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Abstract—With virtual machine (VM) technology being
increasingly mature, computing resources in modern Cloud
systems can be partitioned in fine granularity and allocated
on demand with “pay-as-you-go” model. In this work, we
study the resource query and allocation problems in a Self-
Organizing Cloud (SOC), where host machines are connected
by a peer-to-peer (P2P) overlay network on the Internet. To
run a user task in SOC, the requester needs to perform
a multi-dimensional range search over the P2P network for
locating host machines that satisfy its minimal demand on each
type of resources. The multi-dimensional range search problem
is known to be challenging as contentions along multiple
dimensions could happen in the presence of the uncoordinated
analogous queries. Moreover, low resource matching rate may
happen while restricting query delay and network traffic. We
design a novel resource discovery protocol, namely Proactive
Index Diffusion CAN (PID-CAN), which can proactively diffuse
resource indexes over the nodes and randomly route query
messages among them. Such a protocol is especially suitable
for the range query that needs to maximize its best-fit resource
shares under possible competition along multiple resource
dimensions. Via simulation, we show that PID-CAN could keep
stable and optimized searching performance with low query
delay and traffic overhead, for various test cases under different
distributions of query ranges and competition degrees. It also
performs satisfactorily in dynamic node-churning situation.

I. INTRODUCTION

Cloud computing [1], [2] has emerged as a compelling
distributed paradigm with elastic VM’s resource isolation
technology [3], [4], [5]. Resources could be elastically
partitioned and reassembled to meet users’ actual needs
[2], [6], [7]. Such a dividable resource allocation scheme is
gaining more attention in recent years. As an example, the
proportional share model (PSM) [8] allows resource shares
be allocated proportional to users’ assigned bids, and it has
been leveraged in several Cloud systems [9], [10], [11].

In this work, we aim to design an efficient resource
discovery protocol in a Self-Organizing Cloud (SOC) such
that each individual host could autonomously find a qualified
volunteer computer on the Internet for its task’s execution
via multi-dimensional range query. Every joined host, either
a public server or a desktop computer, serves as an individual
node on a structured P2P overlay network. To perform a
multi-dimensional range query, the task’s resource demand
is expressed as a vector specifying its minimal requirements

along each resource type (e.g., CPU, memory, network,
storage) such that the task can be finished on time. The
discovery process is conducted by propagating the query
messages hop by hop towards the peer nodes that keep the
qualified resource records on different attribute dimensions.
Once a qualified resource node is found and determined, its
split resource shares will be allocated to the task. However,
as two users may simultaneously request for nodes with
similar resource types and capacities, the same candidate
nodes could be returned as their query results without proper
coordination. This may cause the task schedulers to dispatch
and run their tasks on the same node, resulting in resource
contention problem and making all of them cannot meet
expected execution times. Such an issue is very challenging
due to the fact that the overall performance of any virtual
execution environment is closely related to its allocated
resource shares along many dimensions, so that we cannot
use existing single-dimensional contention-free models [12].

We consider Distributed Hash Table (DHT) (such as [13],
[14]) the most suitable P2P network structure due to its
predictable logarithmic hops on message delivery for routing
each query to its destination. However, supporting efficient
range queries in DHT remains a difficult problem as the
ordinary hash function of DHT protocols makes it hard to
preserve the original order relationship among the stored
data records. Thus, many existing solutions [15], [16], [17],
[18], [19], [20], [21], [22] have tried to leverage tree- or
ring-based order-preserving hash functions to search range-
matched data records. Yet, these approaches either suffered
longer query delay time or the cost for maintaining these
extra hash functions is rather high. On the other hand, they
spread multiple messages for each query request and try to
find matched results as many as possible (i.e. all qualified
records). This may easily cause heavy network traffic and
lead to low scalability. For instance, if a query demands
CPU≥4GFlops and all the CPU records are distributed
within [0, 8GFlops] in a DHT space, about half of nodes
in the network need to respond the request.

We endeavor to bound the network traffic overhead with
the growth of query scale. Unlike the parallel query solutions
used by existing works [16], [22], we strictly limit each
query request to just issue single query message to be



routed on the network and return the first k matched results.
However, under such a single-message query constraint, the
chance of finding the candidate nodes with qualified multi-
dimensional resources for each request could be much lower
than that of the aggressive parallel query solutions. This
problem is especially serious in DHT space because the
resource states’ records may not be uniformly distributed,
but intensively stored in only a few small-zone nodes. Thus,
how to design a routing mechanism to make each single-
message query able to effectively search qualified resources
should be carefully studied, otherwise the widely-dispersed
resources cannot be fully utilized.

Consequently, we propose a new multi-dimensional range
query protocol, namely Proactive Index Diffusion CAN
(PID-CAN), on the basis of Content Addressable Network
(CAN) overlay [14]. The reason why we choose CAN [14]
as the basis of our design is due to its intrinsic multi-
dimensional routing support, which can be easily extended
by many applications. In PID-CAN, upon receiving zone-
overlapped state messages, any node will spread its identifier
(a.k.a. index) backward along multiple dimensions over
CAN to notify a few other randomly selected nodes (a.k.a.
index nodes), whose distances are 2k hops. We also study the
index-diffusion efficiency under different randomized index-
node selection policies. Based on our optimized indexing
strategy, we devise a randomized query routing mechanism,
which could effectively restrict query contentions. Moreover,
each query from anywhere of the network can find its
best-fit resources such that the qualified-resource matching
rate is significantly improved and the contention on multi-
dimensional resources is immensely restricted.

