
OLAP on Sequence Data

Eric Lo1, Ben Kao2, Wai-Shing Ho2, Sau Dan Lee2, Chun Kit Chui2, and David W.
Cheung2

1 Department of Computing, The Hong Kong Polytechnic University
ericlo@comp.polyu.edu.hk

2 Department of Computer Science, The University of Hong Kong
{kao, wsho, sdlee, ckchui, dcheung}@cs.hku.hk

Abstract. Many kinds of real-life data exhibit logical ordering among their data
items and are thus sequential in nature. However, traditional online analytical pro-
cessing (OLAP) systems and techniques were not designed for sequence data and
they are incapable of supporting sequence data analysis. In this paper, we pro-
pose the concept of Sequence OLAP, or S-OLAP for short. The biggest distinc-
tion of S-OLAP from traditional OLAP is that a sequence can be characterized
not only by the attributes’ values of its constituting items, but also by the sub-
sequence/substring patterns it possesses. This paper studies many aspects related
to Sequence OLAP. The concepts of sequence cuboid and sequence data cube are
introduced. A prototype S-OLAP system is built in order to validate the proposed
concepts. The prototype is able to support “pattern-based” grouping and aggrega-
tion, which is currently not supported by any OLAP system. The implementation
details of the prototype system as well as experimental results are presented.

1 Introduction

Traditional online analytical processing (OLAP) systems process records in a fact table
and summarize their key statistics with respect to certain measure attributes. A user can
select a set of dimension attributes and their corresponding levels of abstraction and
an OLAP system will partition the data records based on those dimension attributes
and abstraction levels. Records that share the same values in those dimension attributes
(w.r.t. the selected abstraction levels) are grouped together. Aggregate functions (such
as sum, average, count) are then applied to the measure attributes of the records in
each group. An OLAP system then reports a summary (a.k.a. cuboid) by tabulating
the aggregate values for all possible groups. OLAP is a powerful data analysis tool
because it allows users to “navigate” or “explore” different levels of summarization
by interactively changing the set of dimension attributes and their abstraction levels.
In other words, users can navigate from one cuboid to another interactively in order
to obtain the most interesting statistics through a set of pre-defined OLAP operations
(such as roll-up, drill-down, slice, and dice).

Although powerful, existing OLAP systems only handle independent records. Many
kinds of real-life data, however, exhibit logical ordering among their data items and are
thus sequential in nature. Examples of sequence data include stock market data, web
server access logs and RFID logs such as those generated by a commodity tracking

2 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

system in a supply chain. Similar to conventional data, there is a strong demand to
warehouse and to analyze the vast amount of sequence data in a user-friendly and ef-
ficient way. Unfortunately, current OLAP systems and technologies were not designed
for sequence data and they are incapable of supporting sequence data analysis. In this
paper we study the issues of building a “Sequence OLAP” system, or an S-OLAP sys-
tem for short.

[Applications] An S-OLAP system that analyzes sequence data has many applications.
One motivating application is transportation planning. Today, many cities have imple-
mented electronic transportation payment systems using RFID technology. Examples
include Hong Kong’s Octopus system, Japan’s Kansai Thru Pass system and Washing-
ton DC’s SmarTrip system. In those cities, every passenger carries a smart card (e.g., a
card with a passive RFID chip [5]), which can be used as a form of electronic money
to pay for various kinds of transportation (e.g., bus/subway). The electronic payment
system generates huge volumes of data everyday (e.g., Hong Kong’s Octopus system
collected over 7 million transactions per day in 2003 [1]). The transactions performed
by a user each day can form logical sequences in many different ways. For example,
a sequence can be formed by clustering a user’s transactions over 1-day, 1-week or
1-month periods.

With the enormous amount of sequence data available, an OLAP system that per-
forms sequence summarizations would be of great value. For instance, if a transport-
planning manager of Washington Metropolitan Area Transit Authority (WMATA) wants
to rearrange the subway schedule, he may pose a query asking “the number of round-
trip passengers and their distributions over all origin-destination station pairs within
2007 Quarter 4”. Figure 1 presents an artificial WMATA dataset. We assume that a
passenger registers an event/transaction into the system every time she enters (action =
“in”) or leaves a station (action = “out”) through the turnstiles. Therefore, the round-
trip semantics can be captured by the pattern (X, Y, Y, X), which means that all pas-
sengers who have first entered any station X (e.g., Pentagon), exited at any station Y
(e.g., Wheaton), and then entered station Y (Wheaton) again and returned to station X
(Pentagon) should be grouped together. 3 Furthermore, for each possible combination
of X and Y , the aggregated number of passengers is counted and a tabulated view of
the sequence data like the one shown in Figure 2 should be returned by the S-OLAP
system.

The S-OLAP system should also allow a user to interactively change the grouping
pattern and be able to answer iterative queries efficiently. For example, after studying
the round-trip distribution in Figure 2, the manager might observe that there is a high
concentration of people taking round-trips from Pentagon to Wheaton. He might want
to further investigate whether those passengers would take one more follow-up trip and
if so where they usually go. He can view this distribution by first performing a tradi-
tional slice OLAP operation on (Pentagon, Wheaton, Wheaton, Pentagon), followed by
changing the grouping pattern to (X, Y, Y, X, X, Z), where the two newly appended
symbols X, Z denote the third trip from station X (Pentagon) to any station Z .

3 The formal query specification will be discussed shortly in Section 3.2 and a similar query
specification is shown in Figure 3.

OLAP on Sequence Data 3

S-OLAP systems have many more applications. As another example, a marketing
manager of an e-commerce company can use an S-OLAP system to identify some “lost-
sales” page-clicking sequences by posing S-OLAP queries such as: “for all possible
pairs of page combinations within 2007 Quarter 4, show the number of visitors per day,
with a visiting pattern of (P, K)” on its web server access log, where P denotes any
product page and K denotes any “killer page” 4 (e.g., a logout page). Again, the man-
ager can interactively change the grouping pattern and the S-OLAP system should be
able to efficiently answer those iterative queries so as to help the manager to drill-down
into the actual reasons for the lost-sales.

[Contributions] From the above application examples, we can see that the biggest dis-
tinction of an S-OLAP system from a traditional OLAP system is that a sequence can
be characterized not only by the attributes’ values of its constituting events, but also
by the subsequence/substring patterns it possesses. In other words, an S-OLAP system
can support “pattern-based” grouping and aggregation — a very powerful concept and
capability that is not supported by traditional OLAP systems.

To the best of our knowledge, the building of an S-OLAP system for analyzing se-
quence data has not been addressed previously in the research literature or in commer-
cial products. This paper studies many aspects related to the design and implementation
of an S-OLAP system. Our contributions can be summarized as follows:

1. The concept of Sequence OLAP (or S-OLAP for short) is presented. This includes
the discussion of what a “Sequence Cuboid” (or S-cuboid for short) is, the relation-
ships between different S-cuboids, and the concept of “Sequence Data Cube” (or
S-cube for short).

2. Six S-OLAP-specific operations are identified. In traditional OLAP systems, users
“navigate” or “explore” different levels of summarization (i.e., different cuboids)
through a set of user-friendly operations (such as roll-up, drill-down, slice, and
dice). In this paper we present six operations that are specific to S-OLAP, namely,
(1) APPEND, (2) DE-TAIL, (3) PREPEND, (4) DE-HEAD, (5) PATTERN-ROLL-UP

and (6) PATTERN-DRILL-DOWN. The six S-OLAP operations modify the grouping
patterns and/or the abstraction level of the elements inside the grouping patterns
such that users can interactively view the summarized data from different perspec-
tives. In other words, the six operations allow users to navigate from one S-cuboid
to another in the S-cube space with ease.

3. The implementation details of an S-OLAP prototype system are presented. The pro-
totype system serves as an initial solution of the proposed Sequence OLAP concept.
The architecture of the prototype system and two different approaches of computing
S-cuboids are presented. While the first approach serves as a baseline of comput-
ing an S-cuboid, the second approach makes use of the concept of inverted index
to facilitate the computation of S-cuboids and the processing of the six S-OLAP
operations.

4. Comprehensive experiments have been conducted on the prototype system on both
real and synthetic sequence data and the experimental results are presented. The

4 This query answers a KDD-Cup 2000 data mining question [11] in an OLAP data exploratory
way.

4 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

experiments on real data demonstrate how our proposed S-OLAP system answers
some real life queries by performing sequence data analysis on real life sequence
data. The experiments on synthetic data evaluate the performance of the S-OLAP
prototype system under different settings.

5. Being the first to address the problem of Sequence OLAP, we have discovered a lot
of interesting research issues throughout the project. As the last contribution of this
paper, we present the research issues we have found. Overall, we believe that this
paper serves as an interesting starting point towards more sophisticated and more
general solutions for OLAP on sequence data.

[Roadmap] The rest of the paper is organized as follows. Section 2 gives an overview
of work that is related to Sequence OLAP. Section 3 describes the concept of Sequence
OLAP. Section 4 describes the technical details of the prototype S-OLAP system. Sec-
tion 5 reports experimental and performance results. We discuss some research issues
of Sequence OLAP in Section 6 and conclude our study in Section 7.

time card-id location action amount
2007-01-01T00:01 688 Glenmont in 0

...
...

...
...

...
2007-10-01T00:01 23456 Pentagon in 0
2007-10-01T00:02 9876 Pentagon in 0

...
...

...
...

...
2007-10-01T01:59 9876 Wheaton out -2

...
...

...
...

...
2007-10-02T22:46 52 Wheaton deposit 100

...
...

...
...

...
2007-12-25T20:48 6544 Wheaton out -3.5

...
...

...
...

...

Fig. 1. An event database

2 Related Work

Sequence Databases. Database systems used to be no formal support of sequence
data until PREDATOR [19], [20]. PREDATOR extended the ADT approach of object-
relational systems by treating the sequence type as an enhanced ADT (EADT). PREDA-
TOR treats sequence data type as first class citizen and its query language SEQUIN
includes a set of sequence operators for querying and manipulating sequences.

Since applications often involve both relational data and sequence data, the DEVise
system [16] was proposed to model sequences as sorted relations. By storing sequence
data using normal relations, it is much easier to query a combination of relational tables

OLAP on Sequence Data 5

(X, Y, Y, X) COUNT
(Clarendon,Pentagon,Pentagon,Clarendon) 5,432
(Clarendon,Wheaton,Wheaton,Clarendon) 7,654

...
...

(Pentagon,Glenmont,Glenmont,Pentagon) 4,321
(Pentagon,Wheaton,Wheaton,Pentagon) 200,125

...
...

