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Abstract—Recently GPUs have risen as one important par-
allel platform for general purpose applications, both in HPC
and cloud environments. Due to the special execution model,
developing programs for GPUs is difficult even with the recent
introduction of high-level languages like CUDA and OpenCL. To
ease the programming efforts, some research has proposed auto-
matically generating parallel GPU codes by complex compile-
time techniques. However, this approach can only parallelize
loops 100% free of inter-iteration dependencies (i.e., DOALL
loops). To exploit runtime parallelism, which cannot be proven
by static analysis, in this work, we propose GPU-TLS, a runtime
system to speculatively parallelize possibly-parallel loops in
sequential programs on GPUs.

GPU-TLS parallelizes a possibly-parallel loop by chopping it
into smaller sub-loops, each of which is executed in parallel by
a GPU kernel, speculating that no inter-iteration dependencies
exist. After dependency checking, the buffered writes of iterations
without mis-speculations are copied to the master memory while
iterations encountering mis-speculations are re-executed. GPU-
TLS addresses several key problems of speculative loop paral-
lelization on GPUs: (1) The larger mis-speculation rate caused
by larger number of threads is reduced by three approaches:
the loop chopping parallelization approach, the deferred memory
update scheme and intra-warp value forwarding method. (2) The
larger overhead of dependency checking is reduced by a hybrid
scheme: eager intra-warp dependency checking combined with
lazy inter-warp dependency checking. (3) The bottleneck of serial
commit is alleviated by a parallel commit scheme, which allows
different iterations to enter the commit phase out of order but
still guarantees sequential semantics.

Extensive evaluations using both microbenchmarks and real-
life applications on two recent NVIDIA GPU cards show that
speculative loop parallelization using GPU-TLS can achieve
speedups ranging from 5 to 160 for sequential programs with
possibly-parallel loops.

Keywords-GPGPU; Speculative Loop Parallelization; Thread-
Level Speculation (TLS); GPU-TLS

I. INTRODUCTION

During the last few years, we have witnessed the dominance
of multicore processors in high performance computing and
their success in continuing the computing performance leap
beyond the decade-long approach of raising the clock speed.
It is however difficult to envision hundreds of traditional CPU
cores to pack on a chip to achieve continual performance
growth, as well as low cost and energy. The use of hundreds
of accelerator cores (such as GPUs) in conjunction with a
handful of host CPU cores, on the other hand, appears to
be a sustainable roadmap. With the promise of cheaper and
greener HPC environment, the interest in GPUs for efficient
coprocessing is at an all-time high.

Although initial success has been achieved, up to now GPUs
can only accelerate data-parallel loops with static parallelism.

Exploiting static parallelism only may already be enough for
some domains like image processing, computation in which
is usually embarrassingly parallel with statically analyzable
parallelism. However, in some other domains like computa-
tional physics or chemistry, loops with dynamic parallelism
are common. As the parallelism cannot be proven statically,
existing techniques fail to parallelize these loops on GPUs
even if they may have high degree of parallelism at the
runtime, limiting the scope of GPUs’ applicability in general-
purpose applications. Designing software solutions to support
parallel execution of workloads with dynamic parallelism on
GPUs is important to continue the success of GPGPU.

Thread Level Speculation (TLS) is a technique proposed
to parallelize loops with dynamic parallelism on multi-core
or multi-processor CPUs. Although there have been many
TLS designs on CPUs, none of them works efficiently when
ported to GPUs, due to the large differences between GPUs
and CPUs in both hardware architecture and execution model.
Most design dimensions of TLS need to be reviewed on GPUs:
(1) TLS with a serial commit mismatches with GPUs’ scalable
hardware resources. A scalable design is desired. (2) The
meta-data used must be memory-efficient due to the relatively
limited memory of GPUs. (3) More effort should be made
to reduce the mis-speculation rate. This is because the larger
number of threads increases the possibility of mis-speculations
among speculative threads.

Based on careful analysis of GPU features, we have de-
signed GPU-TLS, an efficient TLS runtime for GPUs. We
make the following contributions:

« We propose a loop speculative parallelization framework
on GPUs using sliding windows. This design decouples
the memory overhead from the loop iteration number and
utilizes partial parallelism in a large loop incrementally.

« We make use of the lockstep execution model in GPUs
and propose an intra-warp value forwarding technique,
which reduces mis-speculation rate.