The rest of the paper is organized as follows. In Section
II, we formulate the best-fit resource query problem, by
aiming to optimize task execution in SOC. In Section III,
we formally describe the novel protocol, namely Proactive
Index-Diffusion CAN (PID-CAN). In Section IV, we evalu-
ate our design via simulation, with respect to throughput
ratio, message delivery cost, scalability, failed task ratio,
fairness, etc. The related works are discussed in Section V.
We conclude and present future work in Section VI.

II. PROBLEM FORMULATION

In the Self-Organizing Cloud, each user contributes
his/her computer to execute tasks submitted by local users or
migrated from other nodes. Each node has a task scheduler
to determine if submitted tasks should be executed locally
or remotely for better resource utilization.

Assume the Self-Organizing Cloud is constructed by
connecting n host machines on the Internet, denoted as pi
(i=1, 2, · · ·, n). Let ci denote the resource capacity vector of
pi, where ci=(ci1, ci2, · · ·, cid)T , and d refers to the number
of physical resource types owned by pi.

Let mi denote the total number of tasks submitted to
the node pi, and a task submitted to the node pi can be

expressed as tij , where j=1,2,· · ·,mi. For each task, its user
needs to specify an expectation vector, denoted e(tij), which
indicates the minimum resource demand on each resource
type for completing the task within expected time.

To improve resource utilization, the available resources
could be time shared by multiple running tasks. We further
denote node pi’s availability vector as ai=ci−li, where li
is an aggregated load vector indicating the minimal load
consumed by the current tasks running at pi using each
type of resources, i.e., li=

∑si
j=1 e(tij), where si means

the number of tasks scheduled onto pi. To make best use
of underlying resources, we adopt the proportional share
model (PSM) [8] for resource allocation. That is, the actual
resource amount vector (denoted r(tij)) allocated to task tij
on node pi will be determined by Equation (1).

r(tij) =
e(tij)

li
· ci (1)

For example, on a node pr, if we assume that there were
three running tasks with expected CPU speed and memory
size being {2 GFlops, 100 M}, {3 GFlops, 200 M}, and {4
GFlops, 300 M} respectively, and pr’s capacity vector cr is
{13.5 GFlops, 1200 M}. According to PSM, the three tasks
could actually get {3 GFlops, 200 M}, {4.5 GFlops, 400
M}, and {6 GFlops, 600 M} until a new task is scheduled
on this node or any of the running tasks completes its work.

Based on the proportional resource sharing policy, if
the number of running tasks on a node is not carefully
controlled, it is possible that each task’s resource share may
become smaller than its minimum demand. To guarantee the
expected completion time for all running tasks, when a task
τ is submitted to node pi, the node selected for executing τ
(denoted as pr) found by the task scheduler at node pi must
satisfy Inequality (2).

ar � e(τ) (2)

In order to make any node able to quickly locate any other
qualified resource nodes with multi-dimensional attributes
within predictable delay, all the nodes are organized in a
CAN [14] overlay. In CAN, each node is connected to a
few other nodes as its neighbors and cooperatively maintain
the global information by periodically exchanging resource
usage states with its neighbors. To search a qualified node
for task execution, a multi-dimensional range query is per-
formed by forwarding the expectation vector over CAN to
locate a candidate node with available resource capacities
that satisfy Inequality (2). In order to control the query traffic
overhead (which is determined by the number of messages
constructed per query), we strictly limit every query can just
issue one message and the number of its routing hops is also
expected to be minimized.

The effect of multi-dimensional range query will be
evaluated by the failed task ratio (denoted as F-Ratio(t)
which refers to the ratio of the number of tasks that cannot
find any qualified nodes to the total number of generated



tasks (
∑n

i=1 mi) until a specific time point t) and system
throughput ratio (denoted by T-Ratio(t), calculated as the
ratio of the number of finished tasks to the total number of
generated tasks until time point t). Smaller F-Ratio implies
higher effectiveness of querying resource nodes, which may
lead to fewer tasks that cannot be started (or scheduled). That
is, F-Ratio directly reflects the resource matching rate of the
query protocol. T-Ratio could implicitly reflect the resource
contention degree delivered by the designed discovery proto-
col, in that bigger throughput means more tasks successfully
finished, which is probably due to relatively lower degree of
tasks’ resource contention on selected execution nodes.

In sum, our designed query protocol should minimize the
failed task ratio and maximize the system throughput ratio.

