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Abstract: In web service environments, long transactions need to lock 
resources – often database services – for a long time during their long 
execution duration. This would bring down the performance of transaction 
processing systems. The transaction compensation is a feasible solution through 
allowing sub-transactions to independently commit, however, it is not able to 
speed up the transaction processing. This paper proposes a novel pipeline-based 
transaction processing (PLbTP) model for Serial Long Transactions (SLTs), 
which parallelises the transaction processing to reduce the transaction 
execution duration. Furthermore, we design a time-stamp-based deadlock 
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prevention mechanism for the control of multiple concurrent transactions.  
The simulation results demonstrate that our approach can significantly improve 
performance of SLTs without the aid of compensating transactions. 

Keywords: pipeline; long transaction; compensating transaction; concurrency 
control. 
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1 Introduction 

Long transactions, in general, cost a long time such as several minutes even days so that 
the mechanism locking accessed resources is not a good solution. A travel plan, including 
reserving a flight ticket and reserving a hotel, for example, is usually a long transaction 
because the reservation may need to check available tickets, modify databases and 
confirm the customer. During this period, if another reservation transaction tries to access 
the same database, it will be blocked. In most cases, the long resource occupation in long 
transactions mainly is caused by the fact that some sub-transactions have to wait for 
results of other sub-transactions. Furthermore, after one sub-transaction finished,  
it cannot commit the result immediately because it could not ensure that the whole 
transaction will succeed. The conservative strategy is to wait for a commit instruction 
from a Transaction Manager (TM). Accordingly, many resources accessed by the 
transaction will be locked for a long time. It is obvious that the system efficiency will be 
reduced. 

A possible solution is the transaction compensation, which creates an  
associated transaction with the opposite effect for each sub-transaction in advance.  
In compensation-based transaction models, sub-transactions are allowed to commit 
independently. If the whole transaction fails for some reasons, the compensating 
transactions of committed sub-transactions will be executed. The compensating 
transactions will undo the results of the original transactions. Several protocols have been 
proposed for the transaction compensation (Schäfer et al., 2008). However, the 
compensation mechanism may not work in some cases because associated compensating 
transactions are very difficult even impossible to be created. On the other hand, although 
the transaction compensation guarantees the system consistency, it cannot speed up the 
transaction processing. 

In this paper, we concentrate on how to reduce the execution duration of SLTs with 
the following characteristics: 

• in an SLT T = {T1, T2, …,Tn}, any sub-transaction Ti cannot start until it receives 
intermediate results of Ti–1 (2 ≤ i ≤ n), illustrated in Figure 1 

• partial or all sub-transactions in T includes a lot of operations. 

Figure 1 Serial long transaction processing 

 

As a consequence, executing an SLT needs a long time so that T locks many  
resources for too long period during the transaction processing unless compensating 
transactions are used. On the other hand, multiple concurrent SLTs possibly try to  
lock the same resource(s) simultaneously owing to the randomicity of transaction 
requests in web service systems. Accordingly, dead-lock potentially occurs from time to 
time. 
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This paper is motivated to address the above-mentioned two issues. First, we propose  
a PLbTP model, which divides each sub-transaction into a set of blocks and executes  
the blocks in parallel. Hence, the serial sub-transactions could be executed nearly 
synchronously and the compensating transactions are no longer required, which will 
increase the efficiency and concurrency of transaction systems. Next, to solve deadlocks 
under our model, we develop a distributed deadlock prevention mechanism based on a 
time-stamp-based victim selection that can break a deadlock cycle. Though deadlock 
detection is a possible method, it costs a lot of resources and time because at least one of 
the transactions in the deadlock cycle has to be aborted. Instead, our scheme can avoid 
the waste of resources. 

The rest of this paper is organised as follows. Section 2 reviews related work.  
Section 3 presents our PLbTP model together with communication mechanism among 
sub-transactions. In Section 4, we propose a concurrency control approach to avoid 
deadlocks caused from simultaneous access to the same resource(s). Experimental results 
are reported in Section 5. Finally, we conclude this paper along with the discussion on 
our future work. 

