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Abstract

Self-organizing Cloud (SoC) is a very scalable model, which aims to make full
use of the geographically distributed computers to provide powerful aggregated
computing ability. The resources are provisioned elastically according to user’s
specific demand, by leveraging virtual machine (VM) resource isolation technol-
ogy. The resource allocation atop SoC is very challenging in that it is not only
an optimization problem over multi-dimensional divisible resources but closely
related to economic analysis for coordinating the social competitions. Existing
economy-based approaches, however, are commonly ex-ante efficient, such that
the participants’ decisions may rely on their subjective judgments about their com-
petitors’ decisions, leading to the unguaranteed payoffs. Instead, we propose an
ex-post efficient resource allocation scheme, which owns three features. (1) Ex-
post win-win effect: under such a scheme, each participant (including consumers
and suppliers) will always feel satisfied with their ex-post payoffs. (2) Ex-post in-
centive compatibility: we can theoretically prove each rational consumer and con-
tributor will always get the optimal payoff if and only if their resource demands
and expected prices are truthfully declared. (3) Ex-post maximized efficiency:
truly advanced (or more powerful) resources will be allocated and consumed with
higher priority, such that the whole system will stay very efficient with maximized
resource utilization. Via simulation, our approach can significantly improve the
resource contributor’s payoffs, also with a high quality of service throughout the
global system (including user task’s execution efficiency, overall utility, payment
level, and fairness of treatment, etc.).
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1. Introduction

Cloud computing offers scalable on-demand virtualized resources as a flex-
ible service over the Internet with bypassed inter-operability constraints. With
VM’s resource isolation technology [1, 2], computing resources such as CPU
and memory could be partitioned and reassembled to meet end-users’ specific
needs, achieving elastic and convenient access to the virtualized computational
resources [3, 4]. On the other hand, volunteer computing (or P2P desktop Grid)
has been studied for years especially for its great potential in millions of comput-
ers throughout the world. Such platforms (e.g., BOINC [5], XtremWeb [6]) have
made great contributions to scientific researches since 2000.

Our extended Cloud framework (a.k.a., Self-organizing Cloud) combines re-
source isolation technology of Cloud computing and self-organizing architecture
in volunteer computing together. In the Self-organizing Cloud, each host (either
a volunteer desktop computer or a dedicated computing node behind cluster) is
deployed with an autonomous resource state collector and a virtual machine mon-
itor (VMM), being able to act as both task scheduler and resource contributor (or
supplier). A task could be a user request to customize a particular execution envi-
ronment with specified resource demand, which is expressed as a least-qualified
vector (e.g., including CPU, memory and network bandwidth). In such a frame-
work, the participants will have high motivations to contribute their resources.
This is because any resource contributor will earn an amount of payment/income,
which benefit them in return (e.g., getting more resources later) based on the rela-
tion between motivation and market [7].

Recently, there already exist many projects being designed based on this frame-
work. A typical example is an on-going project (namely Cloud@Home [8]) un-
dertaken by INRIA. It mainly aims to devise a set of strategies for checkpoint-
ing applications using VMs and guarantee high data durability, availability, and
access performance. Another example is Community Cloud [9], in which each
participating host is also considered the resource supplier and the whole system is
organized based on the principle of digital ecosystem. Wuala Cloud [10] is a fully
distributed online storage system that can make use of the disk space and network
bandwidth from the distributed volunteer desktop computers, to provision flexible
and scalable management of large-capacity storage.

Based on the above real-world cases, designing a Self-organizing Cloud (SoC)
system can benefit a lot. (1) The resource utilization could be improved with finer-
granularity resource allocation over VM technology. (2) More geographically dis-
tributed idle resources can be used while the substrate details are still transparent

2



to users as if in a single-point-of-access manner. (3) High robustness and reli-
ability can be guaranteed by minimizing the impact of single node’s failure or
malicious user’s DDoS attack; (4) There would be less cost on management and
maintenance than that of traditional vender clouds, by leveraging the autonomous
marketing mechanism between resource consumers and contributors.

In addition to the opportunities mentioned above, however, the self-organizing
architecture will introduce some challenges, especially when aiming to achieve
the ex-post efficiency (a.k.a., ex-post optimality) [11, 12, 13]. In a nut shell,
ex-post efficiency means that the consumers (provider) would never be regretful
about their previous decisions on their resource declaration. That is, the partici-
pants’ decisions will not depend on other competitors’ decisions, so that each of
them will always be satisfied with the results, even after finding out the winning
bids of other bidders. In this paper, we strictly define the ex-post efficiency as the
situation with the following features:

• Ex-post Win-win Effect: After task execution and resource consumption,
each participant (including consumers and suppliers) will always feel sat-
isfied with their ex-post payoffs. Ex-post win-win effect is significant to
the long-term high availability and high resource utilization of the system.
However, since there are no central-controlled servers to coordinate the
global resource states and prices and each autonomous participant cannot
derive other participants’ decisions, it is non-trivial to guarantee each au-
tonomous consumer to get satisfied on the task schedule or contributor to
be satisfactory on the payoff of resource contribution.

• Ex-post Incentive Compatibility: After task execution and resource con-
sumption, each rational consumer and contributor will always get the op-
timal payoff if and only if their resource demands and expected prices are
truthfully declared. Ex-post incentive compatibility is critical to the guar-
antee of the Quality of Service (QoS) as well as the system resource uti-
lization. Without a robust pricing policy, rational participants may tend to
lie on their real demands in order to maximize their selfish gains, finally
weakening other ones’ motivations. What is most serious is that the whole
system resource availability may be prominently degraded eventually.

