“

| —

Lightweight Application-level Task
Migration for Mobile Cloud Computing

Ricky K. K. Ma, Cho-Li Wang
28 Mar 2012

Systems Research Group
Department of Computer Science

The University of Hong Kong

AINA2om11 JPN

/ —

Outline

* Research background and motivation
» System design and implementation

e Performance evaluation

—Background

* Mobile cloud computing:
e Mobile apps or widgets connect to the Cloud

e Support more complex and wider range of
applications

More than 4.5 billion mobile-
phone users all over the world.

[TLT)
w vosso ‘i amazon

il
" BWEE I
aliyun.com

Al voice-recognition engines

®broblems

e API lock-in = Service Provider lock-in
¢ Client-server model: restricted form of

computing
s'mplgloud

2012-3-30 4

. —
Motivation:

* Migration techniques are required to
dynamically move computation between mobile
nodes and cloud nodes:

e Low overhead:

 Especially when using in mobile nodes where processing
power and resources are very limited

e Portable:
- Heterogeneous mobile nodes + Heterogeneous cloud nodes
» Task migration among mobile nodes and cloud nodes
» (Language-level virtualization for Cloud Computing)

2012-3-30 B

erv

4

< R

(part of China National Grid (CNGrid))
Multi-level Mobility Support

Granularity

Frame level

Thread level

Process level

VM level

Migration Technique (System)

R @@ [E32863it%l

Target System Type (Area)

Cloud, cloudlet, mobile
network (WAN/LAN)

Thread migration (JESSICA2)

Cluster (LAN)

Process migration (G-JavaMPI)

Grid (WAN/LAN)

Live VM migration (Xen)

Cluster (LAN)

Wide-area live VM migration (WAVNet)

Cloud, p2p/desktop cloud
(WAN)

Adaptation granularity

A

Coarse

System size

(Size of state) 6

V4
V4
F
ine
\\ 5 >
\gnlal = _,¢ Large

—— Live VM migration :
Stack-on- 4 over WAN (WAVNet)

e ‘~q\ e J_ :
2 e A . Cloud service

3 . i [Method i
(R \ | Load | ! .f§, : provider
,', L \‘\ “‘ Stack Partial /* :balancer jaua ? ? i dupli VM i
/ : \ > \ Code segments Heap o v |____I{____|____' op Ic?ct)? scallir:lstances
/| Method : : : e < — | 9
. i Small —- \
: Area » footprint Thread A
1 Pl migration : < o
N Code Stacks Heap .~ (JESSICA) 5 N | Java i
\\ /’/ N N >
JVM process .- Mobile @ ‘ - -
e e ' client | Q
-
comm.
Internet
Multi-thread ___! AR
Java process P =2
| fava
trigger live
frigration
comm. mdintained v
AR S e e Ve N LGRS
' & - &S migration
guest OS e O lw s L lhm > ! (G-JavaMPl)
Xen VM Xen VM i B2 le
’ Grid point
Desktop PC
Overloaded 7

‘v

—Stack-On-Demand (SOD): Key Ideas

e Allow lightweight task migration

Stack frame 4

Data Stack frame 3 !

Stack frame 2 Data
- Stack frame 1 XXX

Code Stack Code Stack
Migrating task on Source Worker process on
Node (a running thread) Destination Node

"A Stack-On-Demand Execution Model for Elastic Computing”, IEEE ICPP2010.