2 Related work 

In this section, we review the existing work related to long transaction processing in 
traditional distributed systems as well as service-oriented environments. 

2.1 Long transaction models in distributed systems 

Most existing long-running transaction models were built on compensating transactions, 
firstly proposed by Gray (1981). Sagas (Garcia-Molina and Salem, 1987) is a classical 
long-lived transaction model and was extended to many Extended Transaction Models 
(ETMs) (Liang and Tripathi, 1996; Garcia-Molina et al., 1991). In Sagas, a transaction 
consists of a set of sub-transactions with ACID (atomicity, consistency, isolation, 
durability) properties, and a set of associated compensating transactions, where each  
sub-transaction Ti associates with a compensating transaction Ci that can semantically 
undo the effect caused by the commit of Ti. In Sagas, all the committed sub-transactions 
have to be undone if a subsequent sub-transaction fails. 

ACTA (Chrysanthis and Ramamriham, 1992) is a comprehensive transaction 
framework that permits a transaction model to specify the effects of extended transactions 
on each other and on objects in databases. ACTA allows specifying interactions between 
transactions in terms of relationships and transactions’ effects on objects’ state and 
concurrency status. ACTA provides more powerful and flexible reasoning ability than 
Sagas through a series of variations to the original Sagas. 

A Transaction Specification and Management Environment (TSME) 
(Georgakopoulos et al., 1996) is a customised transaction management system that 
supports implementation-independent specification of application-specific ETMs and 
configuration of transaction management mechanisms to enforce specified ETMs.  
To support ETM specification, the TSME provides a transaction specification language 
that describes dependencies between transactions. Flow composition languages permit 
the construction of long-running transactions from collections of independent, atomic 
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services. Because of environmental limitations, such transactions usually cannot be made 
to conform to standard ACID semantics. The set consistency (Fischer and Majumdar, 
2007) was proposed to validate the consistency of long-running transactions.  
Set consistency generalises cancellation semantics, a standard consistency requirement 
for long-running transactions, where failed processes are responsible for undoing any 
partially completed work, and can express strictly stronger requirements such as mutual 
exclusion or dependency. 

2.2 Business transaction specifications in service-oriented systems 

Transaction processing in service-oriented systems presents new requirements owing  
to their loose coupling and autonomy (Goel et al., 2003; Lizcano et al., 2009; Tang et al., 
2004). Thus, traditional long transaction models are generally not applicable for 
applications that comprise web-based business services (Aikebaier and Takizawa, 2009; 
Dalal et al., 2003). In the Business Transaction Protocol (BTP) (Ceponkus et al., 2002) 
and Web Services Transaction (WS-Transaction) (Cabrera et al., 2002), the use of 
compensating transaction for coordination of long-running activities was proposed,  
but no details are given on how to provide compensating transactions. To facilitate  
Grid users, a transaction model based on agent technologies atomic transaction and 
compensating transaction has been proposed (Tang et al., 2003). This model shields users 
from complex transaction process and provides the abilities for users to execute 
transaction, without knowing of process. Furthermore, CALGT (Tang et al., 2006) is a 
model to generate compensating transactions automatically, which frees application 
programmers from the complexity to provide compensating transactions. 

Cost-based web services transaction management (Choudry et al., 2006) proposed 
monetary semantics in bookings to increase the success rate for long-running 
transactions, which increases the chances of success without compromising the loosely 
coupled autonomous nature of web services. Yahyaoui et al. (2010) looked into the 
coordination of web services following their acceptance to participate for service 
composition. They identify two types of behaviours associated with component web 
services: operational and control behaviours. These behaviours are used to specify 
composite web services that are built upon component web services. Moschoyiannis et al. 
(2008) focused on describing the forward behaviour of a transaction, which concerns the 
coordination of the underlying services and will not consider compensation mechanisms, 
semantics and schemas (compensating behaviour). Schäfer et al. (2008) designed a 
contract-based approach, which allows the specification of permitted compensations at 
runtime. They introduce abstract service and adapter components, which allow us to 
separate the compensation logic from the coordination logic. In Heinzl et al. (2010),  
the authors propose a temporal policy language to facilitate temporal management of 
structured documents. Temporal aspects can be applied to documents, such as service 
descriptions, or even properties in structured documents. Validity periods can be added  
to these properties, such that customers can easily check whether certain properties  
(e.g., prices) in a document are valid. 