III. PROACTIVE INDEX-DIFFUSION CAN (PID-CAN)

In this section, we present the new discovery protocol,
Proactive Index-Diffusion CAN (PID-CAN), which sup-
ports efficient multi-dimensional range query in the fully
decentralized self-organizing Cloud, as compared to the
traditional CAN [14] that could perform exact-match query
but cannot find qualified records based on a specified range.
First, we discuss an improved CAN [14], called Index-
Node Supported CAN (INSCAN), which will be adopted
by PID-CAN. We also present the strategy for performing
delay-bounded range query on INSCAN. We then show how
to diffuse indexes over INSCAN to improve the resource
matching rate. Lastly, we introduce possible strategies of
lowering the resource contention probability.

A. INSCAN-based Range Query (INSCAN-RQ)

In traditional CAN, the search space is dynamically par-
titioned by all peers into multi-dimensional zones and each
node is responsible for storing a set of resource information
records (i.e. ai) which match its corresponding zone. Hence,
for any node along every dimension, there are a lower-bound
and an upper-bound for its zone. If there is only one non-
overlapped range dimension between two nodes (such as pi
and pj) and they are adjacent at this dimension, we call them
adjacent neighbors. If the non-overlapped range of pi is no
less than pj’s, pi is called pj’s positive neighbor and pj is
called pi’s negative neighbor. If the ranges in all dimensions
of one node are overlapped or no more than those of another
node, the former is called negative-direction node of the
latter. For example, in Fig. 1, Node 22 is Node 12’s negative
neighbor and Node 13’s negative-direction node.

In INSCAN, every node not only includes the adjacent
neighbors like traditional CAN overlay, but also a few
sampled 2k-hop-distance nodes (a.k.a. index nodes). The set
of index nodes on each node could be updated periodically
by flooding the querying messages to its neighbors along
the d dimensions until reaching the edge of the CAN space.
This structure enables each peer node to locate any other
ones within O(log2 n) hops in the multi-dimensional CAN
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Figure 1. Routing on INSCAN-RQ: node 1 & node 18 are node 6’s index
nodes because of 2k-hop distances. Assuming Node 6 renders a range-query
overlapping node 22’s zone, then all shaded zones need to be checked.

space, instead of O(n
1
d ) in the original CAN. Each node

periodically detects its own availability (i.e. ai) and routes
it over INSCAN until it is completely enclosed in a multi-
dimensional zone. For example, as shown in Fig. 1, If
Node 6’s up-to-date availability vector is {0.95, 0.7}, then
the vector should be stored in node 17, whose zone fully
overlaps the vector. Based on the routing rule, the state-
update message delivery distance is O(log2 n) hops.

Based on INSCAN, it is easy to find the nodes whose
zones overlap the boundary lines of the query range (Node
22, 12, 23, 8, 5 in Fig. 1) as well as all the other responsible
nodes within the range (shadow area in Fig. 1), yet the heavy
network traffic overhead is inevitable for getting complete
range-matched results in this range. We call it INSCAN-
based Range Query (INSCAN-RQ) and it is easy to prove
that its query delay upperbound is 2 log2 n but the network
traffic per query is log2 n+N -1, where N is the total number
of all responsible nodes (shadow area in Fig. 1). In order
to bound query message traffic overhead, a straightforward
solution is using a random-walk query routing method after
locating the boundary-corner node (e.g., Node 22 in Fig. 1).
However, in the situation with scarce available resources,
random-walk query routing may hardly find qualified re-
sources, significantly degrading resource matching rate.

B. Proactive Index-Diffusion Strategy

Our index-diffusion design aims to make users discover
best-fit nodes with available capacities for each required
resource type, with restricted query message traffic overhead.

Like the traditional CAN, each node in INSCAN is also in
charge of a specific zone as a state keeper to collect all the
updated state messages matching the zone. Differently, each
node periodically checks the status of its cache (denoted as
γ) whether it contains a set of received state messages or not.
Once a node detects its cache is non-empty, it will diffuse
its own identifier (such as host IP) to a few other index
nodes, to make itself be discovered by other nodes around
the global system. As mentioned previously, the number of
hops for message delivery between a node and its index-
nodes is restricted to 2k in order to control the maintenance
cost, where k=0,1,2,· · ·,

⌊
log2 n

1
d

⌋
. We call a node’s index-



node located at its positive (negative) direction along some
dimension positive-index node (negative-index node).

1) Index-Diffusion Analysis: Since the identifier can be
continually propagated from index-node to index-node, any
other requester node at the negative location of the index-
node could quickly locate it, in turn for finding more
resource records on demand. Below, we prove that each node
could diffuse its index with only a few hops of recursive
relay from index-node to index-node, to any of its negative-
direction nodes with limited message delivery overhead.

Theorem 1: The delay complexity of relay hops for noti-
fying any node’s index to any of its negative-direction nodes
is O(log2 n), where n refers to the total number of nodes.

Main Idea: Note that log2 n=d·log2 n
1
d , so our objective is

to prove the delay complexity is bounded under d · log2 n
1
d .

The example shown in Fig. 2 illustrates the basic idea of
our proof. In this example, suppose there are r=n

1
d =19

nodes along each dimension, it is obvious that the top-
most node (Node 1) will take the longest time, but less than
O(log(19))=4, to diffuse its own index. Specifically, over the
first hop, Node 2, 3, 5, 9, and 17 could receive the index
(Node 1’s identifier). Via the second hop, Node 4, 6, 7, 10,
11, and 13 could receive the relayed index. For instance,
Node 7 could receive Node 1’s index forwarded from Node
5 or Node 3. With just 3 hops, most of the negative-direction
nodes of Node 1 could receive its index notification.