(Wheaton,Pentagon,Pentagon,Wheaton) 6,543

Fig. 2. A sequence OLAP query result

and data sequences. This approach enables more integrated optimization and evalua-
tion. SRQL is an extension of SQL. It is used in the DEVise system for supporting
queries on mixtures of sequences and relations. However, DEVise did not address the
issues of warehousing and efficient analysis of sequence data. Moreover, SRQL itself
is not expressive enough to express queries with complicated patterns such as recurring
patterns. In view of this, [18] extended SRQL and proposed SQL-TS. With SQL-TS,
one can express sophisticated sequential pattern queries. However, [18] did not address
the issues of sequence data analysis as well.
OLAP. [8] first described the data-cube operator. Since then, a large number of papers
have been written on the subject. Many of them focus on efficient algorithms for data
cube construction. A few examples include: iceberg cube [4], bottom-up cube computa-
tion [2], and top-down cube computation [17]. None of these studies, however, address
sequence data.
OLAP on unconventional data. In [7], the authors addressed how to store and analyze
massive RFID-enabled workflow data, which is a very special type of sequence data.
Their proposal made heavy use of a special property of workflow data that individual
items in a supply chain tend to move together in bulky mode. Based on that property, [6]
introduced the concept of RFID-Cubiods, which is a way to store RFID workflow data
in relational databases that supports efficient data compression and specialized work-
flow data analysis. Stream data is another kind of sequence data. In [3], the authors
studied how to build data cubes for time-series stream data. Nonetheless, none of these
work address the problem of pattern-based grouping and analysis. Recently, Wiwatwat-
tana et al. [22] discuss how to perform OLAP operations on XML data. Due to certain
special properties of XML data (e.g., an XML element may have missing or repeated
sub-elements), the authors point out that XML data is non-summarizable [12]. That is,
a coarser aggregate cannot be computed solely from the corresponding finer aggregates.
In [22], they approach the problem by proposing several aggregation relaxation models
such that cube data becomes summarizable under such restricted models.

3 Sequence OLAP

In this section we first give an introduction to sequence data in Section 3.1. Then, we
explain the concept of sequence cuboid in Section 3.2, which is the key concept in se-

6 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

quence OLAP. Afterwards, we explain the six proposed S-OLAP operations in Section
3.3. We describe the relationships between different sequence cuboids and the concept
of a sequence data cube in Section 3.4. How these concepts could be implemented is
discussed in Section 4. In the rest of this paper, we use the transportation planning
application discussed in Section 1 as our running example.

3.1 Preliminary

The raw data of an S-OLAP system is a set of events that are deposited in an event
database. An event e is modeled as an individual record/tuple in a way similar to those
stored in a fact table in a traditional OLAP system. Figure 1 presents an event database
for our running example. In Figure 1, an event is in the form of (time, card-id, location,
action, amount). We assume that each passenger has only one smart card. Therefore, the
first event in Figure 1 shows that a passenger with card-id 688 has entered Glenmont
station (action=“in”) at time 00:01 on January 1st, 2007. Since the data is collected and
consolidated from each station, we assume that events in the event database are ordered
by the location and time attributes.

Similar to traditional OLAP systems, an event in an S-OLAP system consists of
a number of dimensions and measures and each dimension may be associated with
a concept hierarchy. In Figure 1, the attributes time, card-id, location and action are
dimensions and the attribute amount is a measure. In our running example, we assume
that the location attribute is associated with a concept hierarchy of two abstraction levels
station → district, the card-id attribute is associated with a concept hierarchy individ-
ual → fare-group (e.g., student/regular/senior), and the time attribute is associated with
a concept hierarchy time → day → week.

If there is a logical ordering among a set of events, the events can form a sequence.
In our running example, a logical ordering could be based on the time attribute. There-
fore, the traveling history of passenger 688 can be denoted by the sequence which con-
sists of all the events with card-id 688, ordered by the time attribute.

3.2 Sequence Cuboid

In traditional OLAP, a cuboid is formed by partitioning records based on a set of dimen-
sion attributes, each under a specific abstraction level. In sequence OLAP, an S-cuboid
is a logical view of sequence data at a particular degree of summarization in which
sequences can be characterized not only by the attributes’ values, but also by the sub-
sequence/substring patterns they possess.

Figure 3 shows a cuboid specification Q1 which is used as our running example.
Q1 is similar to the first example S-OLAP query we presented in the Introduction. Q 1

asks for the number of round-trip passengers and their distributions over all origin-
destination station pairs for each day and for each fare-group, within Quarter 4 of
2007. Figure 4 shows the conceptual view of the building process of an S-cuboid for
Q1 and the details are explained below.

The specification of an S-cuboid is inspired by SQL-TS [18] and consists of six
parts:(1) WHERE clause (2) CLUSTER BY clause, (3) SEQUENCE BY clause, (4)

OLAP on Sequence Data 7

1. SELECT COUNT(*)
2. FROM Event
3. WHERE time >= 2007-10-01T00:00 AND
4. time < 2007-12-31T24:00
5. CLUSTER BY card-id AT individual,
6. time AT day
7. SEQUENCE BY time ASCENDING
8. SEQUENCE GROUP BY card-id AT fare-group,
9. time AT day
10. CUBOID BY SUBSTRING (X, Y , Y , X) WITH
11. X AS location AT station,
12. Y AS location AT station
13. LEFT-MAXIMALITY (x1, y1, y2, x2) WITH
14. x1.action = “in” AND
15. y1.action = “out” AND
16. y2.action = “in” AND
17. x2.action = “out”

Fig. 3. S-cuboid specification Q1

SEQUENCE GROUP BY clause, (5) CUBOID BY clause and (6) Aggregation Func-
tions.5

1. [Selection] A WHERE clause is adopted from SQL in order to select only events
of interest. Lines 3 and 4 in Figure 3 specify that only events within 2007 Q4 are
selected (see Figure 4 Step 1).

2. [Clustering] A CLUSTER BY clause is borrowed from [18] in order to specify
events that are elements of a sequence to be clustered together. Each attribute in the
CLUSTER BY clause is associated with an abstraction level in a concept hierarchy.
Lines 5 and 6 in Figure 3 specify that events should be clustered together according
to the attributes card-id and time, at the abstraction levels of individual and day,
respectively. In other words, events that shared the same card-id value and happened
in the same day should form a cluster. However, events in the same cluster are not
necessarily ordered at this stage (see Figure 4 Step 2).

3. [Sequence Formation] A SEQUENCE BY clause is borrowed from [18] in order to
form a sequence from a cluster of events. Events in each cluster form exactly one
sequence. For example, Line 7 in Figure 3 specifies that the clustered events should
form sequences according to their occurrence time (see Figure 4 Step 3).

4. [Sequence Grouping] A SEQUENCE GROUP BY clause is introduced such that
sequences whose events share the same dimensions’ values are further grouped to-
gether to form a sequence group. The attributes in the SEQUENCE GROUP BY
clause form the set of global dimensions and each of them is associated with an
abstraction level in the concept hierarchy. For instance, Lines 8 and 9 in Figure
3 specify that individual user sequences within the same fare-group and whose
events occurred in the same day should form a sequence group (see Figure 4 Step
4). If the SEQUENCE GROUP BY clause is not specified, all sequences form a
single sequence group.

5 Although the clauses CLUSTER BY and SEQUENCE BY also exist in TS-SQL, they have
different semantics in S-cuboid specification.

8 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

5. [Pattern Grouping] A CUBOID BY clause is introduced in order to specify the
logical view of the sequence data that the user wants to see. The CUBOID BY
clause consists of three sub-parts: (a) Pattern Template, (b) Cell Restriction and (c)
Matching Predicate. Step 5 in Figure 4 illustrates pattern grouping and the details
are explained below.
(a) Pattern Template. A pattern template consists of a sequence of symbols, each
associated with a domain of values. The domain of values is specified as the domain
of an attribute at certain abstraction level. The set of distinct symbols in a pattern
template form the set of pattern dimensions. The set of pattern dimensions together
with the set of global dimensions define the partitioning of an S-cuboid (i.e., the
cells of an S-cuboid).
The pattern template defines the format of the substring/
subsequence patterns to be matched against the data sequences. By SUBSTRING(X, Y, Y, X)
or SUBSEQUENCE(X, Y, Y, X), we mean a substring/subsequence pattern tem-
plate (X, Y, Y, X) is specified. Lines 10 to 12 in Figure 3 show an example sub-
string pattern template with two pattern dimensions X and Y , each represents a
location value at the station abstraction level.
Each cell is associated with a pattern. A pattern can be instantiated from a pattern
template by a set of values that are associated with the symbols. If two symbols in a
pattern template are the same, then they should be instantiated with the same value.
For example, the pattern (Pentagon,Wheaton,Wheaton,Pentagon) is an instantiation
of pattern template (X, Y, Y, X) but the pattern (Pentagon,Wheaton,Glenmont,Pentagon)
is not.
If a data sequence matches the pattern of a particular cell, and if it further satisfies
the cell restriction and the matching predicate ((b) and (c) below), then it is assigned
to that cell. Note that since a data sequence may match multiple patterns, it may be
assigned to more than one cuboid cell.
(b) Cell Restriction. The cell restriction defines how to deal with the situations
when a data sequence contains multiple occurrences of a cell’s pattern and what
content of the data sequence should be assigned to the cell (for the purpose of aggre-
gation, to be done later). One type of cell restriction is left-maximality-matched-go
[18]. For example, when a cell with a substring pattern (a,a) is matched against
a data sequence 〈aabaa〉, the left-maximality-matched-go cell restriction states
that only the first matched substring/subsequence (i.e., the first “aa” in 〈aabaa〉)
is assigned to the cell. This cell restriction is specified by the keyword LEFT-
MAXIMALITY. In general, depending on the applications, more cell restrictions
can be defined. For example, one can define a left-maximality-data-go cell restric-
tion where the whole data sequence 〈aabaa〉, not only the matched content 〈aa〉, is
assigned to the cell. As another example, we can also define an all-matched-go cell
restriction where all substrings/subsequences that match the pattern are assigned to
the cell (i.e., the two aa’s in 〈aabaa〉 are assigned to the cell).
(c) Matching Predicate. A matching predicate is further introduced for selecting
data sequences of interests. In order to specify a predicate, a sequence of event
placeholders are introduced after the cell restriction. Line 13 in Figure 3 shows an
example. The four event placeholders x1, y1, y2 and x2 in Line 13 represent the

OLAP on Sequence Data 9

time card-id location action amount . . .

← event 1 →
← event 2 →
← event 3 →

...

Event Database

card-idtime location action

← event 1 →
← event 3 →
← event 8 →

...

Selected Events

ca
rd

-i
d:

in
di

vi
du

al

time:one-day

Clusters

ca
rd

-i
d:

in
di

vi
du

al

time:one-day

Sequences

ca
rd

-i
d:

fa
re

-g
ro

up

time:one-day

Sequence Groups

X(location:station)

Y
(l

oc
at

io
n:

st
at

io
n)

Pattern Template (X,Y,Y,X)

(X=Pentagon,
Y=Wheaton)

Match Results
(Pentagon,Wheaton,
Wheaton,Pentagon)

Aggregate Values

21
90

47
9689

1. Event Selection

2. Clustering

3. Sequence
Formation

4. Sequence
Grouping

5. Pattern Grouping

6. Aggregation

Fig. 4. The conceptual view of building an S-cuboid for Query Q1

matched events (not only the location values) and the predicate in Line 14 specifies
that the action attribute value of the first matching event x1 must equal “in”.