« We propose a hybrid dependency checking scheme with
eager intra-warp and lazy inter-warp checking. The eager
intra-warp checking enables early abort when there are
RAW dependencies that cannot be satisfied. The lazy
inter-warp checking is rather lightweight and does not
introduce any false positive mis-speculation.

e We propose a deadlock-free parallel commit scheme,
which avoids the serial commit bottleneck in existing
TLS designs and is scalable to thousands of GPU threads.

Our experiments show that GPU-TLS, when used to par-
allelize loops with dynamic parallelism, achieves speedups



ranging from 5 to 160 on two platforms shipped with different
NVIDIA GPU cards.

II. GPUS AND ADAPTING SOFTWARE TLS 1O GPUS

In this section, we describe the GPU architecture and
execution model, systematically survey existing software TLS
designs and analyze their deficiency when ported to GPUs.

A. GPU Architecture and Execution Model

The modern Graphical Processing Unit (GPU) architecture
consists of two major parts: the computation sub-system
and the memory sub-system. The computation sub-system
is composed of streaming multiprocessors, which contain a
series of simple streaming processors. GPU features a very
complicated memory hierarchy. It is shipped with both off-
chip and on-chip memory modules. The off-chip memory is
large in size (e.g., 3GB for C2050). The on-chip memory is
small in size but features a short access latency. Different
vendors release their software development tools and APIs to
support programming on GPU, such as CUDA from NVIDIA
and OpenCL from Khronos group. Take CUDA for example,
it defines kernels consisting of a grid of threads, which is
further divided into a series of thread blocks. Each thread
block is comprised of some GPU threads and these threads
are divided into multiple groups, each of which contains 32
threads and is named as a warp. Each thread in the same
warp executes the same instruction by means of lock-step
synchronization (SIMD execution) in the same Streaming
Multiprocessor (SM).

B. Deficiency of Existing TLS Designs when Ported to GPUs

Most existing TLS designs [1] [2] [3] have a serial commit
phase. The serial commit bottleneck is a mismatch with the
scalable hardware resources of GPUs. In the literature, there
are only two TLS systems free of this bottleneck. The system
proposed by Peter et al. [4] simulates the hardware TLS design
in software and uses a huge access structure to store the access
information. The other system proposed by Cosmin et al. [5]
uses direct update memory versioning scheme, in which the
commit is done on the fly along with each speculative write.
This design has the downside of introducing potential false
positive mis-speculations. The reason is that with direct update
scheme, WAR (Write After Read) and WAW (Write After
Write) dependencies can also result in mis-speculations apart
from RAW (Read After Write) dependencies. As the number
of speculative threads is large in GPUs, the possibility of false
dependencies (i.e., WAR and WAW) can not be neglected. To
design an efficient TLS with thousands of GPU threads, we
need a scalable commit scheme.

As for dependency checking, there are basically four differ-
ent schemes in the literature. The scheme by comparing read
set with version numbers [1] is highly coupled with the serial
commit protocol and cannot work if we replace serial commit
with a scalable parallel commit scheme. All-software TLS
design using load vector and store vector to do dependency
checking [4] has been proven to cause too much memory
overhead [5] and is not suitable for GPUs, which have limited
memory. Among the existing dependency checking schemes
in the literature, the one using load vector [3] could probably

be the most scalable one. However, it has a disadvantage of
introducing potentially large degree of mis-speculations. The
reason is that the RAW dependency is detected by the producer
thread by comparing the entries in the write set and the load
vector. For a given address, when the corresponding entry in
the load vector is larger than the ID of the checking thread, the
thread has to conservatively reckon that all succeeding threads
have violated RAW dependencies. TLS designs on GPUs call
for a new dependency checking scheme.