12345678910111213141516171819
1st   hop
2nd  hop
3rd    hop

Figure 2. Quick Backward Index Diffusion

Proof: Since there are d dimensions and n nodes in
total, the number of nodes along any dimension is about
r=n

1
d . Then, as long as we prove the time cost of the top-

most node diffusing its index to all of its negative-direction
nodes along each dimension is no more than [log2(r)], we
could easily induce the final conclusion, i.e. O(d · log2 n

1
d ).

Inspired by the example shown in Fig. 2, we need to prove
∃ h ≤ [log2(r)], such that the distance λ (i.e. the number of
hops) between any two nodes along one dimension could be
expressed as 2a1+2a2+· · ·+2ah , where ai ∈ N . Since λ < r,
if we denote λ in binary format, it is easy to observe that
the number of its digits just indicates h’s minimum value.
For example, (13)10=(1101)2 means that 13=23 + 22 + 20

and h=3. Hence, h ≤ [log2(λ)] + 1 ≤ [log2(r)].
Obviously, it is infeasible for peer nodes to broadcast their

indexes (either their own identifiers or those of other nodes
to forward) due to the considerable message delivery over-
head. Suppose L negative-index nodes are selected along
each dimension as the notification targets, the total number
of the messages (denoted as ω) to deliver for any index
is equal to L+L2+· · ·+Ld=L·(Ld−1)

L−1 . Hence, the message
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Figure 3. Two Index-Diffusion Methods

overhead could be controlled by setting L to a small value.
For example, if L = 2 and d = 3, the total number of
messages is only 14. In other words, L has to be small
constant (we always set it to 2). Then, the key issue is
how to select the limited number of negative-index nodes
at each index-relay hop, such that the index-diffusion could
achieve the maximum efficiency. We discuss this problem
in the following text.

2) Index-Diffusion Algorithms: In order to notify the
indexes as broadly and efficiently as possible, our strategy
adopts probabilistic theory. That is, the negative-index nodes
to which an index needs to be sent are randomly selected
rather than based on some fixed rules. There are two
candidate solutions: (1) spreading methods and (2) hopping
methods, as illustrated in Fig. 3 (L = 2). For the former,
the L negative-index nodes along each dimension will be
determined completely by the initial index-senders (Fig.
3 (a)); for the latter, the index will be forwarded from
index-node to index-node along each dimension (Fig. 3 (b)).
Obviously, the former suffers fewer message delivery hops,
but its indexes cannot be diffused as widely as the latter’s. In
fact, the index delivery delay complexity of hopping method
is O(log2 n) as proved in Theorem 1. That is, the hopping
method’s index delivery delay is also acceptable, thus it
could be considered better than the spreading method, which
will be validated in our simulation.

The index-diffusion process could be realized by our
index-sender and index-relay algorithms. Their pseudo-
codes are shown in Algorithm 1 and Algorithm 2. We just
show the pseudo-code of the hopping method, since the
spreading method’s can be easily converted from it.

The index-sender algorithm on each node is performed
periodically, and the index message (containing the identi-
fier) of the node will be sent out if and only if its cache is
non-empty. The format of index message is {ID, dim NO,
dim TTL}, where dim NO indicates which dimension the
message should be propagated to and dim TTL refers to the
maximum number of hops to forward along the dim NOth
dimension. In Algorithm 1, the initial dimension’s sequence
number and dim TTL are set to 1 and L respectively (line
3). L is set to 2 in our experiment to limit the message



delivery overhead. NINode refers to a negative-index node,
whose distance can just be 2k, k=1,2,· · ·,

⌊
log2 n

1
d

⌋
from the

current node pi.

Algorithm 1 INDEX-SENDER ALGORITHM
This program is periodically invoked as the current node pi detects that it
owns records.
1: while (TRUE) do
2: if (cache γ is non-empty) then
3: Construct an index message, i.e. {pi’s ID, 1, L};
4: Randomly select an NINode along the dimension NO. 1;
5: Send {pi’s ID, 1, L} to NINode;
6: end if
7: Sleep for a tiny cycle;
8: end while

The index-relay algorithm will be asynchronously trig-
gered by individual nodes whenever they receive forwarded
indexes from outside. Line 1∼4 is used to forward the
received index message to a random negative-index node
within the residual dimension TTL (i.e. q), in order to diffuse
indexes along the same dimension. Line 5∼9 increments
the relay dimension by forwarding the received index to
a randomly selected negative-index node along the next
dimension. In our simulation, we will show that a small
L could already lead to a quite satisfactory efficacy in the
resource discovery, especially due to our probabilistic design
(Line 4 in Algorithm 1 and Line 2 & 7 in Algorithm 2).
Upon receiving an index message, the node will store it into
a list, denoted as PIList, which means Positive Index List.
Algorithm 2 INDEX-RELAY ALGORITHM