6. [Aggregation] Finally, an aggregation function should be specified in the SELECT
clause in order to define the aggregate function to be applied to the sequences in each
S-cuboid cell. In S-OLAP, the COUNT aggregation function counts the number of
matched substrings/subsequences that are assigned to a cell (see Figure 4 Step 6).

Figure 4 illustrates the steps of building an S-cuboid for our example query Q 1.
After all steps, a 4D S-cuboid (the shaded area in Figure 4) with two global dimensions
(time:day, card-id:fare-group) and two pattern dimensions (X ,Y) is built.

Note that the current S-cuboid specification can be further extended if necessary.
For example, other aggregation functions, such as SUM, can be incorporated as long as
its semantics is clearly defined. As an example, consider two data sequences s1:〈e1, e2〉
and s2:〈e3, e4〉 that are assigned to a cell. We can define SUM as the sum of the mea-
sures of all the events occured in s1 and s2 (i.e., SUM =

∑4
i=1 ei.amount). Alterna-

tively, if desire, we can sum over the first occurring event in each sequence (i.e., SUM =
e1.amount +e3.amount). Furthermore, the current S-cuboid specification only supports

10 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

substring or subsequence pattern templates. It can be extended so that pattern templates
of regular expressions can be supported.

3.3 Sequence OLAP Operations

OLAP is a powerful analytical and decision-supporting tool because it provides a set of
operations (e.g., roll-up, drill-down) for a user to interactively modify the cuboid spec-
ification (i.e., changing the set of dimension attributes and/or their abstraction levels)
and thus enables a user to navigate from one cuboid to another to explore the big cube
space with ease.

Since an S-cuboid is defined by a set of global dimensions and pattern dimensions,
any changes to these elements transform an S-cuboid to another. In our S-OLAP design,
we adopt the same set of OLAP operations, namely, roll-up, drill-down, slice, and dice
for the manipulations of the global dimensions. For example, the transport-planning
manager might modify the S-OLAP query Q1 so that passengers are grouped based on
individual. To achieve this, we perform a drill-down operation on the global dimen-
sion card-id, going from the abstraction level fare-group to a lower abstraction level
individual.

For pattern manipulation, we propose six S-OLAP operations, namely, APPEND,
PREPEND, DE-TAIL, DE-HEAD, PATTERN-ROLL-UP (P-ROLL-UP) and PATTERN-DRILL-
DOWN (P-DRILL-DOWN). The first four operations add/remove a pattern symbol to/from
a pattern template, while the last two operations modify the abstraction level of pattern
dimensions. In particular, the APPEND operation appends a pattern symbol to the end
of the pattern template. For example, after learning about the round-trip distribution
resulted from Q1, the manager might observe that there is a particularly high concen-
tration of people traveling round-trip from Pentagon to Wheaton. He might want to
further investigate whether those passengers would take one more trip and if so where
they usually go. Two APPEND operations plus a modification of the matching predicate
give the cuboid specification Q2 in Figure 5 (only the CUBOID BY clause is shown
for brevity). Q2 transforms the original 4D S-cuboid to a 5D S-cuboid (with global
dimensions (time:day, card-id:fare-group) and pattern dimensions (X ,Y ,Z), where Z
is a new pattern dimension). The other three operations that modify pattern length can
be similarly defined: PREPEND — add a symbol to the front of the pattern template;
DE-TAIL — remove the last symbol from the pattern template; DE-HEAD — remove
the first symbol from the pattern template.

A P-ROLL-UP operation moves the abstraction level of a pattern dimension one level
up the concept hierarchy, while a P-DRILL-DOWN operation moves a pattern dimension
one level down. As an example, after viewing the trip distribution resulted from the
above query Q2, the transportation manager might find that there are too many station
pairs, which makes the distribution reported by the S-cuboid too fragmented. He may
want to roll up the location pattern dimension Z from the station level to the district
level. For that, the P-ROLL-UP changes Line 13 in Figure 5 to: “Z AS location AT
district”.

OLAP on Sequence Data 11

10. CUBOID BY SUBSTRING (X, Y , Y , X, X, Z) WITH
11. X AS location AT station,
12. Y AS location AT station,
13. Z AS location AT station
14. LEFT-MAXIMALITY(x1, y1, y2, x2, x3, z1) WITH
15. x1.action = “in” AND x1.location = “Pentagon” AND
16. y1.action = “out” AND y1.location= “Wheaton” AND
17. y2.action = “in” AND y2.location = “Wheaton” AND
18. x2.action = “out” AND x2.location = “Pentagon” AND
19. x3.action = “in” AND x3.location = “Pentagon” AND
20. z1.action = “out”

Fig. 5. S-cuboid specification Q2

3.4 Sequence Data Cube

In traditional OLAP, given a set of dimensions and a set of concept hierarchies associ-
ated with the dimensions, we can define a cuboid for each of the possible subsets of the
given dimensions and abstraction levels. This results in a lattice of cuboids, each show-
ing the data at a different level of summarization. The lattice of cuboids is then referred
to as a data cube. Likewise in S-OLAP, given a set of global and pattern dimensions and
a set of concept hierarchies that is associated with the dimensions, we can also define
an S-cuboid for each of the possible subsets of the given dimensions and abstraction
levels. The set of S-cuboids also form a lattice and we call this lattice a Sequence Data
Cube (S-cube). Similar to the concept of traditional data cubes, an S-cuboid at a coarser
granularity is at a higher level in the lattice, which means it contains fewer global and/or
pattern dimensions, or the dimensions are at a higher level of abstraction.

There are two key differences between a traditional data cube and an S-cube. First,
there is a finite number of cuboids in a data cube while the number of S-cuboids in an
S-cube is infinite. In theory, users may introduce any number of pattern dimensions into
the pattern template by S-OLAP operations like APPEND and PREPEND. For example,
a pattern template (X, Y, Z, A, B, C, . . .) is possible in which all pattern dimensions
refer to the same dimension attribute, say, location. Consequently, an S-cube in theory
includes an infinite number of S-cuboids although users seldom pose S-OLAP queries
with long pattern template in practice.

Second, in general, data in an S-cuboid is non-summarizable. That is, an S-cuboid
at a higher level of abstraction (i.e., coarser aggregates) cannot be computed solely from
a set of S-cuboids that are at a lower level of abstraction (i.e., finer aggregates) without
accessing the base data. According to [12], summarizability only holds when the data
is disjoint and complete during data partitioning. However, an S-cuboid may put a data
sequence into multiple cells which violates the disjointness requirement. Consider a
dataset with only one data sequence s3 〈Pentagon,Wheaton,Pentagon,Wheaton,Glenmont〉.
If the pattern template is SUBSTRING(X, Y, Z), then s3 contributes a count of one to
all three cells [Pentagon,Wheaton, Pentagon:c1], [Wheaton,Pentagon,Wheaton:c2], and
[Pentagon, Wheaton,Glenmont: c3] because s3 matches all three substrings (c1,c2 and
c3 denote the counts of the cells). If we perform a DE-TAIL operation, i.e., the pat-
tern template is changed to SUBSTRING(X, Y), then the cell [Pentagon, Wheaton:

12 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

c4] should have a count of one (as s3 matches the pattern only once under the left-
maximality-matched-go cell restriction). However, if we compute c 4 by aggregation, we
get c4 = c1 + c3 = 2, an incorrect answer. This observation, which serves as a counter-
example, demonstrates that in general, data in an S-cuboid is non-summarizable.

As we will show in the next section, the properties of having an infinite number
of S-cuboids and non-summarizability make the implementation of an S-OLAP system
very challenging. The main reason is that many existing OLAP optimization techniques
(e.g., full cube materialization) are no longer applicable nor useful in implementing an
S-OLAP system. We describe the details and our solutions in the next section.

4 Implementation

In the last section we presented the concept of S-OLAP and now we present the techni-
cal details of its implementation.

4.1 S-OLAP System

In order to implement an S-OLAP system, the first technical question we have to solve
is: “(a) how to efficiently compute an S-cuboid?” In traditional OLAP, many researchers
have proposed the use of various auxiliary data structures (e.g., bitmap index [15] and
join index [21]) to speed up the cuboid construction process. We have to answer the
same question for our S-OLAP prototype system.

The second technical challenge is: “(b) how to support the proposed S-OLAP oper-
ations such that a sequence of S-OLAP queries can be efficiently evaluated?” In tradi-
tional OLAP, cube materialization [9] is a popular approach in which some cuboids are
computed in advance such that they can be used to answer various OLAP queries effi-
ciently. The approach of full materialization refers to the precomputation of all cuboids
(i.e., the full cube) and the approach of partial materialization refers to the precompu-
tation of a subset of cuboids (i.e., the subcube). Since summarizability generally holds
in traditional data cube, partial materialization is useful because (i) if a query result
(a cuboid) has already been materialized, the answers can be returned right away, and
(ii) even if a query result has not been materialized, a coarser aggregate can still be
computed solely from the corresponding finer aggregates by exploiting appropriate ma-
terialized cuboids without accessing the base data. Consequently, iterative queries can
be answered efficiently.

In S-OLAP, full materialization is not practical because the number of pattern di-
mensions is unbounded. Meanwhile, the non-sum-marizability of S-cubes invalidates
the power of partial materialization because an S-cuboid cannot be computed from other
S-cuboids via simple aggregations. As a result, instead of precomputating S-cuboids,
our approach is to precompute some other auxiliary data structures so that queries can
be computed online using the pre-built data structures.

Figure 6 shows the architecture of our prototype S-OLAP system. Events are stored
as tuples in relational databases or as events in native sequence databases. Similar to
traditional OLAP systems, a user can pose their S-OLAP queries through a User In-
terface. The User Interface provides certain user-friendly components to help a user

OLAP on Sequence Data 13

specify an S-cuboid (e.g., offering some drag-and-drop facilities). Furthermore, a user
can perform the six S-OLAP operations through the interface. Given an S-cuboid query,
the S-OLAP Engine searches a Cuboid Repository to see if such an S-cuboid has
been previously computed and stored. If not, the S-OLAP engine either computes the
S-cuboid from scratch or computes the S-cuboid with the help of certain Auxiliary
Data Structures. The computed S-cuboid is then added to the Cuboid Repository. (If
storage space is limited, the Cuboid Repository could be implemented as a cache with
an appropriate replacement policy such as LRU (least-recently-used).)