III. GPU-TLS DESIGN
A. Overview

We show the framework of loop parallelization using GPU-
TLS in Figure 1. Through analysis and profiling, program-
mers/compilers select possibly-parallel loops in sequential
programs and transform them using the GPU-TLS library. The
transformed loops are then speculatively executed on GPUs.
For each selected loop, we chop it into several sub-loops and
for each sub-loop we launch a GPU kernel to speculatively
execute the loop iterations. The speculative execution of a G-
PU kernel has four phases: speculative execution, dependency
checking, commit and mis-speculation recovery. In the first
phase, GPU executes the loop iterations in parallel by spec-
ulating that inter-iteration dependencies do not exist. During
the execution, each thread buffers the possibly unsafe memory
updates instead of updating the master memory. Also, the
memory accesses are tracked using meta-data to aid the later
mis-speculation checking. The dependency checking phase
checks whether the speculation is successful using the memory
access meta-data and reports the potential violation locations
(i.e., which speculative threads have violated inter-iteration de-
pendencies). For threads that are not reported to have violated
dependencies by the dependency checking, the commit phase
copies their buffered memory updates to the master memory.
When launching a GPU kernel with k threads, violation_idx
is initialized to k. During the dependency checking phase,
this variable is updated to show the earliest violation location.
Suppose after kernel execution violation_idx equals p (0 <
p < k), we can tell that threads Ty ~ T,_; have executed
correctly and committed the memory updates to the master
memory. If violation_idx equals k, we know that no mis-
speculation has happened and no mis-speculation recovery is
needed. Otherwise, the mis-speculation recovery of threads 7},
~ Tj_1 is done by re-executing them. Instead of launching
a new GPU kernel to re-execute the failed threads only, we
use a sliding window approach by combining the executions
of some iterations in the new sub-loop together with the mis-
speculation recovery of failed iterations in the old sub-loop
(shown in the right bottom of Figure 1).

B. Intra-warp Value Forwarding

Existing software TLS designs adopt four different ap-
proaches to satisfy potential inter-thread RAW dependencies
[6]. The “speculation” approach speculates that there are no
inter-iteration RAW dependencies and speculative reads return
values in the master memory. Instead, in the “value prediction”
approach, a speculative read returns the value produced by a
value predictor. The “value forwarding” approach does best-
effort value forwarding to fetch the potential write values
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Figure 1.

produced by preceding threads. The “synchronization™ ap-
proach assumes there are inter-thread RAW dependencies and
waits until the producer thread has produced the values on
speculative reads.

When doing speculative loop parallelization on GPUs, the
“speculation” approach is not desirable because we have
thousands of speculative threads and extremely optimistic
speculation may encounter many mis-speculations and result
in poor performance. At the same time, the “synchronization”
approach may lead to deadlock under some patterns of RAW
dependencies or result in a waste of hardware resources. The
pioneering work of value prediction on GPUs reports that
value prediction can hardly gain speedup [7]. As a result,
in GPU-TLS we adopt the “value forwarding” approach. In
previous TLS designs with value forwarding, the scope of
the value forwarding is either the whole loop [4] or a sliding
window [8]. In GPU-TLS, we choose a warp as the scope
to implement value forwarding (this is named intra-warp
value forwarding). The benefit of this design is two-fold: (1)
no explicit synchronization is needed when doing the value
forwarding due to the lockstep execution model; (2) we could
use on-chip share memory to speedup the value forwarding.

We show the algorithm of speculative read with intra-warp
value forwarding in Algorithm 1. On a speculative read from
the address r_addr in thread T}, we satisfy intra-warp RAW
dependencies. To achieve this, basically we go through the
write sets of thread 7} and the preceding threads in the
same warp to forward the appropriate write value to the read.
This introduces some set traversal overhead. The meta-data
minWriter_ary helps us to alleviate the overhead by avoid-
ing some unnecessary set traversal: we only check threads that
may have written to r_addr instead of all preceding threads in
the warp (line 13). We only update the read set when no prior
writes to r_addr exist in the same thread. If a speculative
read operation consumes the write value produced by a write
operation in a preceding thread, we record the ID of that thread
in the meta-data r ProSet_ary. Otherwise, we store the value
“-1” in rProSet_ary. This meta-data will be used in eager
intra-warp dependency checking. Also, we need to check and
update the meta-data max Reader_ary if necessary.
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Algorithm 1 Speculative Read with Intra-warp Value For-
warding

Input: memory address to read from: r_addr, thread ID: k
Output: the speculative read value

1: idx < hash(r_addr)

2: minWriter < minWriter_arylidz]

3: if minWriter > k then

4 go to line 23

5: else
6: for each entry w_addr in the write set of thread 7} do
7.
8

if w_addr == r_addr then
: r_value < the entry in wV alueSet_ary
9: go to line 27

10: end if
11: end for

122 warpFirstTh + [£] - W
13:  for i < k-1 to MAX(warpFirstTh, minWriter) do

14: for each entry w_addr in the write set of thread 7; do
15: if w_addr == r_addr then