2.3 Concurrency control for distributed transactions 

Researchers have proposed centralised and distributed deadlock detection algorithms 
(Taniar et al., 2008). To detect deadlocks introduced by highly concurrent access,  
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a graph-based detection algorithm was proposed in Elmagarmid (1986). Omran Bukhres 
compared two different Wait-For-Graph (WFG)-based algorithms (Central Controller and 
Distributed deadlock detection algorithms) in terms of the throughput and performance 
(Elmagarmid, 1986). Ezpeleta et al. (1995) proposed Petri-net-based deadlock prevention 
policy for flexible manufacturing systems. This approach uses a dynamic resource 
allocation policy to develop an online controller based on net liveness condition or the 
reach-ability graph of Petri net models. However, this model for deadlock avoidance is 
only available for FMS. Wang et al. (1995) proposed guaranteed deadlock recovery based 
on run-time dependency graph and incorporated it into distributed deadlock detection 
algorithm. Unfortunately, their designs can only support message-passing applications.  
In this paper, we provide efficient prevention mechanism for different types of 
transactions. 

Though some researchers proposed probabilistic analysis method based on time-out 
mechanism (Hofri, 1994) to detect deadlocks in distributed systems, the timeout itself  
or deadlock detection time is the key factor for the transaction throughput, whatever 
timeout-based or graph-based detections (Dotoli et al., 2004). Also, security issue was 
investigated in recent years (Fuchs and Pernul, 2010; Thi and Dang, 2010). In our current 
design, we make full use of benefits of resource managers for distributed transactions to 
control concurrently resource access for deadlock avoidance. It is especially useful for 
independent business services, which have prior knowledge of what resources they will 
access. 

3 Pipeline-based transaction processing 

3.1 A motivated scenario 

As mentioned earlier, we focus on the long transactions whose sub-transactions have to 
be executed serially. The essential reason is any sub-transaction takes the results of the 
last sub-transaction as its input parameters. Let a “goods order” transaction T consist of 
the following four steps: 

• fill an order form (T1) 

• order the goods in the order form (T2) 

• arrange the transportation to deliver the goods to customers (T3) 

• store the transaction result (T4). 

We describe the transaction T as 1 2 3 4, , , .T T T T T=  The second step cannot be 
compensated sometimes because after the order is submitted, corresponding products 
may have been produced. We cannot execute a compensating transaction to destroy them. 
For a company, this information is probably stored at different places, and the tasks are 
always dispatched to different departments. So, these sub-transactions will be executed at 
different nodes. When an order form contains a large quantity of goods, every step may 
cost a long time, so we can treat it as a long transaction. 

In this scenario, the sub-transactions have to be executed serially. More specifically, 
before the order form is processed, we do not know what goods to order from the agency; 
before the goods are ordered, we cannot arrange the transportation to ship the goods to 
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customers; after all these have been done, we are able to record the steps into a database. 
On the other hand, the compensation-based transaction model is not a good solution to 
the above-mentioned SLTs because not only many cases cannot be compensated but also 
it cannot reduce the execution duration. In the next section, we will present a pipeline 
model to speed up SLT processing. 

3.2 Pipeline-based transaction processing model 

The existing transaction models always treat a sub-transaction as a whole unity. Hereby, 
each sub-transaction in an SLT has to wait for the results of the last sub-transaction.  
If any sub-transaction could be divided into several blocks, however, it could  
partially pass the intermediate results to the succedent sub-transaction. Accordingly, the 
transaction processing can be speeded up. Enlightened by this idea, we use the pipeline 
mechanism to parallelise the SLT processing. 