- eemmmaan Stack frame A psssssssssassssnnnnnannns :
P E e ,lelet/md_ P :

Stack frame A Stack frame A'
D Method Area M D
Program : Program
Counter £ Counter
Local variables Local variables
S E
Stack frame B :
Hea Method | -
P -
L - ares || Arem |
gram . .
Counter ((Rebuilt — E
+ > 1| "
Local variables P 53)
= —————4 e]
Java | e ixecutl?g
P
Heap Area @ kb esume
; : i1 1 Cloud node
Object Pre-fetching ‘qu i
________________ S Ll
objects

Stack-On-Demand (SOD) Details:

Mobile node “Minimum State Migration”
2012-3-30 9

“
—Existing Approach

es to Migrate Tasks

°* At JVM level Reclll_in_res _intenfsive
o Modifying JVM modification of JVM
- Sumatra, ITS, CTS, JESSICA2 Not portable for

3 mobile nodes
e As middleware

VMTI '
e through JVMTI interface J not available on

mobile nodes
o CIA project, G-JavaMPI
* JVM extension Requires certain

extension of JVM
« Mobile JikesRVM

e Application-level task migration
e Rewriting bytecode

« JavaGoX, Brakes, JavaSplit We focus on application-level
e Rewriting source code task migration
« WASP, JavaGo

2012-3-30

10

Brakes

Project Level——Category |Granularity—————Capturing techniques g techniques
Merpatr—] JVM Interpreter thread |Keep state in portable format Reconstruct based on the state
JavaThread JVM Interpreter thread |Keep state in portable format Reconstruct based on the state
ITS JVM Interpreter thread [Keep state in portable format Reconstruct based on the state
&S JVM thread |State in portable data structure Reconstruct based on the state
JESSICA2 JVM thread JIT recompilation Reconstruct based on the state
CIA Al GG) thread | JVMDI + bytecode instrumentation QVMDI - by_tecode
ware JVM instrumentation
Mobile Middle- |extension of : : & .
JikesRVM ware VM thread |Use extensions of JikesRVM Use extensions of JikesRVM
1. Java Language extended
Source-code 2. Exception (not asynchronous), but
Wasp |Application thread need to add migration points explicitly |State-polling codes
preprocess :
3. Part of state always saved in each
migration point
1. Java Language extended
... |Source-code . -
JavaGo |Application [eDIOCESS thread 2. Exception (not asynchronous), but State-polling codes
— — — e e . — | needo add miguation paintsexpligitlyl o — =
[: Twin Method Hierarchy
Asynchronous exception (no need to 3
Our .. : : ; : (State-restoring codes
Application stack frame fadd migration point and state-polling :
approach executed only during
codes) :
e e restoration)
JavaGoX |Application thread Excep_non _(not as_ynchronpqs), D0 D State-polling codes
add migration points explicitly.
MAG] Application thread |State-polling codes. State-polling codes

L ——
_— System Desi

* Design goal

e Low overhead

« Allow lightweight task migration. Induce low
overhead.

e Transparency
« No need for users to modify their programs
e Portability
« No need to use a specific JVM.
e Flexibility: Adaptation to new environment

o allow to use resources in new location to utilize
resources (or better resource utilization)

12

/"CT)Enll(;n approach in application-level migration

e Use of status-polling for detecting requests
e The status-polling codes are executed even when there are no migration

Instrumentation 1: Use of status-polling for

detecting requests 1. Status-polling codes are

original statements of the function added for each migration

call func2Q) point
<aT (i1sCapturing()) then—>
store stackframe iInto context 2. Status-polling codes are
store artificial PC as i1ndex value : :
added after each function
return
end if call

remaining statements of the function

e The location of inserted codes determine the migration points

e Finer granularity of migration => more insertion of status-polling codes
=> large overhead

2012-3-30 13

P——

e Use of status-polling for detecting restoration
e Status-polling codes are added at the beginning of each function call
e The status-polling codes are executed even when there are no migration

Instrumentation 2: Status-polling for
detecting restoration
... Status-polling codes are
<if (isRestoring()) then—> added at the beginning of
geF artlflc!a! ?C from context each function call
switch (artificial PC)
case i1nvokel:
load stackframe
goto invokel
case ...