• Ex-post Maximized Execution Efficiency: After task execution and resource
consumption, powerful resources will be allocated and consumed with a
higher priority, such that the whole system will stay efficient with the max-
imized resource utilization.
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The remainder of the paper is organized as follows. In Section 2, we formulate
the fully-distributed cloud resource allocation problem. In Section 3, we formally
propose our solution, which contains three key steps: (1) how self-organizing
nodes discover resources and collects volatile states in brief; (2) how to design
the Double-sided Vickrey Auction algorithm, by combining the ex-post win-win
effect and incentive compatibility together; (3) how to split the resources using
the VM resource isolation technology by running a task on a specific execution
node. Section 4 shows our simulation result. Our work is carefully compared to
the related works, by discussing the traditional economy-based allocation adopted
in Grid/Cloud systems in Section 5. Finally, we conclude the paper with the future
work in Section 6.

2. Problem Formulation and Analysis

Without loss of generality, we assume that there are n peer nodes, denoted
by pi (1≤i≤n). Each node serves as both resource consumer (or user) and re-
source provider (or contributor). Each node’s resource is multi-dimensional along
D different attribute types (such as CPU, disk IO, network bandwidth, etc.). All
the tasks submitted to pi are marked as tij (1≤j≤ni), where ni indicates the total
number of tasks submitted to pi. We use tpeij to indicate node pe is tij’s execution
node. Let ck(pe) (1≤e≤n) denote the capacity of the kth resource attribute on
node pe and r(tij) = (r1(tij), r2(tij), · · · , rD(tij))T denote the actual amounts of
resource allocated to tij when it is executed. Users need to specify an expected re-
source vector e(tij)=(e1(tij), e2(tij), · · · , eD(tij))T , where ek(tij) is the least qual-
ified amount of resource at kth attribute demanded by task tij , to complete its
execution within an expected execution time te. Hence, two necessary conditions
for the successful completion of any task tij are Inequality (1) and Inequality (2).∑

i,j ek(t
pe
ij ) ≤ ck(pe), k = 1, 2, · · · , D (1)

ek(tij) ≤ rk(t
pe
ij ), k = 1, 2, · · · , D (2)

Moreover, each task tij has multi-dimensional workloads on different resource
attributes (such as computational workload over CPU, I/O data to read/write, etc.)
to process, and its workload vector is denoted as l(tij)=(l1(tij), l2(tij), · · · , lD(tij))T .
By considering the worst case for the task’s execution, the execution along differ-
ent dimensions will not overlap, thus the execution time (denoted t(r(tij))) can be
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formulated as Equation (3).

te(r(tij, pe)) =
D∑

k=1

lk(tij)

rk(tij)
(3)

A node pe’s availability state is denoted as a vector a(pe) = (a1(pe), a2(pe),
· · ·, aD(pe))T , where ak(pe)=ck(pe)−

∑
∀i,j rk(t

pe
ij ). Nodes’ availability states will

be dynamically propagated using the multi-dimensional resource discovery pro-
tocol, namely Proactive Index Diffusion CAN (PID-CAN), which appears in our
previous work [14].

It is likely that different tasks own various characteristics, e.g. CPU-bound or
IO-bound properties. We use the workload ratio (denoted l1(tij):l2(tij):· · ·:lD(tij))T )
to describe the execution property for each task, which can be predicted based on
historical or statistical execution records [15, 16] or analysis of their intrinsic pro-
gramming structures [17] in practice.

In this paper, we not only focus on how to optimize the task’s execution ef-
ficiency by constructing the virtual machine (VM) with the resource shares split
from execution node, but also study how to cope with the social competition re-
lations among resource consumers and contributors, such that each of them will
be satisfied with its payoff. Since a task’s turnaround time could be split to two
phases, scheduling period (or waiting/queuing time) and execution period (or run-
ning time), we define the task utility as Equation (4), where su(tij) and eu(tij)
refer to the scheduling utility and execution utility respectively and λij is a coeffi-
cient customized based on user’s expectation.

tu(tij) = λij · su(tij) + (1− λij) · eu(tij) (4)

Without loss of generality, we define su(tij) and eu(tij) as two piecewise linear
functions which decay linearly over time (either waiting/queuing time tw or ex-
ecution time te), as shown in Formula (5) and Formula (6) respectively, which
are also shown in Figure 1 (a) and Figure 1 (b) graphically. Figure 1 (c) clearly
illustrates the synthetic task utility: the shaded area represents a completely con-
tent status, and it starts declining at different rates along different planes, when
increasing the expected waiting time tw or the expected execution time te.

su(tij) =


1 tw ≤ t0
1− k0(tw − t0) t0 < tw ≤ t0 + 1/k0
0 tw > t0 + 1/k0

(5)
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eu(tij) =


1 te ≤ t1
1− k1(te − t1) t1 < te ≤ t1 + 1/k1
0 te > t1 + 1/k1

(6)

0 tw

su(tij)

t0 t0+1/k0

1

0 te

eu(tij)

t1 t1+1/k1

1

te

tu(tij)

t1+1/k1
t0+1/k0

t0

1

tw

t1
0

(b) Execution Utility(a) Scheduling Utility (c) Task Utility

Figure 1: Graphical Illustration of Utility Functions

In the two equations, t0 and t1 are users’ expected queuing time and expected
execution time respectively. The slopes of both linear functions (either k0 or k1)
reflect user’s patience on task scheduling and task’s execution time. Obviously,
t0+

1
k0

and t1+
1
k1

can be considered least tolerable queuing time and least tolera-
ble execution time respectively. Moreover, we define t1 in Definition 1, which will
be used later to prove resource consumer’s incentive compatibility. According to
the definition of expectation vector e(tij), we can get Equation (7).

t1 +
1

k1
=

D∑
k=1

lk(tij)

ek(tij)
(7)

Definition 1. Without loss of generality, t1 is set as the shortest execution time
by running task tij over any of the candidate resource nodes found by PID-CAN
protocol1, i.e. minpe∈QSET(tij)

te(r
∗(tpeij )), where QSET(tij) is the candidate qual-

ified nodes queried based on e(tij).