In the above-mentioned scenario, the first step is processing the order form, and it 
may take a long time to process the whole order form. As a matter of fact, the  
order-making service may return the partial result during the processing. Once the  
order-making service processes a number of goods, it sends the list and the detail 
information, size, colour, and so on to the ordering service. The ordering service could 
order these goods from the agency according to the received list. At the same time,  
the order-making service will process the remaining goods. Once the ordering service 
orders the first batch of goods from relative agencies, the transportation information,  
for instance, the address of the agencies, the weight of the goods and so on, will be sent 
to the transportation service. Then, the transportation service could arrange vehicle to 
ship the goods to customers. Still at the same time, the ordering service will order  
the second batch of goods received from order-making service. The last link of the 
transaction is storing all the processing information into the database, and the flow is 
pretty much the same thing. Figure 2 presents the procedure how to parallelise the ‘goods 
order’ transaction. 

Figure 2 Pipeline-based processing for the ‘goods order’ transaction 
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The above-mentioned transaction is executed in the pipeline way, i.e., the four  
sub-transactions are executed almost in parallel, which will save much time if the order 
list is very large. When the first sub-transaction finishes the order form, it does not need 
to wait a long time for other services, then it is not necessary to lock the resources for a 
long time. Meanwhile, compensating transactions are no longer required. 

Formally, our PLbTP model coordinates an SLT 1 2, , , nT T T T= …  as follows. 

• each sub-transaction iT  is divided as a set of blocks: ,1 ,2 ,, ,..., ,i i i i mT B B B=  where 
Bi,j is executed prior to Bi,j+1 (1 ≤ i ≤ n; 1 ≤ j ≤ m–1) 

• Ti is finished if and only if all blocks in the set { }, |1i jB j m≤ ≤  are serially executed 

• n blocks Bi,j(1 ≤ i ≤ n), from n sub-transaction, respectively, consist of a pipeline, 
where the execution results of Bi,j are the input of Bi+1,j. 

On the basis of the above-mentioned model, a total of m pipelines PLj = {Bi,j|1 ≤ i ≤ n} 
(1 ≤ j ≤ m) execute in parallel in an SLT processing. Furthermore, the duration of an  
SLT is reduced to the lifetime of the longest pipeline jPL  in terms of the execution  
time. 

As a matter of fact, it is very hard to divide a sub-transaction into several blocks.  
We have to analyse the computing property of sub-transactions and parallelise them.  
In most cases, it is very difficult to divide a sub-transaction into blocks. However, we can 
divide the intermediate results into blocks. Every sub-transaction will build an output 
buffer. When the sub-transaction is executed, the intermediate results will be put in the 
output buffer. Once the intermediate results in the output buffer are enough, they will  
be sent to an input buffer of the next sub-transactions, which will be described in  
Section 3.5. 

3.3 Communication among sub-transactions 

During a transaction processing, the transaction coordinator connects all the sub-
transactions. For SLTs, results of a sub-transaction in general are returned to the 
coordinator. The coordinator, then, passes the results to the next sub-transaction. A lot of 
traffic is spent on the network communication. 

For saving message overhead, our PLbTP model directly transfers execution results 
of a sub-transaction to the next sub-transaction. In fact, since the communication content 
between participants is simply intermediate results, the coordinator only needs to 
construct a data channel between the paired participants and define the transmission 
method, the participants could cooperate without any knowledge of other participants’ 
interfaces. 

For an SLT 1 2, ,..., nT T T T= , we describe a sub-transaction as a four-tuple  
Ti = {NAMEi, INi, OUTi, OPSi}, and suppose OUTi = INi+1. In service-oriented systems, 
service providers publish their service interfaces in a register centre and a coordinator 
could enquiry the service address and interfaces from the register centre. In our MPbTP 
model, however, after enquiring services, the coordinator only sends a sub-transaction  
to a corresponding service but does not start it. Instead, the participant controls  
the execution of the sub-transaction. We need to add an interface for receiving data to the 
service, which receives the input and starts or resumes the sub-transaction. Thereby,  
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the coordinator should notify the previous service of the address and accessing method  
of the last participant. In this way, the last service may directly pass parameters to its next 
through this interface. As we supposed, the output of the last service is the input of its 
next service, so it is easy to pass parameters between each pair of neighbouring  
sub-transactions. The pseudo-code for data transmission among sub-transaction is shown 
in Figure 3. 