16: r_value < the entry in wValueSet_ary

17: rProSet_ary[ rldx_arylk] ][ k] < 1

18: go to line 25

19: end if

20: end for

21: end for

22: end if

23: r_value <+ *r_addr

24: rProSet_aryl ridz_arylk] ][ k] + -1
25: update read set of thread T

26: update max Reader_ary if necessary

27: return r_value

C. Hybrid Dependency Checking

GPU-TLS adopts a hybrid dependency checking scheme:
eager intra-warp and lazy inter-warp checking. During
the SE phase, each speculative write checks whether
threads in the same warp have violated intra-warp RAW
dependencies (Algorithm 2). This is achieved by checking
the read sets of succeeding threads in the same warp.
The set traversal overhead could be alleviated with
the help of the meta-data maxReader_ary: we only
traverse the read sets of threads [k+1, MIN(warpLastTh,
mazReader_ary[hash(w_addr)])] (line 4), in which
warpLastTh denotes the last thread in the warp. For each



succeeding thread 7;, we check whether address w_addr
appears in its read set (line 5-6). If this happens, we need
to further check the value of the corresponding entry in
rProSet_ary. There are three possible cases. In the first
case, if the value is “-1”, we know that thread 7; has read
the value from the master memory (Figure 2(a)). In the
second case, if the value is not “-1” but is smaller than or
equal to k, we can infer that thread 7; has read the value
produced by a preceding thread in the same warp (Figure
2(b)). In the third case, if the value is larger than k, we can
tell that thread 7; has read the right value (Figure 2(c)). In
the first two cases, we find RAW dependency violations and
set the corresponding element in the warp dependency array
to “TRUE” (line 6-9) because we can tell that thread 7 has
consumed a wrong value.

In the lazy dependency checking phase, we only check
inter-warp RAW dependencies. The reason is that with the
intra-warp value forwarding and eager dependency checking,
the intra-warp RAW dependencies must have either been
satisfied or the dependency violations have been detected.
We do the lazy dependency checking with the help of the
meta-data minWriter_ary. Basically, to check whether the
thread 7T}, has violated RAW dependencies, we go through its
read set and for each entry r_addr, we first check whether
manWriter_ary[hash(r_addr)] is smaller than the ID of the
first thread in the warp. If the condition satisfies, we can tell
that a thread in a preceding warp has written to r_addr, but
this does not necessarily mean a RAW dependency violation
has happened. We need to further check whether 7}, has been
forwarded a value by intra-warp value forwarding (line 5-8).
If this happens, we can infer that no RAW dependencies have
been violated (Figure 3(b)). Otherwise, we find one RAW
dependency violation (Figure 3(a)). Note that since the current
thread can arrive at the lazy dependency checking phase, it’s
impossible that intra-warp RAW dependency violations have
happened (Figure 3(c)).

Algorithm 2 Speculative Write with Eager Intra-warp Depen-
dency Checking

Input: memory address to write to: w_addr, speculative write value:

w_value, thread ID: k

. idx < hash(w_addr)

: maxReader < mazxReader_arylidx]

: warpLastTh < ([4=] +1) - W - 1

for ¢ < k+1 to MIN(warpLastTh, maxReader) do

for each entry r_addr in the read set of thread T; do

if r_addr == w_addr && the corresponding entry in
rProSet_ary < k then

7: calculate warp ID wid of thread T;

8: dependency_ found[wid] < TRUE

9: end if

10:  end for

11: end for

12: update the write buffer of thread T}

13: update minWriter_ary if necessary

SANANE - s

D. Scalable Parallel Commit

Any parallel execution of a sequential loop needs to main-
tain the sequential semantics for correctness. For example,
if two iterations I; and I; (z < j) in a loop both write

Algorithm 3 Lazy Dependency Checking

1: for each entry r_addr in the read set of thread 7% do

2: idx < hash(r_addr)

3 minWriter < minWriter_arylidz]

4 warpFirstTh « | 4] - W

5 if minWriter < warpFirstTh && the corresponding
entry in rProSet_ary == -1 then