When a task is finished by an execution node, its user should pay an amount of
money for this node. Any resource provider would like to maximize its revenues,

1PID-CAN [14] will be discussed later in Section 3.2.
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measured as the sum of the consumers’ payments. Different nodes may regard
their owned resources to be of different values based on their various needs on
money and nodes’ various properties or available states, thus they may assign
various prices for their multiple types of resources, or via a pricing function of the
demanded resource amounts. We use b(pe) to denote the price vector assigned by
the owner of the resource node pe.

From provider’s point of view, the expected per-time-unit payment (denoted
as EPU(tij)) for a task’s execution by its user is denoted by Formula (8).

EPU(tpeij ) = r∗(tij)
T · b(pe) (8)

Then, the provider’s expected payment (or income, denoted as EP(tpeij )) in
executing this task can be calculated by Formula (9), where te(tij) is referred to
as task tij’s execution time. That is, the real payment amount (denoted by RP (tpeij )
by the consumer should be no less than EP (tpeij ).

EP (tpeij ) = EPU(tij)× te(tij) (9)

From the perspective of resource consumers, they also have expected budgets
for their tasks’ execution, to make sure that the cost is affordable to them. Based
on the expectation vector e(tij) and their expected price vector β(tij) on different
resource attributes, they could easily estimate their own least-required per-time-
unit payment (a.k.a., demanded per-time-unit budget, denoted as DB(tij)) based
on their evaluation, as shown in Formula (10).

DB(tij) = r∗(tij)
T · β(tij) (10)

Then, each consumer needs to set a firm budget (denoted as B(tij)) for its
task tij , which means that the real per-time-unit payment amount on the task must
be no greater than this budget. Obviously, B(tij)≥db(tpeij ) at any time. In our
design, the firm budget B(tij) will also serve as the scheduling bid of users, to
compete for the scheduling priority among submitted tasks on the same scheduler
node. That is, higher budget implies the cost the user is willing to pay more on its
task’s execution and on being scheduled with higher priority, resulting in shorter
queuing and execution time.

The final real per-time-unit price (denoted RPU(tpeij )) will be synthetically set-
tled based on the auction bid (a.k.a., auction-based budget, denoted as AB(tij))
among consumers and the auction payment unit (denoted as APU(tij)) that is de-
pendent upon candidate resource owners’ declared prices (i.e., EPU(tpeij )). The
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auction bid is determined by different auction policies. For example, assum-
ing tij wins the bid (i.e., it gives the highest firm budget among all other com-
petitors), AB(tij) is equal to B(tij) under the first-price sealed-bid policy, while
AB(tij)=max{x,y}̸={i,j}(B(txy)) in the second-price sealed-bid policy. The details
of how to determine RPU(tpeij will be described in Section 3.1.

Once the task is scheduled and completed successfully, its user needs to pay
the execution node’s owner the amount of currencies calculated based on the
RPU(tpeij . The main objective of such a definition on user’s payment is to guar-
antee the satisfaction on the payment from both sides (resource consumers and
suppliers), which serves as one condition of the ex-post win-win effect of our
system.

The total payment (denoted as TP(tij)) of this user on this task is the product
of the real per-time-unit price and the execution time, as shown in Formula (11).

TP (tij) = RPU(tij)× te(tij) (11)

In practice, either the system or the users themselves may not accurately pre-
dict the execution times for the tasks. For example, any user may pay more than
the original payment amount previously estimated on their own due to the in-
evitable error-prone prediction on the task’s execution time. In this situation, the
users would still feel worthy as long as the per-time-unit payments are still under
their agreement. That is, the execution of each task tpeij is acceptable as long as its
real payment cost per time unit (i.e., RPU(tpeij )) is in accordance with Inequality
(12), where B(tij) is the user’s defined firm per-time-unit budget.

RPU(tij) ≤ B(tij) (12)

We define P sch
cs (tij) (Equation (13)) and P exe

cs (tij) (Equation (14)) as the pay-
offs of tij’s user (i.e., resource consumer), respectively at task scheduling phase
and task’s execution duration. In these two equations, νsch

cs (tij) refers to the true
valuation (or private valuation) of tij’s scheduling priority and νexe

cs (tij) refers to
the final valuation of task’s execution, regarded by the resource consumer. The
reason why P sch

cs (tij) is 0 whenever sp(tij) ≥ νsch
cs (tij) is that νsch

cs (tij) refers to
the true valuation of scheduling priority regarded by its user. In other words, if the
user cannot win the scheduling priority among all other tasks in queue based on
his/her own scheduling bid, he/she should not suffer any loss from his/her point of
view. Moreover, without loss of generality, νexe

cs (tij) could be considered a func-
tion whose value is proportional to the execution utility (i.e., eu(tij)), and equal to
0 when eu(tij)=0.
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P sch
cs (tij) =

{
νsch
cs (tij)− AB(tij) · te(tij), AB(tij) · te(tij)<νsch

cs (tij)
0, otherwise

(13)

P exe
cs (tij)=


νcs(tij)−EP (tpeij ), eu(tij) is maximized with B(tij)

budget constraint & EP (tpeij )<νexe
cs (tij)

0 , otherwise
(14)

Definition 2. Rational consumer’s expected result is that the payoffs of his task
scheduling and execution are both maximized, based on its unilateral bidding.

We denote Pct(t
pe
ij ) as the contributor’s payoff of running tij on the node pe,

which conforms to the Formula (15).

Pct(t
pe
ij ) =

{
TP (tij)− νct(tij), TP (tij) > νct(tij)
0, otherwise

(15)

The total payoff of the contributor pe can be expressed as Formula (16), where
tpeij denotes the tasks that are executed on pe.