Figure 3 The pseudo-code for data transmission directly through data channels 

 

3.4 A heuristic approach for pipelining transactions 

A sub-transaction running in one service often generates a series of intermediate  
results. To parallelise the transaction processing, each sub-transaction in our model  
sends its intermediate results to the next sub-transaction once the results are ready.  
The results are generally composed of many items and we cannot pass them one by  
one. Otherwise, most of time will be wasted on network transmission. On the other  
hand, the block should not be too large so that it has no difference from serially 
executing. 

Considering this point, we can create an input buffer and an output buffer for each 
sub-transaction. When the sub-transaction receives the data from the prior one, it stores 
the data in the input buffer. The service fetches these input data, executes relative 
operations in the sub-transaction and stores the results in its output buffer. Once the 
intermediate results in the output buffer are beyond the threshold value, or the block size, 
the sub-transaction will pass the data to the next sub-transaction, as illustrated in Figure 
4. It seems that the results are flowing in the pipeline-based processing system. Figure 5 
is the pseudo-code for pipelining sub-transactions. 

Figure 4 Pipelining sub-transactions 
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Figure 5 The pseudo-code for pipelining sub-transactions 

 

4 Deadlock prevention 

4.1 Problem statement 

In distributed especially web service environments, transactions are often executed  
in different sites. Each sub-transaction in an SLT has to hold the requested resources 
before it actually commits, which potentially causes serious deadlocks because more than 
one transaction possibly requests the same resource. 

Without losing generality, let two concurrent SLTs, T1 = {T1A, T1B} and T2 = {T2A, 
T2B}, access the same resources. A deadlock occurs owing to the following resource lock 
request. 

• T1 asks T1A and T1B to prepare their sub-transactions, respectively. T2 does the same 
thing on T2A and T2B. 

• T1A enters the prepare phase. It requests resource R1 and sets its lock on R1. 

• T2B enters the prepare phase too. It requests resource R2 and sets its lock on R2. 

• T1B begins to request R2 at this time, but it must wait for the lock on R2. 

• At the same time, T2B not only begins to request R1, but also needs to wait for the 
lock on R1. 

The above-mentioned resource request flow can be described in Figure 6, where T1 waits 
for T1B’s response but T1B waits for T2B to release the lock on resource R2 and, on the 
other hand, T2A waits for the T1A to release R1. As a result, a deadlock appears owing to 
the resource competition. 
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Figure 6 A deadlock scenario 

 

4.2 Deadlock prevention mechanism 

4.2.1 Resource-reservation-based deadlock prevention 

Existing technologies for deadlock avoidance in general expect sequential resource 
access. In the most conservative case, a transaction locks all resources in advance. It is a 
static resource allocation algorithm that needs to exploit prior knowledge of transaction 
access patterns (Taniar and Goel, 2007). 

In web service environments, business transactions usually access multiple functional 
services distributed in different nodes. Each service knows what resources it would 
request. That is to say, for every transaction, it is appropriate to exploit prior knowledge 
of related resources. Following this idea, we add a new resource reservation phase before 
every sub-transaction actually executes. At this stage, the coordinator dispatches all  
sub-transactions to corresponding services, and then these services communicate with 
each resource manager to check the resource status. If the resources are available, the 
services will hold them and return OK to the coordinator. In cast that a transaction gets 
the resource lock, the transaction can go on. Otherwise, it will return false. After 
receiving all positive feedback from sub-transactions, the coordinator will start actually 
handling and committing the sub-transactions. 

Figure 7 shows the deadlock prevention mechanism, which works as follows. 

• Transaction manager (TM, i.e., Coordinator) receives a transaction request and 
produces a global unique root transaction ID. This ID can be a function of current 
time to distinguish which transaction starts earlier. TM distributes sub-transactions 
onto different sites, which host specified web services. 