This program is invoked upon receiving an index {pk’s ID, j, q}.
1: if (q − 1 > 0) then
2: Randomly select an NINode along the dimension NO. j;
3: Send index message {pk’s ID, j, q − 1} to NINode;
4: end if
5: if (j < d) then
6: Construct a new index message: {pk’s ID, j + 1, L};
7: Randomly select an NINode along the dimension NO. j+1;
8: Send {pi’s ID, j + 1, L} to NINode;
9: end if

C. Contention-minimized Multi-dimensional Query

For each resource query, there are three phases in finding
its qualified resources: (1) locating duty-node, (2) randomly
determining index agents, and (3) randomly checking index-
nodes. On requester node, a query message (a.k.a. duty-
query message) is initially generated and routed to the node
D1 whose zone overlaps the user-defined expectation vector
e(tij), and this node (D1) is called duty-node (or boundary-
corner node). On D1, an index-agent list (denoted as ι) will
be constructed by randomly selecting d positive neighbors
(one neighbor per dimension), which are considered the
reservoir of the positive-index nodes. Thereafter, node D1

will send an index-agent message containing e(tij) and
{ι−A1} (i.e. the index agents excluding the selected one) to
one index agent (Node A1) randomly selected from ι. The
index agent A1 will assemble and propagate an index-jump

message that contains a number of positive-index nodes
selected from its PIList. Each index node in the index-jump
message will be checked until enough number of qualified
resource records are found. If such an index-jump message
hopping cannot find enough demanded resource nodes, the
message will be sent back to node A1 and another index
agent (A2) randomly selected from ι by A1 will be set as
the next index agent. As soon as the agent node A2 receives
the new index-agent message, it will also perform the index-
jump message hopping to keep searching resources.

In order to realize the resource query mentioned above,
we need three individual algorithms to respectively handle
the three different kinds of messages, duty-query message,
index-agent message, and index-jump message. The pseudo-
codes are presented in Algorithm 3, Algorithm 4, and
Algorithm 5, which are driven by the corresponding arrival
messages. In addition, as a set of state records about the
qualified resource nodes are found at the index-nodes, the
records will be enclosed in an index-jump notification mes-
sage (i.e. FoundList, denoted as ϕ) and sent to the requester.

In Algorithm 3, after the duty node is located (Line 4),
index agent determination will be performed (Line 5∼7).

Algorithm 3 DUTY-QUERY MESSAGE HANDLER
Suppose the program is running on current node pi.
1: if (the request is not delivered but submitted to the node) then
2: v = e(tij); /*assign expectation vector*/
3: end if
4: if (v is right enclosed in pi’s multi-dimensional zone) then
5: Construct the index-agent list ι using d positive neighbors;
6: Randomly select an index agent α from ι;
7: Send the index-agent message {v, {ι− α}} to node α;
8: else
9: Forward duty-query message {v} based on CAN’s routing rule;

10: end if

When any node receives an index-agent message, Algo-
rithm 4 will be triggered immediately. An index-jump list
(denoted as j) is built using the positive-index list (PIList),
which was constructed by the proactive index-diffusion.
Then, the index nodes will be searched hop by hop for
qualified resource records stored on them (Algorithm 5).

Algorithm 4 INDEX-AGENT MESSAGE HANDLER
Suppose the program is running on current node pi.
1: Randomly select a few indexes from pi’s PIList and put them in j;
2: if (j is not empty) then
3: Randomly choose an index node β from the list j;
4: Send the index-jump message {v, δ, {j− β}} to β;
5: else
6: Randomly select an index agent α from ι;
7: Send index-agent message {v, {ι− α}} to node α;
8: end if

On any index node, Algorithm 5 may notify the searched
resources’ identifiers to the requester node (Line 2∼5). If the
expected number of qualified resource nodes are found, the
query would be terminated (Line 15), or else, either index-
jump message or index-agent message will be propagated
similar to the index-agent message handler.



Algorithm 5 INDEX-JUMP MESSAGE HANDLER
Suppose the program is running on current node pi.
1: Search the cache (i.e. γ) on pi and put qualified records in a list ϕ;
2: if (ϕ is not empty) then
3: Send ϕ to the requester node;
4: δ = δ - |ϕ|; /*δ refers to the expected number of qualified results.*/
5: end if
6: if (δ > 0) then
7: if (j is not empty) then
8: Randomly choose next index node β from list j;
9: Send index-jump message {v, δ, {j− β}} to β;

10: else
11: Randomly select an index agent α from ι;
12: Send index-agent message {v, {ι− α}} to node α;
13: end if
14: end if

We also explore another strategy, Slack-on-Submission
(SoS), in order to further avoid the query contention among
different requesters with the similar expectation vectors. As
a user triggers a resource query for a task tij , its original
expectation vector e(tij) will immediately be skewed/slacked
to be a new random value e′(tij) subject to Formula (3),
where � denotes componentwise inequality between two
vectors and cmax implies the upper-bound capacity vector in
the whole DHT space, which can be statistically aggregated
using cached information [23]. Then, the query with e′(tij)
will follow the basic query procedure conducted by Algo-
rithm 3∼5. If the number of query results cannot fulfill the
user’s expectation, the expectation vector could be restored
from e′(tij) to the original e(tij) and the search will be
conducted again until finding enough expected resources.