Pct(pe) =
∑

tpeij executed by pe

Pct(t
pe
ij ) (16)

Definition 3. Rational resource contributor’s expected result is that the payoff of
its resource contribution is maximized, based on its unilateral bidding.

The ultimate objective of our design is to achieve the ex-post efficiency (a.k.a.,
ex-post optimality) of the whole system, through the fully decentralized self-
organizing resource allocation. Specifically, the three Inequalities (17), (18),
and (19) should always hold for each participant, where P sch

cs (tij), P exe
cs (tij), and

Pct(pe) refer to the payoffs under our designed resource allocation scheme (also
with participants’ true valuations declared) and P sch′

cs (tij), P exe′
cs (tij), and P ′

ct(pe)
denotes the payoffs gained under any other approaches (also including the situa-
tion with participants’ fake/lying valuations declared).

P sch′
cs (tij) ≤ P sch

cs (tij) (17)

P exe′
cs (tij) ≤ P exe

cs (tij) (18)

P ′
ct(pe) ≤ Pct(pe) (19)

For readability, we summarize the key notations used in the problem formula-
tion and the following analysis in Appendix A (Table A.3).
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3. Ex-post Efficient Resource Allocation for Self-organizing Cloud

Our goal is to design a distributed cloud model that can achieve the ex-post
efficiency, i.e. the three Inequalities (17) and (19) for each participant. We will
first present our core design skeleton of the ex-post efficient allocation algorithm,
and then briefly describe the fully decentralized resource discovery protocol and
the local optimal VM resource allocation (LOVRA) algorithm. Finally, we will
prove the ex-post efficiency of our design and the incentive compatibility feature
in theory.

3.1. Design Skeleton
We show our core design (the skeleton algorithm) in Algorithm 1 (called

Double-sided Vickrey Auction algorithm).

Algorithm 1 DOUBLE-SIDED VICKREY AUCTION ALGORITHM
1: while (true) do
2: Sort qe’s tasks in non-increasing order of B(tij);
3: for (each task tij in qe) do
4: maxB(txy)≤B(tij)(B(txy)) → AB(tij); /*txy refers to other tasks in qe other than tij*/
5: Perform PID-CAN to construct qualified node set QSET(tij) for tij ;
6: for (each item p∗(k) in QSET(tij)) do
7: Perform LOVRA algorithm to calculate tij’s optimal allocation (r∗(k)(tij)) on p∗(k);
8: Estimate p∗(k)’s expected payment (denoted as EP ∗

(k));
9: end for

10: Sort QSET(tij) in non-decreasing order of tij’s expected payment based on r∗(k)(tij);
11: for (each item p∗(k) in QSET(tij)) do
12: Connect p∗(k) to reconfirm its availability state; /*to avoid conflict of contention.*/
13: if (p∗(k) is qualified for tij on Formula (1) and (12)) then
14: Determine APU(tij) based on Formula (20);
15: Determine RPU(tij) with AB(tij) and APU(tij), based on Formula (21);
16: Update p

(k)
∗ ’s status;

17: Execute tij in VM atop p∗(k) based on r∗(k) outputted by LOVRA algorithm;
18: break;
19: end if
20: end for
21: end for
22: Sleep a tiny cycle; /*to receive more tasks*/
23: end while

This algorithm should run on each individual nodes in the Self-organizing
Cloud system. In this algorithm, p∗(k), r

∗
(k) and RPU(tij) stand for the kth qualified

node record in QSET(tij) (qualified node set), the corresponding optimal resource
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share vector calculated by the Local Optimal VM Resource Allocation (LOVRA)
algorithm (to be introduced in Section 3.3) and task tij’s final per-time-unit pay-
ment.

Without loss of generality, suppose it is running on a node pe as a scheduler.
As mentioned previously, the node pe receives multiple tasks submitted by users
over time, and all of them are put in the queue qe, which also contains the old tasks
that still have not found matched resources yet. The scheduler of pe will process
qe’s tasks according to the non-increasing order of B(tij) (i.e., firm budget), peri-
odically (line 2).

Basically, there are three phases for processing each task (as shown in Figure
2 (a)): resource discovery, auction-based task scheduling, and resource allocation.

Vickrey Auction among 

submitted tasks 

(the bidder with highest 

budget is winner)

WANScheduler node

PID-CAN query

Reverse Vickrey Auction 

(the candidate nodes with 

lowest income is winner)

Return result/feedback

(a)   Sequence graph of processing

one submitted task

(b)   a case that RPU=AFB

4 Tasks’ 

budgets (B)

Node’s 

expected 

payment 

(EP)

the winner RPU

(c)   a case that RPU=APU

4 Tasks’ 

budgets (B)

Node’s 

expected 

payment 

(EP)

APU APU

AFB AFB

Payment unit Payment unit

1

2

3

      (AFB>APU)        (AFB<APU)

Figure 2: Illustration for task scheduling phase and calculation of RPU

In the first phase (line 4∼5), we first adopt the classical Vickrey auction [18]
(line 4) to decide AB(tij) as the second highest budget declared by the submit-
ted tasks, which can discipline the truth bidding behaviors of rational resource
consumers. And then, we use our previously designed Proactive Index Diffusion
CAN (PID-CAN) [14] to find available resources (line 5) for any task based on its
demand e(tij) around the global systems, with mitigated query contention among
requesters. Specifically, a query message that contains e(tij) will be routed via the
PID-CAN overlay, until it finds the specific number of qualified resource nodes
through the passed duty nodes or the number of hops surpasses the time-to-live
(TTL) threshold. The response messages received by the scheduler node ps will
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contain the queried resource nodes’ identifiers (say IP address), their resource
availability states, and the corresponding prices (or a pricing function).