• After receiving reserve instruction, a participant tries to get all the needed resources 
from the resource manager. Assume T1A requests R1 from resource manager RM1 and 
T2A requests R1 from RM1, for example, the resource manager cache their root 
transaction IDs. In case that they both successfully obtain the locks of required 
resources, sub-transaction T1B starts to acquire the lock of R2 by sending request to 
RM2. RM2 checks its cache to make sure if any transaction has the same root ID with 
T1B. If not, it then notifies T1B that it cannot access resource R2 so that T1B will not be 
blocked but returns reserve failure information to T1’s TM. 
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• If the coordinator receives positive checked messages from all participants, it sends  
a prepare message to each participant, and the sub-transaction starts executing. 
Otherwise, it should be regarded as not meeting its prerequisite to continue. So, the 
T1 decides to give up, and T1A releases its lock on R1. It is free of deadlock that if 
some sub-transaction T2B starts to request the resource R1, it can acquire the  
lock successfully. This ensures that T2 can continue its work without a  
deadlock. 

Figure 7 Resource-reservation-based deadlock prevention 

 

This new added reserve phase is beneficial to the whole execution process of a 
transaction besides deadlock avoidance. Although every participant reserves the needed 
resources, it does not need to enter in some critical region to execute transactions if 
precondition is not satisfied. This reservation is very quick for most transactions, 
especially for long transactions, which may fail during transaction preparation. 

4.2.2 Time-stamp-based deadlock elimination 

Though it is possible to prevent potential deadlock by releasing held resources when 
resource conflict is detected, a live-lock may happen if a transaction restarts again but 
still cannot acquire needed resources. 

To solve this problem, we use time-stamp-based mechanism to choose which 
transaction should quit when resource competing occurs. As we mentioned before, every 
transaction has a unique ID by which we can recognise which transaction starts earlier. 
So at the resource manager, it can determine which transaction could acquire the resource 
by comparing their transaction IDs. A transaction with a larger ID will be aborted when a 
resource conflict occurs. 

5 Experiment and evaluation 

5.1 Experimental environments and system architecture 

To validate the performance of our solution, we developed a PLbTP system through the 
middleware transaction service between the top-layer application and the bottom-layer 
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web services, illustrated in Figure 8. We install the transaction service on each node, 
which provides specified services to outside applications. In the system, we developed 
four services: order-making service, goods ordering service, goods shipping service and 
transaction recording service. They are deployed on four nodes, respectively. Each node 
has a 2.4 GHz CPU and 2G memory. Furthermore, we deployed a service register centre, 
which is based on UDDI on the fifth node and published the four services in the service 
register centre. The coordinator could query service interfaces through the service register 
centre. Then, we developed an SLT transactional application, which accesses the four 
services. 

Our simulation system handles transactions in the following flow. 

1 Coordinator accepts a long transaction (T) request. 

2 The coordinator queries web services in the register centre according to  
sub-transactions in T. 

3 The coordinator dispatches the sub-transactions to different web services through  
the associated participants. 

4 Each participant receives a corresponding sub-transaction and analyses input and 
output of the sub-transaction. 

5 The coordinator constructs a data channel between paired services. 

6 Each participant divides the sub-transaction as into a set of blocks in terms of  
the scale of the sub-transaction and its processing capacity. 

7 The participant begins to execute the sub-transaction, passes the intermediate results 
to the next sub-transaction through the data channel and reports the status of the  
sub-transaction to the coordinator. 

8 If all participants finish sub-transactions successfully, the coordinator sends the 
‘commit’ command to all the participants. Once one of the sub-transactions fails,  
the whole transaction fails, and the coordinator will send the ‘rollback’ command  
to all the participants. 

Figure 8 The system architecture 
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5.2 Performance evaluation 

To analyse the performance improvement of our model, we evaluated our PLbTP model 
in different environment and compared it with the related work. 