end switch
end 1f
original statements of the function

2012-3-30 14

—v
—Our approach

* Fine-grained Task Migration

e Among cloud nodes + Between a mobile node and a
cloud node

e Granularity : Java Stack Frame

* Two types of migration

e Active: Triggered by migration manager

- E.g. over loading

e Pro-active: Triggered by the program itself
- Eg. ClassNotFoundException, OutofMemoryException

- Migration manager would then receive the requests, choose the
appropriate destination and perform the migration

2012-3-30 15

v

* State-capturing with Asynchronous Exception

* Task Migration

e Avoid status-polling (less time overheads)

e During normal execution, as no extra codes are
executed, no overhead are introduced.

e Allow finer granularity of migration

Instrumentation with use of asynchronous exception Captu i ng codes are

1. try L Inserted as
2. original statements of function / exception handler

ch MigrationExceptio

4. capture state \ No significant
5. throw MigrationException / overhead introduced
_end try / during normal
e execution

2012-3-30 16

e —

* Issues working with asynchronous exception

e Data inconsistency

 intermediate results are stored in operand stacks, or
in native methods

 Solution: bytecode rearrangement

- Extra local variables are used to save intermediate
results

- Extra flags are used to inhibit migration at certain
points

e Deadlock

» Can lead to deadlock if asynchronous exception is
used in uncontrolled manner

2012-3-30 157

//—,é

* State Restoring with Twin Method Hierarchy

e A bytecode instrumentation technique, minimize the
overhead in normal execution

e Twin Method Hierarchy
» Keep both instrumented and original methods
» Normal execution: original methods

» Restoration: the instrumented methods with restoration
statements are executed.

- Checking statements are added at the beginning of the
duplicated functions

« When restoration is completed, the original method will be
executed

2012-3-30 18

| mmm—— g

— * Example
void func1Qf Original method
void funcl(){ ;
func2(); return;
return; » T — Method used during
3} (void SOD_funcl(O){ restoration
G ing) {

restore_state();
IT (need restore other_ frame)
goto Labell

1. During normal execution,
original method funcl() and

func2() are executed => no else

overhead introducted goto previously suspended location
original method is executed after

e Labei>= restoration has been done

method func1() and return;

func2() are executed fabell- :
& Foidd W} Instrumented method is executed
=> no overhea goto—taber2

¥

e during restoration only

2012-3-30 19

o e
_— Performance Ev

* Cloud server nodes

e Each node: 2 x Intel E5540 4-Core Xeon 2.53 GHz
CPU, 32GB DDR3 RAM,

e OS: Fedora 11 x86_64
e JVM: Sun JDK 1.6 (64 bit)
e Network: Gigabit Ethernet
* Mobile nodes
e iPhone 4 handset: 8ooMHz CPU, 512 MB RAM

e JVM: JamVM 1.5.1b2-3, slightly modified to expose
the asynchronous exception API

e Java class library: GNU Classpath 0.96.1-3

* Connected to Cluster through Wi-Fi (bandwidth
controlled by a router)

10N

20

L e
_— Performance Ev

* Focus on performance of task migration with SOD migration

A

B
C
D

2012-3-30

10N

Overhead analysis in cloud nodes (No Migration)
Overhead analysis in mobile nodes (No Migration)

Migration from mobile node to cloud node (by active migration)

Migration from mobile node to cloud node (by pro-active
migration)

2o

*Evaluation A & E

* Testing programs

App Description Max._ stack | Total field size
height (byte)

Fib Calculate 46th Fib. No. 46 <10

NQ Solve N-Queens problem with board size 14 16 <10

FFT Calculate 256-point 2D FFT 4 > 64M

* Evaluation of Three Migration Techniques:
* SOD migration using JVMTI (SOD_JVMTI)
* implemented as JVMTI agents
* A middleware approach (Only available on Cloud nodes)
* SOD migration using status-checking (SOD_P)
* implemented at application level
e SOD migration using asynchronous exception (SOD_AE)