6 calculate warp ID wid of thread T}
7 dependency_ found[wid] < TRUE
8: end if

9: end for
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Figure 2. Different cases in eager intra-warp dependency checking: (a)no
prior intra-warp value forwarding exists, (b)prior read fetches a wrong value
through intra-warp value forwarding, (c)prior read fetches the correct value
through intra-warp value forwarding.

to the memory address addr, any parallelization of the loop
needs to make sure that the value in addr after the parallel
execution is that written by I;. To achieve this, most existing
software TLS solutions have adopted a very conservative
approach by enforcing iterations to enter the commit phase
in iteration order. For example, iteration I3 can only do the
commit after I, the commit of which is started only after I.
The performance penalty of serial commit may not be that
serious due to the limited number of speculative threads in
CPUs, but the situation in GPUs is totally different: letting
thousands of speculative threads do the commit serially could
easily become a performance bottleneck. Also, the lockstep
execution model of threads in a warp make it easy to encounter
deadlock if a serial commit is adopted. To solve the above
problems, we have proposed a parallel commit scheme in
which speculative threads could enter the commit phase out
of iteration order after all the preceding threads have finished
their LDC phases. The sequential semantic is guaranteed
by additional checking when committing each speculative
write. The efficiency and correctness of the parallel commit
is guaranteed by the lock-free algorithm 4. The algorithm
makes sure that the commit never gets dead-lock, especially
in the same warp. We use an additional piece of meta-data
named maxWriter_ary to record the ID of the maximum
thread that has ever written to each memory address. Before
a thread T}, commits each (w_addr, w_value) pair in its
write buffer, it first checks whether the value of the entry
mazxWriter_ary[hash(addr)] is smaller than or equal to k
(line 7). If this condition holds, 71} carries out the commit and
updates maxWriter_arylhash(addr)] to k (line 8-10). On
the contrary, if maxWriter_arylhash(addr)] is larger than k,
we know that a later thread has committed a speculative write
to addr; to avoid WAW dependency violations, T}, discards
the commit of this speculative write.
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Figure 3. Different cases in lazy inter-warp dependency checking: (a)inter-
warp RAW without intra-warp value forwarding, (b)inter-warp RAW with
intra-warp value forwarding, (c)both inter- and intra-warp RAW without value
forwarding

Algorithm 4 Deadlock-free Parallel Commit

1: for each (w_addr, w_value) in write buffer of thread T} do
2 idx < hash(w_addr)

3 exitTheLoop < FALSE

4 while !exitTheLoop do

5: flag < atomicCAS(&(lock_vector[idz]), 0, 1)

6 if flag == 0 then

7 if maxWriter_arylide] < k then

8 *w_addr <+ w_value

9: maxWriter_arylidz] < k
10: __threadfence()

11: end if

12: lock_vector[idz] + 0

13: exitTheLoop < TRUE

14: end if

15 end while

16: end for

IV. EVALUATION METHODOLOGY

A. Platform Settings

We carry out the experiments on two platforms, as shown
in Table I. Platform 1 is an IBM iDataPlex dx360 M3 server
and Platform 2 is a desktop PC. On both platforms, the GPU
cards are connected to the main board through PCle x16 Gen
2 bus. The OS installed is 64-bit Scientific Linux 5.5 and
the compilation flag used in gcc and nvce is “-O2”. In all
experiments, the default GPU configuration of 48KB shared
memory and 16KB L1 cache is used.

Table I
EXPERIMENT PLATFORMS

Platform 1 Platform 2

CPU Intel Xeon X5650 Intel Core i7 870
CPU frequency 2.66GHz 2.93GHz
Cores per socket 6 4
Socket count 2 1
Total core count 12 4
Host memory 48GB ECC DDR3 RAM, 1333MHz 8GB DDR3 RAM, 1333MHz
GPU NVIDIA Tesla M2050 NVIDIA GeForce GTX580
CUDA capability 2.0 2.0
GPU clock rate 1.15GHz 1.54GHz
SM # 14 16
SP # per SM 32 32
Total SP # 448 512
GPU warp size 32 32

Register # per SM
Shared memory per SM
L1 cache size

32768 32-bit
48 KB/16KB (configurable)
16KB/48KB (configurable)

32768 32-bit
48 KB/16KB (configurable)
16KB/48KB (configurable)

L2 cache size 768KB 768KB
Global memory size 3GB 1.5GB
Memory interface width 384-bit 384-bit
Memory bandwidth 148GB/s 192.4GB/s
OS kernel Linux 2.6.18-194.3.1.el5 x86_64 Linux 2.6.18-194.3.1.el5 x86_64