5.2.1 Average execution duration 

We test Average Execution Duration (AED) of our PLbTP and the compensation-based 
serial transaction processing (CbSTP), both for SLTs. In the CbSTP model,  
sub-transactions in an SLT independently commit once they hold necessary resources.  
If a part of sub-transactions fail, the committed sub-transactions will be compensated and 
the global transaction is aborted. It is a classical long transaction model. 

In the experiments, the AED is an average of the duration of all global transactions  
in a given time. The duration of a transaction is the interval from starting the transaction 
to committing the transaction (for successful transactions) or aborting the transaction  
(for failed transactions). The results are shown in Figure 9. From this figure, we can 
observe that the AED in CbSTP grows much faster than that in our PLbTP with 
increasing concurrent transactions. 

Figure 9 Average execution duration against the number of concurrent transactions (see online 
version for colours) 

 

As a matter of fact, CbSTP model only provides a strategy for consistency recovery once 
the transaction fails. Essentially, it still processes the sub-transactions serially. Instead, 
our PLbTP parallelises operations in each sub-transaction, which reduces the execution 
time of each sub-transaction. On the other hand, when a sub-transaction fails, committed 
sub-transactions in the CbSTP model have to be compensated while our PLbTP only 
needs to rollback all sub-transactions. As we know, the average time to compensate a 
transaction is far more than that to roll it back. As a consequence, our PLbTP 
significantly reduces the execution duration. 
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5.2.2 Average communication time 

In this experiment, we investigate how much time is spent on message communication. 
Figure 10 shows that average communication time in both the CbSTP and our PLbTP 
increases as more and more concurrent transactions. However, our PLbTP has a little 
improvement in terms of communication time. The reason is as follows. As mentioned 
earlier, our PLbTP builds a data channel among sub-transactions. The intermediate 
results are passed between sequential two sub-transactions directly. In the CbSTP model, 
intermediate results are passed first from a sub-transaction to the coordinator and then 
from the coordinator to the next sub-transaction. On the other hand, our PLbTP cannot 
outperform two times over CbSTP in terms of the communication time. The reason is that 
the CbSTP transfers all results of a sub-transaction only once while our PLbTP needs to 
pass the results of each transaction more times. 

Figure 10 Average communication time against the number of concurrent transactions (see online 
version for colours) 

 

5.2.3 Wait time ratio 

Different sub-transactions in an SLT have different number of operations and accordingly 
need different execution time. Let tmin and tmax be the execution time of the fastest  
sub-transaction and the slowest sub-transaction in an SLT, respectively. We define a 
Time Fluctuation (TF) as follows. 

max min

min 100%.t tTF
t
−= ×  

In the PLbTP model, a fast sub-transaction has to wait for another slow sub-transaction. 
In this experiment, we test how the waiting time ratio, which is the ratio of the waiting 
time to the total of transaction duration, changes with the TF. Intuitively, the less the TF 
of a transaction is, the better the PLbTP will perform. 

We simulated services, which take different time and computed the increasing of 
waiting time. The compensating transaction model does not need to spend time on 
waiting because the sub-transactions commit once they finish. So, we compared the 
PLbTP with Serial Transaction Processing (STP) strategy, which still serially  
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executes long transactions but without compensating function. The results are shown in 
Figure 11. 

Figure 11 Waiting time ratio against TF (see online version for colours) 

 

From Figure 11, we can find that as TF increases, the ratio of the time spent on waiting 
for other sub-transactions grows accordingly in our PLbTP. It represents that our model is 
more suitable for the long transactions whose sub-transactions have similar execution 
duration. 

6 Conclusions and future work 

This paper proposes a novel Pipeline based Transaction Processing (PLbTP) model for 
serial long transactions, which parallelises the transaction processing to reduce the 
execution time. This model could improve the performance of the transaction processing 
evidently without needing compensating transactions. Moreover, we propose a  
time-stamp-based deadlock prevention mechanism. The experimental results demonstrate 
that our LPbTP outperforms over traditional long transaction model. 

As a part of our future work, we are going to investigate how to divide a  
sub-transaction into a set of blocks with mathematical models.  
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