At the second phase (line 6∼15), one qualified resource node p∗(k) will be se-
lected as the execution node. line 7 is used to perform our LOVRA algorithm
to find the local optimal solution, which will be described in Section 3.3 in de-
tails. We We calculate APU(tij) and RPU(tij) at line 14 and line 15 respectively,
based on Formula (20) and Formula (21). We use Figure 2 (b) and (c) to illustrate
the calculation of RPU(tij), assuming there are 4 tasks submitted with different
budgets.

APU(tij) =
EP ∗

(k+1)

EP ∗
(k)

· EPU(t
p∗
(k)

ij ) (20)

RPU(tij) = max(AB(tij), APU(tij)) (21)

In addition to the classical Vickrey auction used at0 line 4, we also exploit a
reverse Vickrey auction to make sure that the resource contributors are also bet-
ter off truthfully revealing their resources’ prices (line 10). The basic rationale
is that the resource nodes with lower prices will have higher priority to be se-
lected (line 10∼11), while tij’s payment will be settled based on the next lowest
payment from among the set of candidate resources (i.e., reverse second-price
policy). Hence, the resource contributors can always receive more payments than
their original expectations since the auction-based per-time payment unit (APU)
is calculated based on higher prices. On the other hand, the tasks can be finished
within their preferred firm budgets (B(tij)) and expected execution performance,
so the consumers will also be satisfied. For the last phase (line 16∼17), we use
the r∗(k) calculated at line 7 (i.e., the optimal resource share based on LOVRA
algorithm) as the resource vector for the task to be run on the selected node. In
addition, through line 5 and line 7, it is obvious that more powerful resources with
higher availability will be selected as the candidate resource nodes with higher
likelihood, implying a higher working efficiency of the whole system.

3.2. Dynamic Decentralized Resource Discovery Protocol
We first briefly introduce the resource discovery protocol, namely Proactive

Index Diffusion CAN (PID-CAN) [14], which will be responsible for distribu-
tively aggregating state information on every node.

Like traditional CAN [19], each node (a.k.a., duty node) under PID-CAN is
responsible for a globally unique multi-dimensional range zone randomly selected
when it joins the overlay; nodes’ update-states containing the availability vector
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and resource price vector will be periodically propagated to the duty node whose
zone encloses the availability vector.

Unlike CAN, every node in PID-CAN connects a few more neighbors whose
distances are 2k (k=0,1,· · ·) hops; the identifer (a.k.a., index) of the duty node that
has non-empty cache will be proactively diffused to a few randomly selected 2k-
hop negative-direction neighbors. As a user submits a task tij , the corresponding
scheduler node will perform range query for it, and the query message will be
first routed to the zone-matched node (i.e., its first duty node). This duty node
will then issue a multi-dimensional range query moving towards other duty nodes
along the positive indexes hop by hop, to find more available resource records.
Finally, several qualified nodes (e.g., pe) satisfying the task’s demanding vector
and budget (i.e., Inequality (22) and (23)) will be returned to the scheduler node.
Note that this design can effectively control the query traffic overhead because
each query just launches single query message instead of multiple parallel ones.

e(tij) ≤ a(pe) (22)

EPU(tpeij ) ≤ B(tij) (23)

3.3. Local Optimal VM Resource Allocation (LOVRA)
3.3.1. Problem Analysis

As a task tij is scheduled onto one resource node (denoted pe), the local op-
timal VM resource allocation (LOVRA) will be performed: a vector of resource
shares on multi-dimensional resource types will be constructed for this task. Then,
the corresponding resource shares will be split from the physical available idle
resources of pe, by leveraging VM resource isolation technology. Considering
user’s budget demand, task’s characteristic, and the limited availability of the idle
resource, it can be formulated as a convex-optimization problem, as shown in
Formula (24).

min te(r(tij, pe)) =
D∑

k=1

lk(tij)

rk(tij)

s.t. b(pe)T · r(tij) ≤ B(tij)
r(tij) ≼ a(pe)

(24)

The Karush-Kuhn-Tucker (KKT) condition [20] has been proved the neces-
sary and sufficient condition of the optimal solution to the above convex problem.
As such, as long as we can solve the corresponding KKT conditions (as shown in
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Formula (25)), we can solve the problem optimally. Whereas, it is non-trivial to
directly solve the Formula (25).

b(tij)T · r∗(tij) ≤ B(tij)
r∗k(tij)− ak(pe) ≤ 0 k = 1, 2, · · · , D
λ ≥ 0, ν ≽ 0
λ · (b(tij)T · r∗(tij)−B(tij)) = 0
νk · (r∗k(tij)− ak(pe)) = 0 k = 1, 2, · · · , D
− lk(tij)

r∗2k (tij)
+ λ · bk(tij) + νk = 0 k = 1, 2, · · · , D

(25)

In the next section, we will propose an algorithm with polynomial time com-
plexity (D2, where D is the number of dimensions), to find the solution of the
Formula (25).

3.3.2. LOVRA algorithm
The basic idea of LOVRA algorithm is temporally removing the last condition

(resource availability constraint) in the problem formulated in Formula (24) at
the beginning, and then recursively tuning the solution by taking into account
the resource availability constraint until finding an allocation case satisfying this
constraint. Then, the output of the algorithm will be the feasible case satisfying
the above KKT condition, which can also be proved in theory. Consequently, in
the following text, we will first study the problem without the resource availability
constraint, i.e., Formula (26).

min te(r(tij, pe)) =
D∑

k=1

lk(tij)

rk(tij)

s.t. b(pe)T · r(tij) ≤ B(tij)
(26)

Theorem 1. The optimal resource share vector r(∗)(tij) is shown in Equation
(27), where k=1, 2, · · ·, D. (Note that r(∗)(tij) is not calculated without resource
availability constraint, unlike the notation r∗(tij).)

r
(∗)
k (tij) =

√
lk(tij)/bk(pe)

D∑
k=1

√
lk(tij)bk(pe)

·B(tij) (27)

PROOF. The proof is simple. In fact, we could derive Equation (28) based on
convex optimization theory.

r1 : r2 : · · · : rD =

√
l1
b1

:

√
l2
b2

: · · · :
√

lD
bD

(28)
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In order to minimize te(r), the optimal resource vector r(∗) should make bT · r
equal to B. So, we could get the conclusion, Equation (27).