CUDA Toolkit
C Compiler
CUDA Compiler

64-bit CUDA 4.0
GCC 4.1.2
64-bit NVCC 4.0, V0.2.1221

64-bit CUDA 3.2
GCC 4.1.2
64-bit NVCC 3.2, V0.2.1221

B. Benchmarks

1) Microbenchmarks: To facilitate micro-benchmarking,
we design a synthetic loop (shown in Figure 4) to simulate
loops with different characteristics. /N represents the number
of loop iterations, which is an important indicator of the
degree of parallelism within a loop. Sw and Sr decide the
size of the write set and read set respectively. M controls
the workload in each iteration. We use accesses to a shared
array A through subscripted subscripts (using the r and w
arrays) to simulate statically unanalyzable dependencies. By
configuring the values of elements in the r and w arrays, we
can simulate loops with different dependency conditions in
terms of dependency type (i.e., RAW, WAR, WAW), number
of dependencies, etc. By varying the values of different
parameters (IV, Sw, S, M,w,r), we can simulate loops with
different patterns, which enables us to have a deep understand-
ing of the performance of GPU-TLS.

#define N 7168 /*iteration number*/
#define Sw5  [*write set size*/
#define Sr5  /*read set size*/
#define M 10

[*the workload per iteration*/

void main(){
for(inti =0;i < N; i++){
double temp = 0;

for(intj=0; j < S; j++){

i . if(j < Sr)
#define MAX(a, b) ((a>b)?(a):(b)) ! _ - .
#define S MAX(Sw, Sr) if(jtins]a/)_ AlAi*Sr+jl1;

double func(double v){ AL wli " Sw + ]]] = func(temp);

for(inti=0;i< M;i++)
dumb_computation(v);

Figure 4. Synthetic loop used in the experiments

2) Real-life applications: Besides the synthetic loop, we al-
so use three real-life benchmark programs in the experiments.

The first program is a Molecular Dynamics (MD) loop [9]
as illustrated in listing 1. In the nested loop, the accesses to
array Y go through one level of redirection by the partners
array. The parallel reads and writes to the shared array Y
issued in the outer loop iterations may pose some dependen-
cies. We speculatively parallelize the outer loop by speculating
that accesses to Y in different iterations will not violate RAW
dependencies.

The second program is a Computational Fluid Dynamics
(CFD) loop [9] shown in listing 2. In this loop, the subscripts
(nl1 and n2) in accessing a shared array Y depend on the
values of elements in an array edge and cannot be statically
decided. We speculatively parallelize this loop by speculating
that accesses to Y in different iterations will not result in RAW
dependency violations.

The third program is blackscholes, a benchmark from Intel
RMS benchmark [10]. It uses the Black-Scholes partial differ-
ential equation [11] to calculate the prices for a portfolio of
European options analytically. We need very little speculation
in this program: the statically unanalyzable inter-iteration
dependencies stem from the potential updates to a shared
variable numO f Errors when errors occur in the pricing;
the only speculation needed is that an error will not appear.



ATOM X |[NumAtoms], Y[NumAtoms];
ATOM *partners[NumAtoms];

for (i=0; i<NumAtoms; i++) {
for each element j in partners[i] {
Y[i] += force(X[i]l, XI[J]);
Y[j] += force(X[i], X[J]);
}
}

Listing 2 : ional Fluid T . CED) |
NODE X [NumNodes], Y [Numnodes];
struct {
NODE LeftNode, RightNode;
}edge [NumEdges] ;

for (i=0; i<NumEdges; i++) {
nl = edge[i].LeftNode;
n2 = edge[i] .RightNode;
Y[nl] += f£(X[nl], X[n2])
Y[n2] += g(X[nl], X[n2])

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Overall Speedups

We first carry out experiments to evaluate the performance
potential of GPU-TLS using the selected real-life applications.

