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Data Uncertainty

� Due to limited network bandwidth and 
battery power, readings are sampled only 

� The value of the entity being monitored 
(e.g., temperature, location) is changing

� Most of the time the database stores old 
values

� Query results can be incorrect!
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Uncertainty Model

� Ti (i = 1,...,n): database object i
� Ti.z: dynamic attribute (e.g., temperature, locations)
� Wolfson et al. (1999) proposed fi(x) as Gaussian 

distribution for a moving object on a route
� Deshpande et al. (2004) discussed parametrization of 

Gaussian distribution in sensor networks

ffii((xx) ) –– uncertainty uncertainty pdfpdf

[Li Ri]

Ti.z
uncertainty interval
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� Which room�s temp is 
between 10oF to 25oF?

�� {({(TT11,,10%), (10%), (TT22,80%)},80%)} T1 T2
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Probabilistic Queries

� Drawback: Costly integration operations
� In practice, the user is only concerned with 

results with sufficiently high probability values
� e.g., return ids of sensors with temperature 

over 30oF where probability 0.7



4

Uncertainty Indexing 7

Probability Threshold Queries (PTQ)

� INPUT: [a,b], and p,where a,b,p ∈ℜ,         
0 < p ≤ 1

� OUTPUT: {Ti} where probability pi 
that Ti.z is inside [a,b] satisfies pi p       

� The actual value of pi is not returned
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Interval Indexing

� Interval indexing handles containment, 
overlap and stabbing queries

� Manolopoulos et al. (2000) proposed an 
efficient interval tree for range queries

� Arge & Vitter (1996) and Kanellakis et al. 
(1996) mapped 1D interval queries to 2D 
queries
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Solving PTQ with Interval Indexes

1. Use interval indexes to find intervals that 
overlap [a,b]

2. For each object retrieved, evaluate its 
probability of being within [a,b]

3. Return intervals with probability p
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The Problem of Interval Indexes

� Current Interval indexes do not consider 
probabilities during search

� Many irrelevant objects (probability < p)
may be retrieved from the interval index
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Outline

� Probability Threshold Indexing (PTI)
1D interval R-tree with uncertainty

� Variance-based Clustering 
Transform intervals to 2D points and 
index based on variance

� Experimental Results 
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Pruning in a 1D R-Tree

Q (Q (p = p = 0.3)0.3)

a b

•Some intervals in the MBR may satisfy Q
•Need to retrieve the contents of MBR
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x-bounds in a PTI Node

left-0.2-bound
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x-bounds in a PTI Node

right-0.5-boundleft-0.3-bound right-0.3-boundleft-0.5-bound right-0.2-boundleft-0.2-boundleft-0-bound right-0-bound
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Pruning with x-bounds

left-0.2-bound right-0.2-bound

Q (Q (p = p = 0.3)0.3)

a b

� An MBR is not further retrieved if:
1. Q does not cut left and right x-bounds
2. p > x
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Implementation of PTI
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Drawback of PTI
� Extra overhead in storing x-bounds
� Doesn’t distinguish small and large intervals

left-0.2-bound right-0.2-bound
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Outline

� Probability Threshold Indexing (PTI)
1D interval R-tree with uncertainty

� Variance-based Clustering 
Transform intervals to 2D points and 
index based on variance

� Experiment results
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Mapping intervals to 2D-space

� Each 1D interval [Li,Ri] can be mapped 
to a point (x,y) in 2D space
� Li � x
� Ri � y

� y x: mapped points lie above x=y line
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The PTQ-Uniform Problem

Q (p = 0.75)

Li Ri

a b

uniform pdf

uniform pdf

uniform pdf
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2D View of PTQ-Uniform

(Li,Ri)Q (p = 0.75)

Li Ri

a b

1D View
(Uniform pdf)

x =Li

y = Ri

2D View

x=y

a b
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y(1-p)+xp a
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a <x < y < b
Intervals in [a,b]
x(1-p)+yp ≤≤≤≤ b

Intervals in [a,b]
b-a p(y-x)

Intervals containing [a,b]
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Clustering of 2D points

� Points in the same 
vicinity have similar 
means and 
variances

mean of [Li,Ri]

variance of [Li,Ri]

(Li,Ri)

x

y

x=y

cluster of 
large intervals

cluster of 
smaller intervals

� When 2D points 
are clustered, small 
and large intervals 
are separated
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Answering PTQ-Uniform with        
2D R-Tree 

� Construct a 2D R-tree over 2D points
� Perform a trapezoidal range query over 

the 2D R-tree
� Since points with similar means and 

variances are clustered together, it is 
better than PTI
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Variance-based Clustering