We devise Algorithm 2 (namely LOVRA) for finding the optimal solution to
the problem with resource availability constraint (Formula (24)), as shown below.

Algorithm 2 LOCAL OPTIMAL VM RESOURCE ALLOCATION (LOVRA)
function name: LOVRA(Π, B(tij), w(tij), b(pi), a(pi));
Input: Π: the execution dimension set

B(tij): tij’s budget
l(tij): tij’s preferential weight vector
b(pe): execution node pe’s price vector
a(pe): execution node pe’s availability vector

Output: r∗(tij): tij’s optimal resource allocation vector on pe

1: Γ = Π, C = B(tij), r∗ = Φ (empty set);
2: repeat
3: r(∗)Γ (tij) = CO-STEP(Γ,C); /*Compute optimal r(∗) based on Γ with un-

bounded capacity assumption*/
4: Ω={dk|dk∈Γ & r

(∗)
k (tij)>ak(pe)};/*Select elements violating the resource

availability constraint)*/
5: Γ = Γ\Ω; /*Γ takes away Ω*/
6: C = C −

∑
dk∈Ω (bk(pe) · ak(pe)); /*Update C*/

7: r∗ = r∗(tij)∪{r∗k(tij) = ak(pe) | dk∈Ω & ak(pe) is dk’s upper bound};
8: until (Ω = Φ);
9: r∗(tij) = r∗(tij) ∪ r(∗)Γ (tij);

We can prove that the output of Algorithm 2 is the optimal solution that satis-
fies the KKT condition (25), in Theorem 2.

Theorem 2. Given a submitted task tij with its workload vector l(tij) and a bud-
get B(tij) and a qualified node pe with its resource price vector b(pe), Algorithm
2’s output r∗ is the optimal solution to the problem formulated in Formula (24).

The basic idea of the proof to Theorem 2 is confirming the fact that the output
of Algorithm 2 must satisfy the Condition (25), which is not a hard work, so we
will omit the details of the proof here.
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Based on the Theorem 2, an interesting result is that we can further derive
Theorem 3, which will be used later in the proof of the ex-post efficiency of our
design in next section.

Theorem 3. Suppose under Algorithm 2 (without considering the reverse vickrey
auction used in Algorithm 2), the final real execution time of task tij is denoted
as Tf (tij). Given Tf (tij) (tij’s deadline set by its user), tij’s execution property
ratio, and execution node pe’s price vector b(pe), Algorithm 2’s output r∗(tij) is
the optimal solution that minimizes the payment based on the node’s price vector.

PROOF. We denote task tij’s allocated resource vector as r∗(tij), then it must
satisfy Equation (29) and Equation (30), where B(tij) is task’s budget used in
Algorithm 2.

t∗e(r(t
pe
ij )) =

∑D

i=1

li(tij)

r∗i (tij)
= Tf (tij) (29)

∑D

i=1
bi(pe)r

∗
i (tij) = Bf (tij) ≤ B(tij) (30)

Since we do not consider the impact of the reverse vickrey auction in Algo-
rithm 1, the user’s payment could be estimated by Equation (31), which is calcu-
lated using the execution node’s price vector.

EPr∗(tij) = Bf (tij) · Tf (tij) (31)

If Theorem 3 does not hold, there must exist a resource allocation r′(tij)(̸=

r∗(tij)) for running tij on pe, satisfying
D∑

k=1

lk(tij)

r′k(tij)
= Tf (tij) and Inequality (32).

EPr′(tij) = (
∑D

k=1
bk(tij)r

′
k(tij)) ·Tf (tij) < Bf (tij) ·Tf (tij) = EPr∗(tij) (32)

Inequality (32) implies that there must exist a ∆r>0, such that the new re-
source allocation {r′1(tij)+∆r, r′2(tij), r

′
3(tij), · · ·, r′D(tij)} also satisfies Inequal-

ity (32), yet its execution time (i.e., l1(tij)

r′1(tij)+∆r
+

∑D
i=2

li(tij)

r′i(tij)
)will be smaller than

t∗e(r(t
pe
ij )), which contradicts to the fact that t∗e(r(t

pe
ij )) is minimized proved by

Theorem 2.
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3.4. Discussion of Ex-post Efficiency
In this section, we will theoretically prove the ex-post efficiency (a.k.a., ex-

post optimality) of our design, which is mainly composed of Theorem 4 and The-
orem 5. Specifically, we will first prove the ex-ante efficiency of the task exe-
cution (i.e., our resource allocation is optimal from the perspective of consumers
based on their prior knowledge about resource states). After that, we will prove
the incentive compatibility via Theorem 5 (i.e., all rational suppliers will truth-
fully declare their valuations on their owned resources). Finally, we will derive
the overall ex-post efficiency for our design in Corollary 1.

Theorem 4. Under the DVA algorithm (i.e., Algorithm 1), task’s execution will
always achieve ex-ante efficiency based on the prior collected information, with
guaranteed Inequality (18).

PROOF. Based on the Equation (14) and the definition that νexe
cs (tij) is propor-

tional to tij’s execution utility, it is easy to see that Theorem 4 holds is and only if
task tij’s execution utility can get the maximized value under our DVA algorithm.