We vary the problem size (i.e., the number of iterations) by
using different values of NumAtoms in MD, NumFEdges in
CFD and NumOptions in blacksholes. The values we use are
512*%k (k=1,2,3, ---, 16). For each selected problem size,
we first run the loop sequentially on CPU and then execute the
parallel version enabled by GPU-TLS on GPU. We record the
sequential (T§) and parallel execution time (7},) and calculate
the speedups as T5/T},. We carry out the experiments on both
Platform 1 and 2 and the speedups achieved when there are
no runtime inter-iteration RAW dependencies are shown in
Figure 5 and 6 respectively.
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Figure 5. Speedups achieved for different problem sizes on Platform 1

We have several observations from the two figures. Firstly,
as the problem size increases, we can generally get larger
speedups. For example, on Platform 2, when the loop has
only 512 iterations, the speedup we can achieve in CFD is
16.4, while the speedup value goes as high as 104 when the
number of iterations increases to 512*16. This shows that to
make the best use of GPUs the problem size should be large
enough. Secondly, we can get larger speedups for CFD and
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Figure 6. Speedups achieved for different problem sizes on Platform 2

MD compared with blacksholes. This is due to the heavier
computation in the loop body of these two applications, par-
allel execution of which on GPUs gets more benefits. Thirdly,
we can generally get a larger speedup on Platform 2 than on
Platform 1. For example, for the blacksholes loop with 512*14
iterations, we observe a speedup of 4.8 on Platform 1 while
on Platform 2 this value is 13.4. The reasons are two-fold:
(1) the GTX580 GPU shipped with Platform 2 has a higher
clock rate than the M2050 GPU on Platform 1 (1.54GHz vs.
1.15GHz); (2) GTX580 also has a larger memory bandwidth
than M2050 (192.4GB/s vs. 148GB/s).

From the observations, we conclude that GPU-TLS favors
loops with large problem size and heavy computation in the
loop body. A tool selecting proper loops from possibly-parallel
ones through static analysis and dynamic profiling could be a
great supplement to GPU-TLS.

B. Effect of Dependency Patterns

In this section, we evaluate the effect of different de-
pendency patterns to the speedups achievable by GPU-TLS
using the synthetic loop on Platform 1. We test four kinds
of loops: loops without runtime dependencies (i.e., DOALL
loops), loops with runtime WAR dependencies only, loops
with WAW dependencies only, loops with RAW dependencies
only. The speedups achieved for different write and read set
sizes are shown in Figure 7. For each kind of loops, besides
the speedups achieved by GPU-TLS, we also test the speedups
of two schemes in related work for comparison purpose. The
“direct update” scheme is the porting of an existing TLS on
CPUs with direct update memory versioning approach [5].
The “in-order commit” scheme is the porting of another TLS
on CPUs with deferred update memory versioning and serial
commit phase [3]. By configuring the values of the w and r
arrays, we simulate loops with different dependency patterns.
In the cases of WAW, WAR and RAW dependencies, we add
1% dependencies evenly among the iterations.

By comparing Figure 7(a), 7(b) and 7(c), we can see
that GPU-TLS and “in-order commit” are not affected much
by WAR and WAW dependencies while the “direct update”
scheme performs much worse when there are WAR and WAW
dependencies. This is as expected because the deferred update
memory versioning approach used by GPU-TLS could avoid
mis-speculations caused by false dependencies and is thus free
of re-executions while the direct update scheme will result in



lots of re-executions due to the mis-speculations in face of
any form of dependencies (i.e, RAW, WAW and WAR). From
Firue 7(d), we observe that when there are true dependencies
(RAW), the speedups achieved by all the three schemes drop
due to re-executions caused by mis-speculations; however,
GPU-TLS performs the best in all cases.
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Figure 7. Speedups achieved for loops with different dependency types

C. Evaluation of Parallel Commit

Finally, we are interested to see the effectiveness of the
parallel commit scheme in GPU-TLS in helping to avoid
the serial commit bottleneck. Figure 8 shows the execution
time comparison of serial commit versus parallel commit on
Platform 1 using the synthetic loop, which is configured to be
DOALL. Seven groups of experiments with different write set
and read set sizes are carried out. From the figure, we can see
that using parallel commit the execution time grows relatively
slowly with Sw-Sr. However, the serial commit scheme grows
radically when Sw is larger than 16. When Sw-Sr is 1-1, the
parallel commit scheme is 4.7 times faster than serial commit
while this number grows to 8§ when Sw-Sr is 64-64. These
results show that parallel commit performs much better than
the serial commit alternative, especially when the write set
size is large.
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Figure 8. Execution time comparison: serial versus parallel commit