During the computation of an S-cuboid, the S-OLAP System starts with the first
four steps of S-cuboid formation as illustrated in Section 3.2, i.e., (1) Selection, (2)
Clustering, (3) Sequence Formation and (4) Sequence Grouping. These four steps can
be off-loaded to an existing sequence database query engine and the constructed se-
quence groups can be cached in a Sequence Cache for efficiency. After the first four
steps, the sequence groups are stored in a q-dimensional array (where q is the number of
global dimensions). Once the sequence groups are formed (or loaded from the sequence
cache), the S-OLAP Engine starts the S-cuboid construction. We have investigated two
simple approaches for this S-cuboid construction step. The first one is a counter-based
method and the second one uses inverted indices as the auxiliary data structure. In the
following discussion, we assume that the left-maximality-matched-go cell restriction is
used.

S-OLAP System

User Interface

S-OLAP Engine

Sequence Query Engine

event
database

sequence
cache

auxiliary
data

structures
cuboid

repository

queries results

Fig. 6. Architecture of S-OLAP System

14 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

4.2 S-cuboid Construction

We present approaches to address the two technical challenges that we raised previ-
ously i.e., (a) efficient S-cuboid computation and (b) efficient processing of S-OLAP
operations.

The first approach is a counter-based method (CB), in which each cell in an S-
cuboid is associated with a counter. To determine the counters’ values, the set of se-
quences in each sequence group is scanned. For each sequence s, we determine the
cells whose associated patterns are contained in s. We increment each of such counters
by 1. The CB approach addresses challenge (a). For challenge (b), CB takes the result
of applying each S-OLAP operation as a specification of a new S-cuboid and computes
the S-cuboid from scratch.

The second approach is based on inverted indices (II), in which a set of inverted
indices are created by pre-processing the data offline. During query processing, the rel-
evant inverted indices are joined online so as to address challenge (a). The by-products
of answering a query is the creation of new inverted indices. As we will discussed
shortly, such indices can assist the processing of a follow-up query. The inverted list
approach thus potentially addresses challenge (b) as well.

Before we delve into the details, we remark that the two approaches we present here
are only two “first-attempt” solutions to the Sequence OLAP problem and we believe
that there are a lot of potentials for further optimization. For example, we can study the
problem of computing iceberg [4] S-cuboids, or online aggregation [10] of S-cuboids,
etc. All these ideas are interesting research topics and we discuss these issues in more
detail in Section 6.

Counter-Based Approach In the counter-based method, we maintain a counter for
each cell in an S-cuboid. All relevant counters are looked-up and incremented when the
data sequences are scanned. If the number of counters is small enough to fit in memory,
it is an efficient single-pass algorithm.

For each sequence group that is obtained from the first four S-cuboid formation
steps, we invoke the procedure COUNTERBASED in Figure 7 with all sequences in the
group and the CUBOID BY specification as input. The procedure performs the pattern
grouping step and the aggregation step and returns an n-dimensional array (where n is
the number of pattern dimensions). An entry C[v1, . . . , vn] in the n-dimensional array
C stores the number of sequences that match the substring pattern (v 1, . . . , vn). The
procedure repeats for each sequence group and finally a (q + n)-dimensional S-cubiod
is obtained.

Note that the COUNTERBASED procedure in Figure 7 is for substring pattern match-
ing only. Subsequence pattern can be easily supported by modifying Line 7 in Figure
7.

Although this counter-based method is simple, its performance may degrade when
the number of counters far exceeds the amount of available memory because counters
are paged in for each sequence in the scan. Furthermore, this algorithm does not facili-
tate the processing of iterative S-OLAP queries as it computes an S-cuboid from scratch
every time we apply an S-OLAP operation to transform an S-cuboid.

OLAP on Sequence Data 15

Algorithm COUNTERBASED

Input: (a) A set of sequences S from a sequence group; (b) A pattern template
T =SUBSTRING(Y1, . . . , Ym) with m pattern symbols and n pattern dimensions
P1, . . . , Pn (n ≤ m); (c) a cell restriction σ; and (d) a matching predicate ρ.

Output: An array C of n dimensions
1. Let dom(Pi) be the domain of pattern dimension Pi at the specified abstraction level
2. /** Initialize the counters **/
3. for each pattern (v1, . . . , vn), where vi ∈ dom(Pi)
4. Set entry C[v1, v2, . . . , vn] = 0
5. /** Do the grouping and counting **/
6. for each sequence s in S
7. for each unique substring t of s in the form of 〈y1, . . . , ym〉, where each yi ∈

dom(Pi), t matches an instantiation of T and t satisfies ρ and σ
8. C[y1, . . . , ym]++
9. return C

Fig. 7. Procedure COUNTERBASED

sid card-id event-sequence (only the station values are shown for brevity)
s1 688 〈Glenmont,Pentagon,Pentagon,Wheaton,Wheaton,Pentagon〉
s2 23456 〈Pentagon,Wheaton,Wheaton,Pentagon〉
s3 1012 〈Clarendon,Pentagon〉
s4 77 〈Wheaton,Clarendon,Deanwood,Wheaton〉
N.B. Events at odd positions have action “in”
whereas events at even positions have action “out”

Fig. 8. An example sequence group in Query Q1 (day=“2007-12-25”, fare-group=“regular”)

16 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

Inverted Index Approach The inverted index approach follows a semi-online compu-
tation strategy. It involves two basic algorithms: one for computing inverted indices and
one for constructing S-cuboids based on the inverted indices. The basic idea is similar
to the idea of shell fragment cubes in [13], in which we partition the pattern dimensions
into a set of low dimensional pattern fragments, and each fragment is represented by an
inverted index. Using the precomputed inverted indices, we can dynamically assemble
and compute S-cuboid cells of the required S-cuboid online.

The inverted index approach shares the same first four steps of S-cuboid forma-
tion as in the counter-based approach. Therefore, after the first four steps, a number
of sequence groups are formed. To illustrate the inverted index approach, we consider
substring patternsand the sequence group shown in Figure 8. We assume each sequence
is identified by a unique sid attribute.

To precompute inverted indices, we have developed a construction algorithm, BUILDIN-
DEX. It creates a size-m inverted index Lm, where m is a user-specified parameter. Lm

is a set of inverted lists. An inverted list, denoted by Lm[v1, . . . , vm], is associated
with a length-m substring pattern (v1, . . . , vm). Each element in the pattern is cho-
sen from the domain of a pattern dimension at a particular abstraction level. The list
stores the sids of all sequences that match the substring patterns associated with it. For
example, considering the location pattern dimension at the station abstraction level,
two inverted indices L1 and L2 constructed for our data sequence group are shown in
Figure 10 (empty lists, such as L2[Clarendon,Clarendon], are not shown). For nota-
tional convenience, given a pattern template T , we use LT

m to denote a subset of Lm

such that an inverted list Lm[v1, . . . , vm] is in LT
m if the pattern (v1, . . . , vm) is an in-

stantiation of the template T . For example, considering the lists in Figure 10, we have
L

(X,X)
2 = {l5, l9}6. Also L

(X,Y)
2 includes all the lists in L2 if there are no restrictions

on X and Y . The algorithm, BUILDINDEX, is summarized in Figure 9.

Algorithm BUILDINDEX

Input: (a) A set of sequences S from a sequence group; (b) A pattern template
T =SUBSTRING(Y1, . . . , Ym) with m pattern symbols and n pattern dimensions
P1, . . . , Pn (n ≤ m);

Output: An array Lm, which is an m-dimensional array and each array entry contains a list
of sequence sids.

1. Let dom(Pi) be the domain of pattern dimension Pi at the specified abstraction level
2. /* Scan the sequence group S */
3. for each sequence s in S
4. for each unique substring t of s in the form of 〈y1, . . . , ym〉, where each yj ∈

dom(Pj) and t matches an instantiation of T
5. add sid of s into Lm[y1, . . . , ym]
6. return LT

m

Fig. 9. Procedure BUILDINDEX

6 Technically speaking, L2[Clarendon,Clarendon] is also in L
(X,X)
2 . Since the list

L2[Clarendon,Clarendon] is empty, we omit it in our discussion.

OLAP on Sequence Data 17

L1[Clarendon] = {s3, s4}
L1[Deanwood] = {s4}
L1[Glenmont] = {s1}
L1[Pentagon] = {s1, s2, s3}
L1[Wheaton] = {s1, s2, s4}

L1

l1: L2[Clarendon,Deanwood] = {s4}
l2: L2[Clarendon,Pentagon] = {s3}
l3: L2[Deanwood,Wheaton] = {s4}
l4: L2[Glenmont,Pentagon] = {s1}
l5: L2[Pentagon,Pentagon] = {s1}
l6: L2[Pentagon,Wheaton] = {s1, s2}
l7: L2[Wheaton,Clarendon] = {s4}
l8: L2[Wheaton,Pentagon] = {s1, s2}
l9: L2[Wheaton,Wheaton] = {s1, s2}

L2

Fig. 10. Inverted indices of a sequence group

Given a set of precomputed inverted indices, computing an S-cuboid becomes fairly
simple. Consider a query Q3 that inquires the statistics of single-trip passengers. The
cuboid specification of Q3 is shown in Figure 11 (only the CUBOID BY clause is
shown). Q3, which specifies a pattern template (X, Y), can be answered by L

(X,Y)
2

(which is the same as L2 since X , Y are unrestricted). For each instantiation (v1, v2)
of (X, Y), the count of the S-cuboid cell of pattern (v1, v2) can be computed by simply
retrieving the inverted list L2[v1, v2], and counting the number of sequences in the list
that satisfy the cell restriction and predicate (i.e., Lines 13-15 in Figure 11). Figure 12
shows the non-zero entries of the 2D S-cuboid computed.

S-cuboids of higher dimension can also be computed by joining inverted indices.
For example, consider query Q1, which specifies a pattern template (X, Y, Y, X). We

answer Q1 in two steps, assuming that L2 is materialized. We first compute L
(X,Y,Y)
3

(i.e., the set of inverted lists for any length-3 patterns that are instantiations of (X, Y, Y)).
This can be done by joining L

(X,Y)
2 with L

(Y,Y)
2 . The semantics of R = L

(X,Y)
2 ��

L
(Y,Y)
2 is that a list l ∈ R iff l = L2[v1, v2] ∩ L2[v3, v3] such that L2[v1, v2] ∈ L

(X,Y)
2 ,

L2[v3, v3] ∈ L
(Y,Y)
2 and v2 = v3. Using our running example, L

(X,Y)
2 = L2 and

L
(Y,Y)
2 = {l5, l9}. The list intersections performed by the join is illustrated in Figure 13.

Sequences in the lists in R are then checked by scanning the database to eliminate in-
valid entries. For example, refer to Figure 13, list l12 is obtained by l5 ∩ l5 = {s1}.
Since s1 does not contain the substring pattern (Pentagon,Pentagon,Pentagon), s1 is
removed from the list. The resulting index gives L

(X,Y,Y)
3 . The index L

(X,Y,Y,X)
4 can

be obtained by joining L
(X,Y,Y)
3 with L

(Y,X)
2 in a similar fashion. Figure 14 shows the

only non-empty list resulted. Finally, the count of an S-cuboid cell can be computed
by retrieving the corresponding list in L

(X,Y,Y,X)
4 , verifying the sequences against cell

restrictions and predicates, and counting the valid ones. In our example, only one cell
[Pentagon,Wheaton,Wheaton,Pentagon] has a count of 1, all others are 0.