Based on the Definition 1, t1 is the time point such that tij’s execution time
te(tij) is shortest among all the candidate choices (i.e., the execution times by us-
ing the nodes in QSET(tij)). That is, tij’s practical execution time must be no less
than the time point t1. On the other hand, according to the definition of νexe

cs (tij)
in the Formula (14), when su(tij)=0, then νexe

cs (tij)=0 due to P exe
cs (tij)=0≤ep(tij).

That is, tij’s execution time must be in the range of [t1, t1 + 1
k1

], as the shaded
area shown in the Figure 3.

0 te

eu(tij)

t1 t1+1/k1

1

execution time point by running tij on 
the most powerful candidate node

execution time point based 
on the least qualified node

Figure 3: The viable range (shaded area) of task’s execution utility for each user’s task execution

In addition, according to the definition of P exe
cs (tij), maximizing the execution

utility eu(tij) based on user’s budget constraint is a basic condition (otherwise,
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the user will be unsatisfied (i.e., P exe
cs (tij)=0)). As follows, we will prove that

P exe
cs (tij) is already maximized, provided that the task’s information (including its

resource demand, the weight vector, etc.) is honestly declared. That is, any other
skewed resource allocation rather than the allocation calculated by Line 6∼9 of
Algorithm 1 will get inferior payoff (i.e., P exe′

cs (tij) ≤ P exe
cs (tij)).

If te(tij)=t1, according to Theorem 3, the payment EP(tpeij ) is already mini-
mized based on the imagined given deadline t1. Hence, P exe

cs (tij)(=νexe
cs (tij)−EP (tpeij ))

must be maximized for any resource allocation subject to the budget constraint
B(tij) (note that νexe

cs (tij) is supposed to be a constant here because eu(tij)=1).
If t1 < te(tij) < t1 +

1
k1

, there are three situations to discuss:

• If the execution time (denoted as t′e(tij)) by executing tij using another re-
source share vector r′(tij)(̸=r∗(k)(tij)) on the selected execution node is less
than that the execution time te(tij) with r∗(k)(tij), then, this contradicts to
the fact that te(tij) should be minimized based on tij’s budget, which was
proved by Theorem 2. That is, t′e(tij) ≥ te(tij) will definitely hold.

• If t′e(tij)=te(tij), the situation is similar to that with te(tij) = t1. That
is, according to Theorem 3, the payment EP(tpeij ) is already minimized, so
P exe
cs (tij)=νexe

cs (tij)− EP (tpeij ) must be the maximized payment.

• If t′e(tij) > te(tij), we use eu′(tij), νexe′
cs (tij), and EP ′(tpeij ) to denote the

corresponding execution utility, consumer’s valuation on tij’s execution,
and execution payment respectively. It is obvious that eu′(tij) < eu(tij) ac-
cording to definition of the execution utility, thus, νexe′

cs (tij) < νexe
cs (tij). On

the other hand, according to Theorem 3, we know that EP ′(tpeij ) > EP (tpeij ).
Accordingly, it is obvious that P exe′

cs (tij) = νexe′
cs (tij)− EP ′(tpeij )< νexe

cs (tij)
− EP (tpeij ) = P exe

cs (tij).

All in all, P exe′
cs (tij) ≤ P exe

cs (tij).

Theorem 5. DVA algorithm (i.e., Algorithm 1) can achieve the ex-post incentive
compatibility, by guaranteeing Inequality (17) and (19) for any participant.

PROOF. Proof of Inequality (17):
Basically, the problem can be converted to discussing whether tij’s user can

further improve its payoff by overbidding or underbidding its scheduling bid (i.e.,
when B(tij) ̸= νsch

cs (tij)). According to Algorithm 1, tij will be scheduled if
and only if its declared budget is the largest among all the bids. Consequently,
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AB(tij) = maxB(txy)≤B(tij)(B(txy)) = max{x,y}̸={i,j}(B(txy)) according to the line
4 of Algorithm 1, which means that the winner task tij will just need to pay the
payment based on the second lowest budget. Hence, we can get the Formula (33)
according to Formula (13).

P sch
cs (tij)=

{
υsch(tij)− max

{x,y}≠{i,j}
(B(txy)) , B(tij) > max

{x,y}≠{i,j}
(B(txy))

0 , otherwise
(33)

As follow, we will prove that Inequality (17) always holds in the two situations
(overbidding or underbidding).

• If νsch
cs (tij)<B(tij) (i.e., over-bidding), there are three cases:

If max
{x,y}̸={i,j}

(B(txy)) < νsch
cs (tij) or max

{x,y}≠{i,j}
(B(txy)) > B(tij), the two

strategies of the user (being honest or lying) have equal payoffs based on
Inequality (33). If νsch

cs (tij) ≤ max
{x,y}≠{i,j}

(B(txy)) ≤ B(tij), then the payoff

(=0) under honest bidding would be no less than that (≤0) with overbidding.

• If νsch
cs (tij) > B(tij) (i.e., under-bidding), there are also three cases to dis-

cuss: If max
{x,y}̸={i,j}

(B(txy)) > νsch
cs (tij) or max

{x,y}̸={i,j}
(B(txy)) < B(tij), the

two strategies (being honest or lying) have equal payoffs based on Inequal-
ity (33). If B(tij) ≤ max

{x,y}≠{i,j}
(B(txy)) ≤ νsch

cs (tij), then the payoff (≥0)

under honest bidding will be no less than that (=0) under overbidding.

Proof of Inequality (19):
Basically, this inequality can be converted to discussing whether the contribu-

tor can improve its payoff by over-declaring or under-declaring the valuations of
their resources. We take into account such two situations from the perspective of
resource contributor (node p∗(k)): p

∗
(k) winning bid and p∗(k) losing bid.