VI. RELATED WORK
A. Speculative Loop Parallelization on CPUs

The BOP system [12] proposed by Ding et al. uses a pro-
cess based runtime model to speculatively execute Potentially
Parallel Regions (PPRs) on multi-core CPUs. The copy of
memory pages to the master copy when speculation succeeds
is heavyweight. CorD execution model [1] proposes allocating
separate memory for different speculative threads. In their
design, complicated synchronization is needed, making it
not suitable for GPUs, which have limited synchronization
support. Also, their design adopts a serial commit carried
out by the centralized commit manager, which could easily
become the performance bottleneck. The parallel commit
scheme proposed in our design avoids the large overhead.
STMLite [2] presents a TLS design based on an underly-
ing STM. TLS and STM have some essential differences
[13] and building TLS on STM may have to suffer some
unnecessary overheads. LRPD Test [14] does the pioneering
work of speculative loop parallelization on CPUs. Although
they have privatization support, they cannot parallelize a
loop when there are non-privatizable inter-iteration WAR or
WAW dependencies. As we adopt deferred-update memory
versioning scheme in our design, all inter-iteration WAR and
WAW dependencies can be respected, qualifying loops with
WAR and WAW dependencies as parallelizable. Oancea et al.
[5] propose using direct-update memory versioning scheme
to implement a TLS system on CPUs. They argue that the
mis-speculation caused by inter-iteration WAR and WAW
dependencies is acceptable. However, the same argument may
not hold on GPUs, where we have thousands of speculative
threads executing simultaneously. The deferred-update scheme
we adopt in GPU-TLS avoids the mis-speculation caused by
inter-iteration WAR and WAW dependencies and thus reduces
the possibility of mis-speculation.

B. Loop Parallelization on GPUs

Lee et al. [15] propose a compiler framework for translating
OpenMP programs into GPGPU programs. Leung et al. [16]
present an extension to JIT compiler to implement automatic
parallelization for GPUs. Calvert [17] designs a compiler that
takes Java bytecode as input and generates GPU kernels from
loops annotated with a special @ Parallel flag. JCudaMP [18]
devises a Java compiler framework to translate OpenMP-
like annotated loops to JNI calls to CUDA kernels. All of
the above-mentioned work focuses on simple DOALL loops
or DOACROSS loops with statically known inter-iteration
dependencies only, leaving the large portion of loops with
statically unanalyzable dependencies un-accelerated. Our work
proposes accelerating loops with dynamic parallelism on
GPUs, expanding the scope of workloads parallelizable on
GPUs. Liu et al. [7] carry out the initial exploratory study
of implementing value prediction and TLS on GPUs. In their
design, they control GPU thread in an ad-hoc approach. A
GPU thread enters polling state when a dependency violation
is detected. This ad-hoc approach can easily introduce branch
divergence among the threads in the same warp, resulting
in stalls and wastes of hardware resources. Di et al. [19]
propose accelerating DOACROSS loops on GPUs. However,



their solutions are algorithm-level modifications to a specific
application instead of being generic. Diamos et al. [20]
solve the problem of executing multiple kernels speculatively
on multiple GPUs, exploiting coarse-grained Kernel Level
Parallelism (KLP), which is orthogonal to our work.

VII. CONCLUSION AND FUTURE WORK

This paper proposes GPU-TLS, a runtime system that en-
ables speculative parallelization of loops with statically unan-
alyzable dependencies on GPUs. It utilizes partial parallelism
in a large loop by chopping it into sub-loops and executing the
iterations in a sliding window approach. The intra-warp value
forwarding scheme reduces mis-speculation rate by utilizing
the lockstep execution model of threads in a warp. The parallel
commit scheme avoids the serial bottleneck and is scalable to
thousands of GPU threads. Loops with dynamic parallelism
are parallelized using GPU-TLS on two recent NVIDIA GPU
cards and speedups from 5 to 160 are observed.

GPU-TLS works as a runtime library, which exposes APIs
to compilers or programmers. To facilitate loop parallelization
using GPU-TLS, designing a speculative parallelizing com-
piler that can automatically extract speculative threads from
sequential loops and instrument the original memory accesses
with APIs provided by GPU-TLS is our future plan. Also,
using GPUs in cloud environments to provide HPC services
is a trend [21]; how to coordinate multiple GPU cards to
speculatively parallelize large loops using GPU-TLS would
be another direction to explore.
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