The query processing algorithm QUERYINDICES is summarized in Figure 15. For
all S-OLAP queries, we can invoke QUERYINDICES to compute an S-cuboid from
scratch. During query evaluation, if QUERYINDICES requires an inverted index that is
not available, then QUERYINDICES would build the proper inverted index at run-time.
This on-demand building process would increase the initial query time. However, the

18 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

10. CUBOID BY SUBSTRING (X, Y) WITH
11. X AS location AT station,
12. Y AS location AT station
13. LEFT-MAXIMALITY (x1, y1) WITH
14. x1.action = “in” AND
15. y1.action = “out”

Fig. 11. Query specification Q3

(station,station) count
(Clarendon,Pentagon) 1
(Deanwood,Wheaton) 1
(Glenmont,Pentagon) 1
(Pentagon,Wheaton) 2
(Wheaton,Clarendon) 1
(Wheaton,Pentagon) 2

Fig. 12. A 2D S-cuboid for query Q3

subsequent iterative queries, which are obtained by successive applications of S-OLAP
operations and highly correlated to the previous queries, would be benefited from the
newly computed inverted indices. We now discuss how the six S-OLAP operations
could make use of existing inverted indices to obtain better performance. Recall that,
for a sequence of iterative queries, Qa, Qb, Qc, if a query has been evaluated before and
its result is cached, the evaluation can be skipped and the cached result can be returned
right away. For example, if we perform an APPEND on Qa to obtain Qb, followed by a
DE-TAIL to obtain Qc, then Qc is the same as Qa and the cached result can be returned.

1. [APPEND] We explain the implementation of the APPEND operation by the following
iterative queries Qa, Qb, Qc. We use Q3 (shown in Figure 11) as Qa. The second query
Qb is obtained by APPENDing a symbol Y to Qa and therefore its pattern template is
(X, Y, Y).7 The final query Qc is obtained by APPENDing one more symbol X to Q b.
The first query Qa can be directly evaluated by QUERYINDICES. That is, the inverted
index L

(X,Y)
2 in Figure 10 is scanned and the number of sequences that satisfy the cell

restriction and matching predicate in each list is counted. The result of Q a is shown in
Figure 12.

The implementation of an APPEND operation is very similar to QUERYINDICES.
In our example, the first APPEND operation (i.e., the evaluation of Q b) is implemented
by first performing L

(X,Y)
2 �� L

(Y,Y)
2 to obtain L

(X,Y,Y)
3 and then counting the number

of sequences in L
(X,Y,Y)
3 (Figure 13) that satisfy the cell restriction and the matching

predicate. Similarly, the last APPEND operation (i.e., the evaluation of Q c) is imple-
mented by first joining L

(X,Y,Y)
3 with L

(Y,X)
2 to obtain L

(X,Y,Y,X)
4 , and then counting

the number of sequences in L
(X,Y,Y,X)
4 (Figure 14) that satisfy the cell restriction and

7 For brevity, we only focus on the changes of the pattern template and do not discuss the
changes of other constructs such as the matching predicate here.

OLAP on Sequence Data 19

the matching predicate. Note that the last APPEND operation does not build the inverted
index L

(X,Y,Y,X)
4 from scratch.

list-intersection sid-intersection {sid}
l10: L

(X,Y,Y)
3 [Clarendon,Pentagon,Pentagon] l2 ∩ l5 {s3} ∩ {s1} {}

l11: L
(X,Y,Y)
3 [Glenmont,Pentagon,Pentagon] l4 ∩ l5 {s1} ∩ {s1} {s1}

l12: L
(X,Y,Y)
3 [Pentagon,Pentagon,Pentagon] l5 ∩ l5 {s1} ∩ {s1} {s1}

l13: L
(X,Y,Y)
3 [Wheaton,Pentagon,Pentagon] l8 ∩ l5 {s1, s2} ∩ {s1} {s1}

l14: L
(X,Y,Y)
3 [Deanwood,Wheaton,Wheaton] l3 ∩ l9 {s4} ∩ {s1, s2} {}

l15: L
(X,Y,Y)
3 [Pentagon,Wheaton,Wheaton] l6 ∩ l9 {s1, s2} ∩ {s1, s2} {s1, s2}

Fig. 13. L
(X,Y,Y)
3

list-intersection sid-intersection {sid}
l16: L

(X,Y,Y,X)
4 [Pentagon,Wheaton,Wheaton,Pentagon] l15 ∩ l8 {s1, s2} ∩ {s1, s2} {s1, s2}

Fig. 14. L
(X,Y,Y,X)
4

2. [PREPEND] The PREPEND operation is very similar to the APPEND operation. Con-
tinue with the above iterative queries example. Assume that we further PREPEND a sym-
bol Z to Qc to obtain a new query Qd and the resulting pattern template is (Z, X, Y, Y, X).
Similar to the APPEND operation, this PREPEND operation is implemented by joining
L

(Z,X)
2 with L

(X,Y,Y,X)
4 to obtain L

(Z,X,Y,Y,X)
5 . Note that with L

(X,Y,Y,X)
4 computed,

the domain (i.e., the set of all possible instantiations) of X is known. Therefore, L (Z,X)
2

does not contain all lists in L2, as X is restricted.
3. [DE-HEAD and DE-TAIL] The DE-HEAD and the DE-TAIL operations rely more on
the caching feature of the S-OLAP system. Continue with the above iterative queries
example. If we apply a DE-HEAD operation after the evaluation of Q d, we essentially
restore the query back to Qc. Therefore, the system can return the cached S-cuboid of
Qc as the answer. However, another DE-HEAD operation results in a new query Q e with
pattern template (Y, Y, X). Since we have not built the inverted index L

(Y,Y,X)
3 during

the process (see the table on the next page), Qe is evaluated from scratch, by invoking
QUERYINDICES directly.

Query Pattern Template
Qa (=Q3) (X, Y)
Qb (X, Y, Y)
Qc (X, Y, Y, X)
Qd (Z, X, Y, Y, X)
Qe (Y, Y, X)

The DE-TAIL operation is similar to the DE-HEAD operation. If there are proper in-
verted indices available or the query has been evaluated before, the DE-TAIL operation
could be processed by retrieving a cached result. Otherwise, we invoke QUERYINDICES.

20 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

Algorithm QUERYINDICES

Input: (a) A set of sequences S from a sequence group; (b) A pattern template
T =SUBSTRING(Y1, . . . , Ym) with m pattern symbols and n pattern dimensions
P1, . . . , Pn (n ≤ m); (c) a cell restriction σ; and (d) a matching predicate ρ.

Output: An array C of n dimensions
1. Let dom(Pi) be the domain of pattern dimension Pi at the specified abstraction level
2. /** Initialize the counters **/
3. for each pattern (v1, . . . , vn), where vi ∈ dom(Pi)
4. Set entry C[v1, v2, . . . , vn] = 0

5. /** Look-up inverted index L
(Y1,...,Ym)
m and join the inverted indices if necessary **/

6. while L
(Y1,...,Ym)
m is not available

7. /** Join the indices according to the pattern template and intersect the sequence lists
**/

8. L
(Y1,...,Yi+1)

i+1 = L
(Y1,...,Yi)
i �� L

(Yi,Yi+1)
2 (where L

(Y1,...,Yi)
i is the largest available

inverted index)
9. Scan the database to eliminate invalid entries and cache L

(Y1,...,Yi+1)

i+1

10. for each entry L
(Y1,...,Ym)
m [v1, . . . , vm] in L

(Y1,...,Ym)
m

11. C[v1, . . . , vn] equals to the number of sequences in L
(Y1,...,Ym)
m [v1, . . . , vm] that

satisfy σ and ρ.
12. return C

Fig. 15. Procedure QUERYINDICES

4. [P-ROLL-UP] The P-ROLL-UP operation can be efficiently implemented if there are
proper inverted indices available. Assume we apply a P-ROLL-UP operation on Q a such
that the pattern dimension Y on the location attribute of the new query Q A is rolled-up
from the station abstraction level to the district abstraction level. This P-ROLL-UP op-
eration can be efficiently implemented by taking the unions of the lists in L

(X,Y)
2 whose

second elements in their patterns share the same district value. We denote the result-
ing inverted index L

(X,Y)
2 . (Here, we use different fonts to indicate different abstraction

levels, e.g., X for the station abstraction level and X for the district abstraction level.)
For example, assume that district D10 includes two stations Pentagon and Clarendon,
then the lists L

(X,Y)
2 [Wheaton,Clarendon] and L

(X,Y)
2 [Wheaton,Pentagon] (see l7 and

l8 in Figure 10) are unioned to obtain L
(X,Y)
2 [Wheaton,D10]. The result of applying

a P-ROLL-UP can then be obtained by counting the number sequences in L
(X,Y)
2 that

satisfy the cell restriction and matching predicate. For instance, the cell [Wheaton,D10]
in the resulting S-cuboid has a count of three.

In the above example, symbols in the pattern template (X, Y) are unrestricted. We
remark that if symbols are restricted then a P-ROLL-UP may not be processed by simply
merging lists. To understand why it is so, let us consider a sequence s6: 〈Pentagon,

Wheaton, Wheaton, Clarendon〉. Clearly, s6 does not occur in any list of L
(X,Y,Y,X)
4 .

However, district D10 includes both Pentagon and Clarendon and so s 6 should be in
M = L

(X,Y,Y,X)
4 [D10, Wheaton, Wheaton, D10]. Hence, if we compute M by merging

lists in L
(X,Y,Y,X)
4 , s6 will be missed incorrectly. This example shows that if the pattern

template consists of restricted symbols, P-ROLL-UP cannot be implemented by merging

OLAP on Sequence Data 21

inverted lists at a lower abstraction level. In this case, we compute the result by invoking
QUERYINDICES.
5. [P-DRILL-DOWN] Consider applying P-DRILL-DOWN on QA (i.e., the pattern di-
mension Y of Q3 has been rolled-up). If the inverted index L

(X,Y)
2 for Qa is avail-

able, the cached result can be returned. Otherwise, P-DRILL-DOWN is processed ei-
ther by invoking QUERYINDICES or by constructing the inverted index L

(X,Y)
2 from

L
(X,Y)
2 . For the latter case, each list L2[v1,v2] in L

(X,Y)
2 is refined into a number of

lists L2[v1, v2] where v2 is a lower-level concept of v2. Data sequences are examined

to determine the refinement. For example, L
(X,Y)
2 [Wheaton,D10] = {s1, s2, s4}. It is

refined to L2[Wheaton,Pentagon] = {s1, s2} and L2[Wheaton,Clarendon] = {s4}. ��
The counter-based approach (CB) constructs an S-cuboid by scanning data sequences

to determine which cells each sequence is relevant to. All sequences are thus examined
in answering a S-OLAP query. On the other hand, the inverted list approach (II) con-
structs inverted lists and accesses data sequences that are contained in certain lists. In
terms of performance, II has the advantage of fewer data sequence accesses if queries
are very selective (e.g., point queries or subcube queries), where appropriate lists have
already been constructed. This can be seen from our example iterative queries. On the
other hand, the construction of inverted indices can be costly. This affects the perfor-
mance of II, particularly in the start-up cost of iterative queries.

