulated: Different Voting Strategies

MV: Majority Voting
BV: Bayesian Voting
RB: Random Ballot Voting (Randomly returns 0 or 1)
RMV: Randomized Majority Voting

Randomly generate 10 workers with quality \(\mathcal{N}(\mu, 0.1^2) \)

(a) Varying \(\mu \)
(b) Varying \(n (\mu = 0.3) \)
(c) Varying \(n (\mu = 0.7) \)
Simulated : Proposed Approx. Algorithm

Observe the effect of our proposed approximation algorithms

(a) effect with the change of mean and variance
(b) vary the bucket number
(c) approximation error bound
(d) pruning techniques
Real: End-to-End System Comparison

Collect Data from AMT:
600 questions, each question answered by 20 workers

Known Ground Truth -> workers’ qualities

Outline

- Introduction (Crowdsourcing)
- Problem Definition (Jury Selection Problem)
- Our Solution (Optimality)
- Conclusion
System (Optimal Jury Selection System)

Decision Making Task

<table>
<thead>
<tr>
<th>Is Bill Gates now the CEO of Microsoft?</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
</tr>
</tbody>
</table>

Budget-Quality Table

<table>
<thead>
<tr>
<th>Budget</th>
<th>Optimal Jury Set</th>
<th>Quality</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>{ E, F }</td>
<td>75%</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>{ F, G }</td>
<td>80%</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>{ B, F, G }</td>
<td>84.5%</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>{ A, E, F, G }</td>
<td>86.95%</td>
<td>20</td>
</tr>
</tbody>
</table>

Trade-Off

<table>
<thead>
<tr>
<th>Budget 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>(0.7, $5)</td>
</tr>
</tbody>
</table>

All candidate Jurors Set (quality, cost)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.77, $9)</td>
<td>(0.7, $5)</td>
<td>(0.65, $7)</td>
<td>(0.6, $5)</td>
<td>(0.6, $2)</td>
<td>(0.25, $3)</td>
<td>(0.2, $6)</td>
</tr>
</tbody>
</table>
Thank you!

Contact Info:
Yudian Zheng
DataBase Group
Computer Science Department
The University of Hong Kong