* implemented at application level

22

 —

__eFEvaluation A: Execution time on cloud
nodes (overhead when NO migration)

Orig SOD_JVMTI SOD_AE SOD P
time el overhead el overhead i) overhead
(s) (%) (%) (%)
Fib 12.11 12.13 0.17 12.14 0.25 18.4 l, 51.78\‘
NQ 6.35 6.4 0.79 6.7 5.51 7.24 % \14.(22,’
FFT | 10.53 10.63 0.95 10.82 2.75 10.6 0.47
\ J

* SOD_JVMTI imposes the smallest overhead

* the lower layer implementations.
* Mobile devices do not support JVMTI
* SOD_AE is slightly higher than SOD_JVMTI (< 5%)

23

“

_e Evaluation B: Execution time on mobile
nodes (overhead when NO migration)

-

Orig SOD_AE SOD_P 7

| _ (Il

time (s) time (s) overhead (%) | time(s) |overhead (%) , ="

- === |lava

Fi 10.85 10.86 0.09 15.58 S f.g_’52 = -
NQ 32.13 32.23 0.31 33 2.71
FFT 5.39 54 0.19 541 0.37

e SOD_JVMTI not reported (as JVMTI is not available for JVM in
mobile devices)

* SOD_AE has the smallest overhead (<0.31%)

2012-3-30 24

sFvaluation C: Migration from mobile device to
cloud node

e Active migration for performance improvement

* Migrate computation-intensive tasks from mobile devices to
Cloud nodes. Upon finish of tasks, execution with data are
migrated back to mobile devices.

® Performance gain : FFT: x3.8, NQ: x30, Fib: x57 times.

: . (A) (B) (C) Total
exec. time | exec. time | Speed SRR
e capture | transfer | restore | migration

' ' P time (ms) | time (ms) |time (ms) | latency (s)

Fib 56.79 0.99 57 140.33 94.33 11.67 0.246
NQ 32.67 1.04 30 183.26 86.31 10.52 0.280
FFT 6.06 1.26 3.8 156.48 232.46 14.58 0.403

Total migration latency (s) = A+B+C

25

cloud node (Pro-Active)

* Two applications executed in mobile nodes

* DBRetrieve and FaceDetect

* Both require special resources not available in mobile nodes

e DBRetrieve : During execution

trying to execute JDBC driver

the required driver is missing database server connected
gueries executed

Stack frame 4

Stack frame 3 (T ———

exception

——

Stack frame 2

Stack frame 1

5% Sl results

SR

exception NoClassDefFoundError~--__ DY

)
iyt —

mobile node cloud node

26

 m—

* FaceDetect: Finds regions of faces in photos that are
stored in iPhone

* Requires OpenCV library

* open-source library for real-time computer vision
and image processing

¢ platform-dependent, not available in iPhone

trying to call the library OpenCYV ...

Stack frame 4 |

Stack frame 4

OpenCV

Stack frame 3

Stack frame 2

Stack frame 1

mobile node cloud node

27

e capture time | transfer time | restore time | total migration
(ms) (ms) (ms) latency (ms)
DBRetrieve 85 76 6 167
FaceDetect 103 155 7 265

* Ifno SOD migration, the applications cannot be executed in mobile
devices at all due to the missing resources

2012-3-30

28

—v
/f6n/cTusion and Future Work

* Java bytecode transformation technique

e Transparent task migration in a portable and efficient manner

* Application level < Higher portability
e Migration can take place among mobile nodes and cloud nodes
e Does not impose significant overhead on mobile devices
* SOD Support More Flexible Computing in Cloud
e RMiI-style, process roaming, workflow model
e Improved resource utilization
e Avoid (API & provider) lock-in
* Future Work:
o Killer applications of SOD?
e Migration policies? (Resource-driven, Cost-driven, Energy-aware,..)
e Object pre-fetching, frame-based task scheduling, ..

29

e

g

Thank you!

Q&A