e(tij) � e′(tij) � cmax (3)

IV. PERFORMANCE EVALUATION

A. Experimental Setting

We first built an emulated credit-scheduler (or
proportional-share scheduler) in accordance with the
design of XEN [24]. Then, we constructed the CAN
protocol [14] using the Peersim simulation tool [25].
There are thousands of participating nodes, each with
random settings (Table I) and various user tasks (Table II).
Each task needs a least-qualified five-dimensional vector
{computation load, I/O load, network load, disk size and
memory size} to launch, and its execution time is only
related to the first three resource types. Tasks’ workloads
are randomly generated such that their overall average
execution time is 3000 seconds. We simulate the Internet
communication by grouping all nodes into different LANs
and two nodes across LANs have to communicate via
WAN network bandwidth. By leveraging the event-driven
mode under Peersim tool [25], each experiment simulates
86400 seconds (i.e. one day) using totally 4320 event
cycles and the user requests (or tasks) will be periodically
generated on each node based on Poisson process with
3000 seconds as its mean. Hence, the total number of
tasks to process in one day on a system with 2000 nodes
is about 2000× 86400

3000 ≈57600. The TTL (or age) of each

state-update message is 600 seconds and the message
updating cycle is 400 seconds. According to the existing
experimental report [5], we set the cost (or percentage loss
of total resource capacity) in maintaining one VM instance
as follows: processor rate=5%, IO speed=10%, network
bandwidth=5%, memory cost=5M.

Table I
SYSTEM SETTING

Parameter Value
# of nodes 2000 ∼ 12000
# of processors per node 1,2,4,8
computation rate per processor 1,2,2.4,3.2 Hz (or 10MI)
I/O speed per node 20,40,60,80 MbPS
memory size per node 512, 1024, 2048, 4096 M
disk size per node 20, 60, 120, 240 Gb
LAN network bandwidth 5 ∼ 10 Mbps
WAN network bandwidth 0.2 ∼ 2 Mbps

Table II
USER TASK’S DEMAND

Parameter Value Parameter Value
demand ratio λ 1, 0.5, 0.25 cpu rate λ ∼ 25.6λ
I/O speed 20λ ∼ 80λ memory size 512λ ∼ 4096λ
disk size 20λ ∼ 240λ bandwidth 0.1λ ∼ 10λ

We first analyze the pros and cons of SID-CAN (Spread-
ing Index Diffusion over CAN) by comparing it with two
other related works, Newscast gossip protocol [26] and K-
Hop DHTNEIGHBOR based range-query strategy (KHDN-
CAN). Newscast gossip protocol is a typical unstructured
P2P solution, under which neighbors of each node are
randomly changed based on the Newscast model [26] over
time to enhance message diffusion range and the fan-out
degree (i.e., the number of neighbors) is limited to log2(n) to
avoid excessive network traffic. In KHDN-CAN, once a state
message is routed to its duty node, it will be further spread to
negative CAN neighbors with K hops, such that each query
can easily locate the K-hop sampled positive neighbors
around the minimal-demand zone nodes, for searching the
qualified resources closest to expectation vectors. KHDN-
CAN can be considered RT-CAN [22] tailor-made for SOC
environment, where real-time-states are stored in vectors
rather than local R-Trees. KHDN-CAN can also be consid-
ered converted from INSCAN-RQ. For fairness, we make
such three protocols’ network traffic close to each other
in experiment, by tuning the neighbor degree in Newscast
gossip protocol and hop number K in KHDN-CAN.

Thereafter, we will show different results by combining
various index-diffusion methods (either spreading or hop-
ping) and various resource query methods (either non-SoS
or with SoS). There are six different protocols to com-
pare, including SID-CAN, HID-CAN, SID-CAN+SoS, HID-
CAN+SoS, SID-CAN+VD, and Newscast protocol. SID-
CAN and HID-CAN are short for Spreading Index Diffu-
sion over CAN and Hopping Index Diffusion over CAN
respectively. These two resource query methods focus on
the original expectation vector (i.e. e(tij)). Comparatively,
SID-CAN+SoS and HID-CAN+SoS will use Slack-on-
Submission (SoS), that is, the primary duty-query message



will contain the slacked expectation vector (e′(tij)) instead
of the original one. SID-CAN+VD adopts an extra virtual
dimension [27] to resolve the resource competition problem.

We focus on four performance metrics, throughput ratio
(T-Ratio), failed task ratio (F-Ratio), fairness index, and
scalability. The throughput ratio is defined as the ratio of the
number of finished tasks and the total number of generated
tasks in the system over time. The failed task ratio refers
to the value that the number of the tasks which cannot find
any qualified resources divided by the number of submitted
tasks. Jain’s fairness index [28] (denoted ϕ) is commonly
used to evaluate the scheduling fairness for finished tasks,
and it is defined as Equation (4) (its higher value means
fairer treats in executing tasks). In this formula, eij (i.e. tij’s
execution efficiency) is defined as tij’s expected execution
time divided by its real completion time, where the expected
execution time is estimated using its load amount and the
system-wide average node capacity and network bandwidth.