The inverted index approach is not a Swiss army knife for implementing all S-OLAP
operations. For example, it cannot efficiently support P-ROLL-UP if the pattern template
contains restricted symbols. In these cases, CB could be a competitive option. In fact,
this is a sophisticated S-OLAP query optimization problem where many factors such
as storage space, memory availability, and execution speed are parts of the formula.
Another interesting question concerns “which” inverted indices should be materialized
offline. A related problem is thus about how to determine the lists to be built given a set
of frequently asked queries. All these problems are related to the design of an S-OLAP
query optimizer and we regard this as one of our most important future work.

5 Experimental Evaluation

This section shows the results of the experiments we conducted on our prototype S-
OLAP system. The prototype was implemented using C++ and all the experiments were
conducted on an Intel Pentium-4 2.6GHz PC with 2GB of RAM. The system ran Linux
with the 2.6.10 kernel and gcc 3.3.3.

We have performed experiments on both real data and synthetic data. The experi-
ments on real data (Section 5.1) show a use case of performing click stream data anal-
ysis using our S-OLAP system. The experiments on synthetic data (Section 5.2) study
the performance of our S-OLAP prototype system and evaluate the counter-based and
the inverted index approaches.

5.1 Experiments on Real Data

The real sequence data is a clickstream and purchase dataset from Gazelle.com, a leg-
wear and legcare web retailer, who closed their online store on 2000-08-18. It was

22 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

prepared by [11] for KDD Cup 2000. The original data file size is 238.9MB. Each tu-
ple in the data file is a visitor click event (sorted by user sessions) and there is a total
of 164,364 click events. The details of an event are captured by 215 attributes. Three
example attributes are session-id, request-time and page which identify a user session,
its first access time, and the accessed page.8

To demonstrate the usability of an S-OLAP system and to validate our S-OLAP de-
sign, we use our S-OLAP prototype system to answer a KDD Cup 2000 data mining
query in an OLAP data exploratory way. The selected query is KDD Cup 2000 Query
1, which looks for page-click patterns of visitors. Since the data was not designed for
OLAP analysis, we have performed the following pre-processing steps: (1) We manu-
ally inspected the data and filtered out click sequences that were generated from web
crawlers (i.e., user sessions with thousands of clicks). After this step, an event database
with 148,924 click events was obtained. (2) We manually associated a concept hierarchy
raw-page → page-category to the page attribute such that a page can be categorized
by two abstraction levels. page-category is a higher abstraction level and there are 44
categories. Example categories include “Assortment”, “Legwear”, “Legcare”, “Main
Pages”, etc.

To answer the KDD Cup query, we started with a general S-OLAP query Q a to look
for information about any two-step page accesses at the page-category abstraction
level:

1. SELECT COUNT(*) FROM Event
2. CLUSTER BY session-id
3. SEQUENCE BY request-time ASCENDING
4. CUBOID BY SUBSTRING(X ,Y) WITH
5. X AS page AT page-category,
6. Y AS page AT page-category
7. LEFT-MAXIMALITY(x1,y1)

There were 50,524 sequences constructed and they were in a single sequence group.
Query Qa returned a 44×44 2D S-cuboid. From the result, we found out that the cell
(Assortment,Legcare) had a count of 150, meaning that there were 150 sessions first vis-
ited an Assortment-related page followed by a Legcare-related page. Interestingly, we
found that the cell (Assortment,Legwear) had a much larger count of 2,201 sequences
(the highest count in the S-cuboid), meaning that there were many sessions first vis-
ited an Assortment-related page followed by a Legware-related page. Consequently, we
performed a slice operation on that cell (i.e., Assortment → Legwear) and performed
a P-DRILL-DOWN operation to see what Legwear products the visitors actually wanted
to browse. This results in a new query Qb (the cuboid specification is omitted due to
lack of space).

Query Qb returned a 1×279 2D S-cuboid. The cell with the highest count was
(Assortment,product-id-null) which had a count of 181, meaning that many sessions
visited a product page where the product has no product-id after clicking an Assortment-
related page. Another remarkable cell was (Assortment,product-id-34893) which had a
count of 172 (the second highest count), meaning that there were many sessions first
visited an Assortment-related page followed by a DKNY Skin collection legwear page

8 The attribute names are renamed here for better exposition.

OLAP on Sequence Data 23

(product-id=34893). After viewing the result of Q b, we performed an APPEND oper-
ation to see if those sessions who visited an Assortment-related page followed by a
Legware-related page would visit one more Legware-related page to perform so-called
“comparison shopping”. That APPEND operation resulted in a new query Q c.

Query Qc returned a 1×279×279 3D S-cuboid. A remarkable cell was (Assortment,product-
id-34885,product-id-34897) which had a count of 14, meaning that there were 14 ses-
sions visited an Assortment-related page, then a DKNY Skin collection legwear page
(product-id=34885),and then a DKNY Tanga collection legware page (product-id=34897).
At that point, we stopped our S-OLAP exploration because we have collected enough
information to answer Query 1 in KDD Cup 2000 indirectly. Altogether, the three
queries had inserted 0.3MB of cuboids in the cuboid repository.

In the following we report the performances of iterative queries Q a, Qb, and Qc

using both the counter-based approach (CB) and the inverted index approach (II). We
repeated each query many times in order that the 90% confidence intervals of the re-
ported numbers are within ±5%. Note that in this experiment we did not precompute
any inverted index in advance. Table 1 shows the result.

Counter-Based (CB) Inverted Index (II)
Query Runtime Number of Runtime Number of Size of II

(ms) sequences scanned (ms) sequences scanned (MB)
Qa 24.3 50,524 46.24 50,524 0.897
Qb 21.5 50,524 6.26 2,201 0.104
Qc 23.0 50,524 5.92 842 0
∑

68.8 151,572 58.42 53,567 1.001
Table 1. Real Data Experiment

Table 1 shows that for the first query Qa, CB had a better performance than II.
This is not surprising because we did not precompute any inverted index in advance
so that the query processing time of Qa included the time for building 0.897MB in-
verted indices. However, for Qb and Qc, II outperformed CB because II did not need
to scan all sequences with the help of the inverted indices. Table 1 also shows the ad-
vantage of using inverted indices to perform S-OLAP operations. From Q a to Qb, we
had performed a slice and a P-DRILL-DOWN operation. After the slice operation, the
number of sequences related to Qb was reduced. As a result, the II implementation of
the P-DRILL-DOWN operation outperformed the CB implementation because Q b be-
came more selective. From Qb to Qc, we had performed an APPEND operation. Table
1 shows that the II implementation of the APPEND operation also outperformed the CB
implementation because II reused the inverted indices to scan fewer sequences than CB.

5.2 Experiments on Synthetic Data

Synthetic sequence databases are synthesized in the following manner. The generator
takes 4 parameters: L, I , θ, and D. The generated sequence database has D sequences.
Each sequence s in a dataset is generated independently. Its length l, with mean L, is

24 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

first determined by a random variable following a Poisson distribution. Then, we repeat-
edly add events to the sequence until the target length l is reached. The first event sym-
bol is randomly selected according to a pre-determined distribution following Zipf’s
law with parameter I and θ (I is the number of possible symbols and θ is the skew
factor). Subsequent events are generated one after the other using a Markov chain of
degree 1. The conditional probabilities are pre-determined and are skewed according to
Zipf’s law. All the generated sequences form a single sequence group and that is served
as the input data to the algorithms.

QuerySet A – (a) Varying D. The objective of this experiment is to study the scal-
ability of the counter-based approach and the inverted index approach under a series
of APPEND operations. In this experiment, we executed a set of iterative queries under
different numbers of sequences. The query set, namely QA, consists of five S-OLAP
queries QA1, QA2, QA3, QA4 and QA5. A query is obtained from a previous one by
doing a slice followed by an APPEND. The initial query QA1 has a substring pattern
template (X, Y) and it looks for size-two patterns in the sequence dataset and counts
their occurrences. The second query QA2 is obtained from QA1 by performing a slice
operation on the cell with the highest count and APPENDing a new pattern symbol Z to
the pattern template of QA1. Therefore, QA2 has a substring pattern template (X, Y, Z)
and it looks for size-three patterns (with the first two symbols fixed) in the sequence
dataset and counts their occurrences. Query QA3, QA4 and QA5 are obtained in a simi-
lar way and they are queries that look for size-four, size-five and size-six patterns in the
sequence dataset, respectively.

Figure 16 shows the running time of query set QA under three datasets with different
number of sequences (I100.L20.θ0.9.Dx, where x=100K/500K/1000K). Three size-
two inverted indices at the finest level of abstraction were precomputed for the three
datasets. The precomputations took 0.43s, 2.052s and 3.879s, respectively. The sizes
of the built indices were 7.3MB, 36.3MB and 72.2MB, respectively. The running time
of QA is presented as the cumulative running time from the first query QA1 to the last
query QA5. From the figure, we can see that (1) both CB and II scaled linearly w.r.t.
the number of sequences; and (2) II outperformed CB in all datasets in this experiment.
Figure 17 shows the cumulative number of sequences scanned up to a certain query. We
can see that CB scanned the whole dataset every time it executed. For QA1, II did not
scan the dataset because it could be answered by the inverted indices directly. For the
successive queries QA2 to QA5, II took less than 1 second to finish inverted index joins
in all cases because QAi+1 could exploit the inverted indices built by QAi and thus not
many data sequences were scanned.

QuerySet A – (b) Varying L. In this experiment, we executed query set Q A on a
dataset of 500K sequences and we varied the average length L of the sequences (i.e.,
I100.Ly.θ0.9.D500K, where y=10/20/30). Figure 18 shows the cumulative running
time and Figure 19 shows the cumulative number of sequences scanned, respectively.
The following conclusions can be drawn from the results: (1) both CB and II scaled
linearly w.r.t. the average sequence length and (2) II outperformed CB in all datasets in
this experiment.