� Can be extended to other pdfs
� Variance-based clustering is an 

uncertainty indexing technique based 
on 2D R-tree

� Each item is indexed based on its 
mean and variance
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Variance-based Clustering

� For uniform and Guassian distributions, 
range queries over 2D points can be 
constructed

� For arbitrary pdfs, a well-defined range 
query may be infeasible

� In those cases, place x-bounds in each 
2D R-tree node for pruning
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Theoretical Results

� Not possible to create a linear space 
index that gives logarithmic query 
times for PTQs in the worst case

� For most cases, any space-partitioning 
data structure e.g., 2D R-tree suffices

� PTQ with fixed threshold and uniform 
distribution can be answered in 
logarithmic time with a linear structure
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Outline

� Probability Threshold Indexing (PTI)
1D interval R-tree with uncertainty

� Variance-based Clustering 
Transform intervals to 2D points and 
index based on variance

� Experimental Results 
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Performance Comparison

� Compare number of I/Os between
1. 1D R-tree on intervals only
2. PTI (1D R-tree with probability 

thresholds)
3. 2D variance-based clustering (called 

Extensive)
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Simulation Model

� 100K uncertain data, with length 
uniformly distributed in [0,10000] and 
uniform uncertainty pdf

� 10K PTQs with length of [a,b] normally 
distributed and p ∈ [0.1,1]

� Each PTI node contains five x-bounds, 
where x ∈ {0.1,0.3,0.5,0.7,0.9}
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Scalability of Indexes

� Both PTI and 
Extensive
outperform R-tree

� Answering PTQ 
with R-tree requires 
more computation

� Extensive needs 
about 50% less 
I/Os than PTI
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Effect of Query Probability Threshold

� R-tree does not 
benefit from the 
increasing value of p

� When p is 0.5, 
Extensive is 4 times 
better than PTI 
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Conclusions

� Based on the pdf information of uncertain 
intervals, PTI places tighter bounds in 1D R-
tree nodes.

� Variance-based clustering uses a 2D R-tree 
to avoid placing intervals of extreme sizes 
together.

� The concept of these indexes can be 
extended to multiple dimensions.

Contact Reynold Cheng (ckcheng@cs.purdue.edu) for details
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Future Work

� Study probabilistic threshold 
constraints for other queries, such as 
nearest neighbors and joins

� Study the indexing of other uncertain 
data types e.g., fuzzy data and sets

� Study other kinds of constraints on 
probabilistic queries e.g., answers with 
top-k probability values
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Related Work –
Probabilistic Queries

� [CKP03] proposes an uncertainty model for 
constantly-evolving data.  It also presents 
classification, evaluation and quality issues 
of different types of probabilistic queries.

� For moving object uncertainty, 
� [WSCY99] study probabilistic range queries.
� [CKP04] study probabilistic nearest neighbor 

queries.
� [CP03] proposes computation strategies for 

evaluating PTQ, but does not discuss the 
indexing of uncertain data.
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Related Work –
Uncertainty Indexing

� Few works have addressed the issues of 
indexing uncertain data that involves 
probability computation.

� [CKP04] proposes an indexing scheme for 
constantly-growing uncertainty of moving 
objects.

� [LMPS03] discusses an extension of the 
TPR-tree to index trajectories of moving 
objects, where each point in the trajectory 
has a rectangular uncertain bound.
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Related Work –
Interval Indexing

� [AV96, KRVV96] discuss the idea of 
mapping intervals as points in 2D space.  
The transformation of 1D stabbing queries 
and range queries to two-sided orthogonal 
queries in 2D space are also presented.

� [MTT00] proposes an efficient interval tree 
to facilitate the execution of intersection 
queries over intervals.

� [CKP04] proposes an indexing scheme for 
constantly-growing uncertainty of moving 
objects.
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Complexity of PTQU

� Half-space queries: report a set of points 
that satisfy ax + by c

� PTQU is at least as hard as half-space 
queries which require (n1/3) operations 
[F81] using a linear-space index

� Simplex queries: report a set of points that 
satisfy a list of constraints aix + biy ci

� PTQU is a special case of simplex queries, 
where query time is O(n ) using linear 
structure [AEM92].
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Details of Variance-based Clustering

� The exact indexing technique depends 
on the form of pdf

� For regular sets, e.g., Gaussian and 
uniform pdf, can prune a node without 
the extra overhead of PTI

� For arbitrary pdfs, need a PTI table in 
each node to facilitate pruning