ϕ =
(
∑n

i=1

∑mi

j=1 eij)
2

(
∑n

i=1 mi) · (
∑n

i=1

∑mi

j=1 e
2
ij)

(4)

B. Experimental Result

With 2000 simulated nodes, the PID-CAN based on
the index-spreading method (i.e. SID-CAN) outperforms
other competitors (including Newscast gossip protocol and
KHDN-CAN), as most of the queries request widely differ-
ent resource amounts (see Fig. 4 (a)). However, it suffers
sub-optimal performance as long as the requested resource
amounts are not distributed widely, that is, it cannot adapt to
the cases with relatively intensive range queries. Fig. 4 (b)
shows that SID-CAN performs even worse than the News-
cast gossip protocol if all queries are randomly distributed
within a small range [0, 0.25×cmax]).
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Figure 4. Contrary Results under Different Query Ranges

The main reason why SID-CAN works sub-optimally is
due to the fact that it cannot effectively process or distribute
the requests evenly on the widespread resource nodes. In
other words, if all resource amounts demanded by tasks
are not uniformly distributed in the whole DHT space, the
requests in SID-CAN are likely to compete for the same
resource nodes over CAN, causing undesired hotspots.

We compare the efficiency of six different protocols with
respect to various demand ratio (λ) in Fig. 5 through Fig.
7. When λ=1 (i.e. all tasks randomly demand the multi-
dimensional resource amounts within the range [0, 1·cmax]),

we could observe that SID-CAN and HID-CAN as well as
their SoS versions prominently outperform the other two
algorithms. Newscast gossip protocol performs worst due
to its completely random nature over partial-view cache.
In other words, the ability of locating least satisfactory
resource around the whole system acts as the major factor to
impact the performance in this situation, so SoS will become
redundant here. We also observe that HID-CAN performs as
well as SID-CAN, which delivers the optimal result here.

Through these three figures, we observe that all the perfor-
mance metrics are improved as we decrease the demand ratio
(λ). This is reasonable because smaller demand ratio (i.e.
smaller resource amount demanded per task) will definitely
induce easier resource matching. An interesting observation
is that the Newscast protocol performs even much better
than SID-CAN when the demand ratio is small. For instance,
when λ=0.25 (i.e. all the tasks demand small amount of re-
sources), the Newscast protocol performs well on throughput
ratio (up to 0.74), while the result of HID-CAN is pretty
close to that of Newscast on this metric. Whereas, it is
pity that the Newscast protocol suffers distinctly more failed
tasks and poorer fairness index than our designed HID-CAN
or SID-CAN protocol under various demand ratios. It is
worth notice that our HID-CAN suffers only 2 failed tasks
out of the totally 14362 submitted tasks when the demand
ratio is relatively small (such as λ=0.25) in the whole one-
day test, compared to 1793 failed tasks using Newscast
protocol (see Fig. 7 (b)).

Another interesting result is that SoS does take positive
effect in some cases. For instance, SID-CAN + SoS performs
a little worse than without SoS support in Fig. 5 (a), while
it performs much better in the large demand ratio situation
(Fig. 7 (a)). Although SID-CAN + SoS could perform stably
in different situations, such a solution suffers twice resource
query overhead than those without SoS.

Overall, we conclude that HID-CAN is a stable protocol,
which always performs efficiently in any situation on almost
all metrics, such as throughput ratio, failed task ratio, and
fairness index. Consequently, HID-CAN should be consid-
ered the best choice for the SOC platform.

We also evaluate the scalability of our recommended
algorithm, HID-CAN, during one-day test as shown in
Table III. We could clearly observe that the four primary
performance metrics do not notably change with the in-
creasing system scale. We define message delivery cost as
the summed number of various messages (including state-
update message, duty-query message, index-jump message,
index-agent message, etc.) sent/forwarded per node. Table III
shows that the message delivery cost increases very slowly,
probably under logarithmic speed.

Finally, we evaluate the HID-CAN under different levels
of dynamic environment with a certain ratio of churning
nodes, as shown in Fig. 8 (λ=0.5). Since index-diffusion
delay or the departure maintenance cost on each node is
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Figure 5. The efficacy of resource discovery protocols (λ=1)
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Figure 6. The efficacy of resource discovery protocols (λ=0.5)
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Figure 7. The efficacy of resource discovery protocols (λ=0.25)
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Figure 8. HID-CAN under Different Node Churning Rates



Table III
SYSTEM SCALABILITY OF HID-CAN

�������metric
scale 2000 4000 6000 8000 10000 12000

throughput ratio 0.637 0.618 0.612 0.606 0.592 0.597
failed task ratio 18.6% 19.8% 19.7% 20.1% 21.4% 20.7%
fairness index 0.653 0.623 0.638 0.644 0.651 0.641
msg delivery cost 3403 4311 5019 5728 6078 6427

only about several network delays each of which takes
about only 200 milliseconds on the WAN, these costs are
usually tolerable compared to application data transmission
time. Hence, for the dynamic situation, we mainly focus
on the question: whether or not the frequently changing
CAN structures would impact the resource discovery effect.
We use dynamic degree to denote the ratio of the churning
nodes and the total number of nodes within one task’s
lifetime on average (i.e. 3000 seconds). The node-churning
events are uniformly distributed to every moment in each
whole experimental duration. For example, dynamic degree
= 0.25 means that there are about 25% nodes arbitrarily
disconnected from the network every 3000 seconds and
also there are the same number of new nodes joining
meanwhile. We implement the node departure maintenance
on each departure node’s neighbors to refresh their neighbor-
hoods and a binary partition tree based background zone
reassignment algorithm [14] to ensure each node always
corresponds to a globally unique zone.