OLAP on Sequence Data 25

QA1
QA2

QA3
QA4

QA5 100

500

1000
0
1
2
3
4
5
6
7
8
9

10

Number of sequences (in K)
Queryset A

T
im

e
in

 s
ec

on
ds

Counter−Based

Inverted Index

Fig. 16. Cumulative running time of QA.I100.L20.θ0.9.Dx

QA1
QA2

QA3
QA4

QA5
100

500

10000
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Number of sequences (in K)
Queryset A

C
um

ul
at

iv
e

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

)

Counter−Based

Inverted Index

Fig. 17. Cumulative number of sequences scanned of QA.I100.L20.θ0.9.Dx

26 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

QA1
QA2

QA3
QA4

QA5 10

20

300
1
2
3
4
5
6
7
8

Average sequence length L
Queryset A

T
im

e
in

 s
ec

on
ds

Counter−Based

Inverted Index

Fig. 18. Cumulative running time of QA.I100.Ly.θ0.9.D500K

QA1

QA2

QA3

QA4

QA5 10

20

300

500

1000

1500

2000

2500

Average sequence length L
Queryset A

C
um

ul
at

iv
e

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

)

Counter−Based

Inverted Index

Fig. 19. Cumulative number of sequences scanned of QA.I100.Ly.θ0.9.D500K

OLAP on Sequence Data 27

QuerySet A – (b) Varying θ. In this experiment, we executed query set Q A on a
dataset of 500K sequences and we varied the skew factor θ of the sequences (i.e.,
I100.L20.θz.D500K, where z=0.7/0.8/0.9). Figure 20 shows the cumulative running
time and Figure 21 shows the cumulative number of sequences scanned, respectively.
We can see that CB is insensitive to the skew factor because CB processes each iter-
ative query from scratch, the number of sequences scanned is therefore the same for
each iterative query, and so as the running time. For II, we see that both the running
time and the number of sequences scanned increase slightly with the increase of the
skew factor. The reason is that a higher θ values imples a more skewed distribution of
events in the dataset, leading to a skewed distiribution of the cuboid cells returned by
each iterative query. Since we sliced on the cell with the highest count in each iteratvie
query, the value in the sliced cell is therefore larger when θ is higher. As the number of
sequences to be processed depends on the cardinality of the inverted indice in the sliced
cell, a larger θ value thus increases the number of sequences to be processed and so as
the running time of the iterative query.

QA1
QA2

QA3
QA4

QA5
0.7

0.8

0.9
0

1

2

3

4

5

6

Skewness factor
Queryset A

T
im

e
in

 s
ec

on
ds

Counter−Based

Inverted Index

Fig. 20. Cumulative running time of QA.I100.L20.θz.D500k

QuerySet A – (b) Varying domain I . In this experiment, we executed query set Q A on
a dataset of 500K sequences and we varied the domain I in the dataset (i.e., Id.L20.θ0.9.D500K,
where d=100/200/300). Figure 22 shows the cumulative running time and Figure 23
shows the cumulative number of sequences scanned, respectively. From the figures, we
see that both CB and II are insensitive to the number of possible symbols in the dataset.
QuerySet B – (a) Varying D (b) Varying L. The objective of this experiment is to
study the performance of CB and II under the P-ROLL-UP and P-DRILL-DOWN oper-

28 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

QA1
QA2

QA3
QA4

QA5

0.7

0.8

0.9

0

500

1000

1500

2000

2500

3000

3500

4000

Skewness factor

Queryset A

C
um

ul
at

iv
e

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

) Counter−Based

Inverted Index

Fig. 21. Cumulative number of sequences scanned of QA.I100.L20.θz.D500k

QA1

QA2

QA3

QA4

QA5 100

200

300
0
1
2
3
4
5
6

Domain I
Queryset A

T
im

e
in

 s
ec

on
ds

Counter−Based

Inverted Index

Fig. 22. Cumulative running time of QA.Id.L20.θ0.9.D500k

OLAP on Sequence Data 29

QA1
QA2

QA3
QA4

QA5 100

200

3000

500

1000

1500

2000

2500

Domain I
Queryset A

C
um

ul
at

iv
e

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

)

Counter−Based

Inverted Index

Fig. 23. Cumulative number of sequences scanned of QA.Id.L20.θ0.9.D500k

ations. In this experiment, the dataset was I100.Lx.θ0.9.Dy. We hierarchically orga-
nized the events into 3 concept levels. The 100 event symbols are divided into 20 groups,
with group sizes following Zipf’s law (I=20, θ=0.9). Similarly, the 20 groups are di-
vided into 5 super-groups, with super-group sizes following Zipf’s law (I=5, θ=0.9).

We used another query set QB in this experiment. QB consists of three queries QB1,
QB2, and QB3. The first query QB1 has a substring pattern templates of (X, Y, Z)
(X is the middle abstraction level). The second query QB2 is obtained from QB1 by
performing a subcube operation to select the subcube with the same X value where its
total count is the highest among different subcubes and then P-DRILL-DOWN into X,
i.e., the pattern template is (X, Y, Z) (X is the finest abstraction level). Similarly, the
third query QB3 is obtained from QB1 by performing the same subcube operation and
then P-ROLL-UP on Y, i.e., the pattern template is (X,Y, Z) (we did not P-ROLL-UP

on X because it was sliced; Y is the highest abstraction level).

Similar to the experiments conducted in query set A (see above), we executed Q B

on datasets with different D (Figure 24, 25) and L (Figure 26, 27) values. In this ex-
periment, an inverted index L

(X,Y,Z)
3 was precomputed in advance. The experimental

results draw the following conclusions: (1) For P-DRILL-DOWN (i.e., QB2), CB and II
had comparable performance because we sliced on the subcube with the highest count
and the query was not selective. Therefore, II also needed to scan a lot of sequences in
order to compute the inverted list L(X,Y,Z). (We found that if we sliced on cells with
moderate counts then II outperformed CB. Figure 28 - Figure 31 show the experimental
results.) (2) For P-ROLL-UP (i.e., QB3), II outperformed CB in all datasets because II

30 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

QB1

QB2

QB3 100

500

1000
0

1

2

3

4

5

6

7

8

Number of sequences (in K)
Queryset B

T
im

e
in

 s
ec

on
ds

Counter−Based

Inverted Index

Fig. 24. Cumulative running time of QB .I100.L20.θ0.9.Dy, slice on the subcube with highest
count in QB2.

QB1

QB2

QB3 100

500

1000

0

500

1000

1500

2000

2500

3000

Number of sequences (in K)
Queryset B

C
um

ul
at

iv
e

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

)

Counter−Based

Inverted Index

Fig. 25. Cumulative number of sequences scanned of QB .I100.L20.θ0.9.Dy, slice on the sub-
cube with highest count in QB2.

OLAP on Sequence Data 31

QB1

QB2

QB3 10

20

30

0

1

2

3

4

5

Average sequence length L
Queryset B

T
im

e
in

 s
ec

on
ds

Counter−Based

Inverted Index

Fig. 26. Cumulative running time of QB .I100.Lx.θ0.9.D500k, slice on the subcube with highest
count in QB2.

QB1

QB2

QB3 10

20

30

0

500

1000

1500

Average sequence length L

Queryset BC
um

ul
at

iv
e

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

) Counter−Based

Inverted Index

Fig. 27. Cumulative number of sequences scanned of QB .I100.Lx.θ0.9.D500k, slice on the
subcube with highest count in QB2.

32 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

computed the answer just by merging the inverted index without scanning the dataset
but CB did scan the whole dataset.

QB1

QB2

QB3 100

500

1000
0

1

2

3

4

5

6

7

Number of sequences (in K)
Queryset B

T
im

e
in

 s
ec

on
ds

Counter−Based

Inverted Index

Fig. 28. Cumulative running time of QB .I100.L20.θ0.9.Dy, slice on the subcube with moderate
count in QB2.

QuerySet C – (a) Varying D (b) Varying L. In this experiment we use the sub-
string pattern (X, Y, Y, X) in the query. The dataset in this experiment is the same
as the dataset used in Quesy set B (i.e. I100.Lx.θ0.9.Dy). The query set QC con-
sists of two queries QC1, QC2. The first query QC1 has a substring pattern templates of
(X, Y, Y, X) (X is the middle abstraction level). The second query QC2 is obtained from
QC1 by performing a subcube operation to select the subcube with the same X value
where its total count is the highest among different subcubes and then P-DRILL-DOWN

into X, i.e., the pattern template is (X, Y, Y, X) (X is the finest abstraction level).
We executed QC on datasets with different D (Figure 32, 33) and L (Figure 34, 35)

values. In this experiment, the inverted index L
(X,Y)
2 is precomputed in advance. There-

fore in QC1, II has the following two steps inverted indices joining process: (1) Join
L

(X,Y)
2 and L

(Y,Y)
2 to obtain L

(X,Y,Y)
3 . (2) Join L

(X,Y,Y)
3 and L

(Y,X)
2 to obtain L

(X,Y,Y,X)
3 .

From the experimental results, we see that CB outperformed II in QC1. The reason
is that the inverted indices approach has an extra list joining step. Recall that II has to
rescan the dataset in order to eliminate invalid entries in the construction of the inverted
indices L

(X,Y,Y)
3 and L

(X,Y,Y,X)
3 (Figure 15 line 9). On the other hand, CB doesn’t have

the overhead and obtain the result in a single dataset scan. For P-DRILL-DOWN (i.e.,
QC2), II outperformed CB in all datasets because we sliced on the subcube with the

OLAP on Sequence Data 33

QB1

QB2

QB3 100

500

1000

0

500

1000

1500

2000

2500

3000

Number of sequences (in K)
Queryset B

C
um

ul
at

iv
e

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

)

Counter−Based

Inverted Index

Fig. 29. Cumulative number of sequences scanned of QB .I100.L20.θ0.9.Dy, slice on the sub-
cube with moderate count in QB2.

QB1

QB2

QB3 10

20

30

0

1

2

3

4

5

Average sequence length L
Queryset B

T
im

e
in

 s
ec

on
ds

Counter−Based

Inverted Index

Fig. 30. Cumulative running time of QB .I100.Lx.θ0.9.D500k, slice on the subcube with mod-
erate count in QB2.

34 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

QB1

QB2

QB3 10

20

30
0

500

1000

1500

Average sequence length L

Queryset B

C
um

ul
at

iv
e

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

)

Counter−Based

Inverted Index

Fig. 31. Cumulative number of sequences scanned of QB .I100.Lx.θ0.9.D500k, slice on the
subcube with moderate count in QB2.

highest count and the substring pattern (X, Y, Y, X) is very selective. Therefore, II only
scanned very few number of dataset sequences but CB did scanned the whole dataset.

QuerySet D – (a) Varying D (b) Varying L. In this experiment we repeat Query set
C and replace the queries with subsequence patterns. The dataset in this experiment
is the same as the dataset used in Quesy set C (i.e. I100.Lx.θ0.9.Dy). The query set
QD consists of two queries QD1, QD2. The first query QD1 has a subsequence pattern
templates of (X, Y, Y, X) (X is the middle abstraction level). The second query QC2

is obtained from QC1 by performing a subcube operation to select the subcube with
the same X value where its total count is the highest among different subcubes and
then P-DRILL-DOWN into X, i.e., the pattern template is (X, Y, Y, X) (X is the finest
abstraction level).