From Fig. 8, we observe that the resource allocation
result is degraded a little bit with increasing degree of
dynamic environment. When the churning node ratio is up to
50%, the throughput ratio and failed task ratio will not be
remarkably influenced compared to the static environment
without churning-nodes. This validates that our HID-CAN
protocol performs quite satisfactorily in dynamic situation.

V. RELATED WORK

During past few years, there already exist a lot of range-
based query methods over DHT [15], [16], [17], [18], [19],
[21], [22]. They have two short-comings compared to our so-
lution. They always rely on some additional order-preserving
(or locality-preserving) hash function to reorganize the DHT
nodes, significantly complicating the system implementa-
tion. For example, Mercury [15] maps d attribute-hubs to
DHT (such as Chord [13]), and each range query is split
to multiple sub-queries based on different attributes and
conducted in the multiple hubs respectively. Armada [16]
maps all the objects to DHT nodes through a conceptual
partition tree, while Murk [19] indexes multi-dimensional
data partition using kd-tree. Other tree structures (such as
skiptree [17] and trie [21]) were also leveraged to improve
the range query over DHT. In comparison, our solution
never borrows additional hash functions but still achieves
expected query effect by simply proactively diffusing index-
nodes over the INSCAN overlay. To our knowledge, there are
some researches [29], [22] which also adopt the structure
similar to INSCAN. C2 [29], for example, combines CAN

and Chord, making the messages be routed exactly according
to the Chord rule along each dimension. Whereas, without
carefully designed proactive index-diffusion strategy, simple
combination of Chord and CAN cannot deliver satisfactory
resource matching rate for range query demand.

On the other hand, all the existing solutions mainly aim to
get as complete range-query result as possible with limited
query delay. There are usually two phases for each range
query: locating the boundary (or centric) responsible nodes
within the specified range and then checking all of them
and their neighbors one by one until finding all the data.
Apparently, this may easily incur unbounded query delay or
intolerably heavy network traffic. Armada [16] proposes a
delay-bounded range-query method and the INSCAN based
Range Query could also be proven as a query message
delay bounded solution. However, such a short-response
feature is achieved at the cost of heavy network traffic
because of the flooded query messages from the partition
tree’s root node or boundary-line duty nodes to all of its
range-overlapped leaf nodes. RT-CAN [22] partitions the
query range to several concentric circles and checks the
responsible nodes from inside out, and this method is proven
well-adaptive to the load imbalanced situation. Through
experiments on Amazon’s EC2, however, RT-CAN’s query
throughput/performance also shows notable degradation with
even slightly expanding query range, in that larger range
causes more objects to be retrieved and more nodes to be
involved in the query processing. In addition, note that none
of the existing works take the mutual resource contention
issue into account for maximizing queries’ actually gained
resource shares. CAN-based protocol in [27] makes use of
an additional virtual dimension to disperse the potential
competition, but such a method performs unstably due to
its inevitabe over-dispersed qualified resource records.

In comparison, without traversing all responsible nodes
within the query range, high resource matching rate could
also be achieved by our elaborative random diffusing non-
empty-cache nodes’ identifiers (i.e. index nodes) in a proac-
tive manner. In addition, by randomly selecting index nodes
in the query phase, our solution could effectively mitigate the
mutual contention among requesters, maximizing each re-
quester’s real allocated multi-dimensional shares along every
resource dimension. In particular, the HID-CAN protocol (a
specific version of PID-CAN) has been proven very effective
for keeping the stable resource discovery effect with low
message delivery cost under various demand ratios.

VI. CONCLUSION AND FUTURE WORK

This is the first work to study the resource discovery
protocol especially suitable for multi-dimensional virtualized
resource allocation on Self-Organizing Cloud (SOC). Each
resource discovery job should be a multi-dimensional range
query with a minimal demand due to the sharable resources
in SOC. By randomly propagating nodes’ identifiers (or



indexes) from index-node to index-node over CAN, our
design (PID-CAN) can effectively increase the success rates
in searching qualified resources, especially in accordance
with the characteristics of proportional-share model (PSM).
Compared to spreading index diffusion (SID) method, the
hopping index diffusion (HID) method shows much better
and more stable performance without the necessity of extra
competition-aware assistance (such as Slack-on-Submission
or additional virtual dimension). We also validate that HID-
CAN could perform stably in dynamic node-churning en-
vironment. For the future work, we plan to study the PSM
based execution fault-tolerance issues using check-pointing
technologies on top of the HID-CAN protocol.
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