We executed QD on datasets with different D (Figure 36, 37) and L (Figure 38, 39)
values. The experimental results draw the following conclusions: (1) CB outperformed
II in QD1 because the inverted indices approach has an extra list joining step. (2) The
running time of both CB and II scaled linearly w.r.t. the number of sequences in the
dataset. (3) The running time of both CB and II scaled exponentially w.r.t. the average
sequence length. (4) For P-DRILL-DOWN (i.e., QC2), II outperformed CB in all datasets
because we sliced on the subcube with the highest count and the subsequence pattern
(X, Y, Y, X) is very selective. Therefore, II only scanned very few number of dataset
sequences but CB did scanned the whole dataset.

OLAP on Sequence Data 35

QC1

QC2
100

500

10000

1

2

3

4

5

6

7

8

Number of sequences (in K)
Queryset C

T
im

e
in

 s
ec

on
ds

Counter−BasedInverted Index

Fig. 32. Running time of QC .I100.L20.θ0.9.Dy.

QC1

QC2
100

500

10000

500

1000

1500

Number of sequences (in K)
Queryset C

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

)

Counter−BasedInverted Index

Fig. 33. Number of sequences scanned of QC .I100.L20.θ0.9.Dy.

36 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

QC1

QC2 10

20

300

1

2

3

4

5

Average sequence length L
Queryset C

T
im

e
in

 s
ec

on
ds

Counter−BasedInverted Index

Fig. 34. Running time of QC .I100.Lx.θ0.9.D500k.

QC1

QC2 10

20

30
0

500

Average sequence length L
Queryset C

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

) Counter−Based
Inverted Index

Fig. 35. Number of sequences scanned of QC .I100.Lx.θ0.9.D500k.

OLAP on Sequence Data 37

QD1

QD2 100

500

1000

0

20

40

60

Number of sequences (in K)Queryset D

T
im

e
in

 s
ec

on
ds

Counter−BasedInverted Index

Fig. 36. Running time of QD.I100.L20.θ0.9.Dy.

QD1

QD2 100

500

1000

0

500

1000

1500

2000

Number of sequences (in K)
Queryset D

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

) Counter−BasedInverted Index

Fig. 37. Number of sequences scanned of QD.I100.L20.θ0.9.Dy.

38 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

QD1

QD2 10

20

30

0

20

40

60

80

100

Average sequence length LQueryset D

T
im

e
in

 s
ec

on
ds

Counter−BasedInverted Index

Fig. 38. Running time of QD.I100.Lx.θ0.9.D500k.

QD1

QD2 10

20

30
0

500

1000

Average sequence length L
Queryset D

N
um

be
r

of
 s

eq
ue

nc
es

 s
ca

nn
ed

 (
in

 th
ou

sa
nd

) Counter−BasedInverted Index

Fig. 39. Number of sequences scanned of QD.I100.Lx.θ0.9.D500k.

OLAP on Sequence Data 39

6 Discussion

This Sequence OLAP project is initiated by a local subway company which has de-
ployed an RFID-based electronic payment system. Every day, the IT department of
the company processes the RFID-logged transactions and generates a so-called “OD-
matrix” (stands for Origin-Destination Matrix). The OD-matrix is a 2D-matrix which
reports the number of passengers traveled from one station to another within the same
day (i.e., representing the single-trip information). The OD-matrix is then sent to vari-
ous departments for different purposes. For example, the engineering department may
refer to the OD-matrix in order to schedule their resources. Occasionally, the manage-
ment of the company requests more sophisticated reports about the passenger distribu-
tions. For example, the management was once considering to offer round-trip discounts
to passengers. Consequently, they wanted to know the statistics of various passenger
traveling patterns, at different level of summarizations. Our example queries Q 1, Q2,
and Q3 in this paper were parts of their business queries.

However, since there are no OLAP systems that are capable of performing sequence
data analysis, the management has to request the IT department to write customized
programs whenever they come up with some business sequence queries. Given the huge
volume of data and the administrative overhead, the turnaround time is usually one to
two weeks. This inefficient way of sequence data analysis severely discourages data
exploration and this problem motivates our project.

The current S-OLAP prototype system is now being reviewed by the subway com-
pany. Unfortunately, due to their extremely tight data privacy policy, we cannot re-
port any data-related information here until we have resolved all related legal issues.
Nonetheless, throughout this project, we have discovered a lot of interesting research
issues and we share our findings with the readers in the remaining of this section. We
classify the research issues into different areas: (1) Performance, (2) Incremental Up-
date, and (3) Data Integration and Privacy.

1. Performance. As discussed in Section 4, we regard our two proposed S-cuboid con-
struction approaches as a starting point to more sophisticated solutions to implementing
an S-OLAP system. In fact, we realize that many S-cuboid cells are often sparsely dis-
tributed within the S-cuboid space (i.e., many S-cuboid cells are empty with zero count).
In such a case, introducing an iceberg condition [4] (i.e., a minimum support threshold)
to filter out cells with low-support count would increase both S-OLAP performance and
usability as well as reduce space. How to determine the minimum support threshold is,
however, always an interesting but difficult question.

Another interesting direction is to introduce the online aggregation [10] feature into
an S-OLAP system. The online aggregation feature would allow an S-OLAP system
to report “what it knows so far” instead of waiting until the S-OLAP query is fully
processed. Such an approximate answer to the given query is periodically refreshed
and refined as the computation continues. This online feature is especially useful for
S-OLAP systems because of the non-summarizable restriction of S-cube. Moreover, an
approximate query answer is often adequate for many sequence analysis queries. For
example, rather than presenting the exact number of round-trip passengers in Figure

40 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

2, approximate numbers like 200,000 for the Pengaton-Wheaton round-trip would be
informative enough.

We can also consider improving the performance by exploiting some other indices.
For example, if the domain of a pattern dimension is small, we can encode both the
base data and the inverted indices as bitmap indices. Consequently, the intersection
operation and the post-filtering step can be performed much faster using the bitwise-
AND operation rather than using the list-intersect operation. Furthermore, if the domain
is really small, the saving in storage space could be very high.

2. Incremental Update. Incremental update is another interesting and practical ques-
tion for OLAP systems. In many applications like the subway company we are support-
ing, there is a huge amount of new data being generated every day. When a day of new
transactions (events) are added to the event database, we could create a new sequence
group and precompute the corresponding inverted indices for that day. However, that
new set of transactions (events) may also invalidate the cached sequence groups and the
corresponding inverted indices of the same week. As a result, it is necessary to devise
methods to incrementally update the precomputed inverted indices.

3. Data Integration and Privacy. Smart-card systems, in addition to paying for sub-
way rides, could be easily extended to new application areas. For instance, in Hong
Kong, the Octopus Card can also be used to pay for other modes of public transport,
to purchase groceries at supermarkets and convenient stores, and even to pay bills at
restaurants [1]. Each month, all vendors who have joined this electronic payment net-
work upload their transactions to a centralized server maintained by an independent
company for accounting purposes. Each vendor still owns its uploaded data and the
data is not accessible by the others.

However, sometimes, a few vendors may share portions of their data to perform
sequence data analysis together. For example, assume that the subway company col-
laborates with a local bus company and offer a subway-bus-transit package with which
passengers who first take the subway and then transfer to a bus would get a 20% dis-
count off the second trip. In order to evaluate the effectiveness of that cross-vendors
campaign, lots of sequence OLAP queries would be posed on the passengers traveling
history. However, how to integrate the two separately-owned sequence databases (the
subway passenger traveling history and the bus passenger traveling history) in order to
perform such a high-level sequence data analysis (without disclosing the base data to
each other) is a challenging research topic.

7 Conclusions

This paper presented the concept of Sequence OLAP (S-OLAP). The concepts of Se-
quence Cuboid and Sequence Data Cube are introduced. A prototype S-OLAP system
is built and it is able to support pattern-based grouping and aggregation, which is cur-
rently not supported by any OLAP system. The implementation details of the prototype
system as well as the experimental results of evaluating the system are presented.

OLAP on Sequence Data 41

Acknowledgment. We thank Jiawei Han, Foris Lee and the anonymous reviewers for
their valuable comments.

References

1. Contactless payment and the retail point of sale: Applications, technologies
and transaction models. Smart Card Alliance White Paper. Accessible at
http://www.ntru.com/products/Contactless Pmt WP Final.pdf.

2. K. S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. In
SIGMOD, pages 359–370, 1999.

3. Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-dimensional regression analysis
of time-series data streams. In VLDB, pages 323–334, 2002.

4. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing
iceberg queries efficiently. In VLDB, pages 299–310, 1998.

5. K. Finkenzeller. RFID Handbook: Fundamental and Applications in Contactless Smart
Cards and Identification. Wiley, 2003.

6. H. Gonzalez, J. Han, and X. Li. FlowCube: Constructuing RFID FlowCubes for Multi-
Dimensional Analysis of Commodity Flows. In VLDB, pages 834–845, 2006.

7. H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and Analyzing Massive RFID
Data Sets. In ICDE, page 83, 2006.

8. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation oper-
ator generalizing group-by, cross-tab, and sub-totals. Technical report, Microsoft Research,
1995.

9. A. Gupta and I. S. Mumick, editors. Materialized views: techniques, implementations, and
applications. MIT Press, 1999.

10. J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD, pages 171–
182, 1997.

11. R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000 organizers’
report: Peeling the onion. SIGKDD Explorations, 2(2):86–98, 2000.

12. H.-J. Lenz and A. Shoshani. Summarizability in OLAP and Statistical Data Bases. In SS-
DBM, 1997.

13. X. Li, J. Han, and H. Gonzalez. High-Dimensional OLAP: A Minimal Cubing Approach. In
VLDB, pages 528–539, 2004.

14. E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. OLAP on Sequence
Data. Technical report, Accessible at www.comp.polyu.edu.hk/∼cscllo/solap.pdf, 2008.

15. P. E. O’Neil and G. Graefe. Multi-table joins through bitmapped join indices. SIGMOD
Record, 24(3):8–11, 1995.

16. R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K. S. Beyer, and M. Krishnaprasad.
SRQL: Sorted Relational Query Language. In SSDBM, pages 84–95, 1998.

17. K. A. Ross and D. Srivastava. Fast computation of sparse datacubes. In VLDB, pages 116–
125, 1997.

18. R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. Optimization of sequence queries in database
systems. In PODS, pages 71–81, 2001.

19. P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence query processing. In SIGMOD,
pages 430–441, 1994.

20. P. Seshadri, M. Livny, and R. Ramakrishnan. The design and implementation of a sequence
database system. In VLDB, pages 99–110, 1996.

21. P. Valduriez. Join indices. TODS, 12(2):218–246, 1987.

42 Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and David W. Cheung

22. N. Wiwatwattana, H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava. X3: A Cube
Operator for XML OLAP. In ICDE, pages 916–925, 2007.