If p∗(k) wins the bid, then p∗(k) must be the qualified resource node (in QSET(tij))
with the lowest payment required, and the payment calculated based on its price
vector is denoted as EP ∗

(k). If EP ∗
(k)>νct(tij) (deliberately over-declaration),

since EP ∗
(k)≤EP ∗

(k+1), we can get vct(tij)<EP ∗
(k)≤EP ∗

(k+1). According to Algo-
rithm 1, Pct(t

pe
ij )(=EP ∗

(k+1)−νct(tij)) will be the same in the two strategies (over-
declaration and honest-declaration), which implies that over-declaration (lying be-
havior) cannot improve the payoff at all.

If p∗(k) loses the bid, then there must exist one qualified resource node (say p∗(l)
where l < k) in QSET(tij) such that tij’s payment is lower on p∗(l) than that on
p∗(k).
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• If EP ∗
(l) < vct(tij), the fact that p∗(k) loses the bid will not be changed no

matter EP ∗
(k) = vct(tij) or not, which means that the payoff will not change

for the two strategies (under-declaration and honest-declaration).

• If EP ∗
(l) ≥ vct(tij), honest contributor (with p∗(k) = vct(tij)) will get payoff

=EP ∗
(l) − vct(tij) ≥ 0, while lying contributor will lose the bid, suffering

zero payoff.

Hence, resource contributors’ payoff under honest behaviors will always be
no less than the payoff gained under their lying behaviors, i.e. our algorithm owns
incentive-compatibility to resource contributors.

Corollary 1. Under DVA algorithm (i.e., Algorithm 1), the whole SoC system is
ex-post efficient w.r.t. each task’s execution (a.k.a., ex-post optimality).

PROOF. For each task’s execution, it must be ex-ante efficient according to Theo-
rem 4, which means that each task will be executed with optimal resource alloca-
tion if the resource states and prices are declared truthfully by the corresponding
owners. On the other hand, the resource prices and state availability used in Algo-
rithm 1 are reliable due to two factors: (1) as proved in Theorem 5, we know that
each rational resource owner will truthfully reveal their valuations on the prices
of their resources, based on the reverse-vickrey auction design; (2) Due to line 12
of Algorithm 1, the resource state availability will be rechecked right before any
task schedule, to confirm the selected choice. Consequently, each task schedule
and its execution should also be ex-post efficient (i.e., still optimal observed after
its practical execution). In other words, the whole SoC system will converge to
the ex-post efficiency status, where each task’s final execution efficiency can be
guaranteed as anticipated.

4. Performance Evaluation

4.1. Experimental Setting
For our simulation, we first built an emulated credit-scheduler in accordance

with the design of XEN [21]. Then, we carefully constructed the CAN protocol
[19] using the Peersim tool [22] and improved it using our designed Proactive-
Index-Diffusion (PID) strategy [14]. There are thousands of nodes, each with
random settings (Table 1). Each task needs an expected five-dimensional resource
vector {computation load, disk-IO load, network load, disk size and memory size}
to start and its execution time is only related to the first three dimensions. Each
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task’s workload along some attribute is set as the product of its random capacity
value based on Table 1 and a demand ratio (denoted by λ (≤1)). Higher de-
mand ratio means higher level of flash-crowd of consumers with similar demand
or interest on resources. We simulate the Internet communication by grouping
all nodes into different LANs, and two nodes across LANs have to communi-
cate through WAN network bandwidth. By leveraging the event-driven mode un-
der the Peersim tool, each experiment simulates 86400 seconds (one day) using
4320 event cycles and 432000 periodical cycles, and the user tasks will be peri-
odically generated on each node based on Poisson process. The tasks’ resource
demands (e(tij) will be set according to Table 2. The prices set by nodes and
expected by users are randomly generated such that the per-metric-per-time value
(i.e., bk(pe) · rk(tij), where k=1,2,·,D) is in [1,10]. tij’s budget is randomly gen-
erated in [1×

∑D
k=1 β(tij) · e(tij),1.4×

∑D
k=1 β(tij) · e(tij)].

Table 1: System Setting
Parameter Value

# of nodes 1000 ∼ 4000
# of processors per node 1,2,4,8
computation rate per processor 1,2,2.4,3.2 (GHz)
disk-I/O speed per node 20,40,60,80 Mbps
memory size per node 512, 1024, 2048, 4096 MB
disk size per node 20, 60, 120, 240 GB
LAN network bandwidth 5 ∼ 10 Mbps
WAN network bandwidth 0.2 ∼ 2 Mbps

Table 2: Task’s Demand Setting
Parameter Value Parameter Value

demand ratio λ 1, 0.5, 0.25 cpu rate λ ∼ 25.6λ
I/O speed 20λ ∼ 80λ memory size 512λ ∼ 4096λ
disk size 20λ ∼ 240λ bandwidth 0.1λ ∼ 10λ

We mainly focus on seven metrics, scheduled task ratio, throughput ratio, fair-
ness index [23] of task’s execution efficiency, execution utility (average eu(tij)),
task utility (average tu(tij)), task’s Payment-to-Budget Ratio (abbreviated as PBR),
and the contributors’ Income-to-Expectation Ratio (abbreviated as IER). The sched-
uled task ratio is calculated by the ratio of the number of scheduled tasks that have
been migrated/queued onto some resource nodes and the number of total tasks
submitted. The throughput ratio (or finished task ratio) is calculated by the ratio
of the number of finished tasks and the number of total tasks submitted. Task’s
execution efficiency (denoted as eij) is defined as the ratio of its execution time
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to the theoretical value estimated using average computing ability in the system.
Hence, the overall fairness index of task’s execution efficiency (denoted as φ) can
be calculated by Equation (34), where ni means the number of tasks submitted to
node pi.

φ =
(
∑n

i=1

∑ni

j=1 eij)
2

(
∑n

i=1 ni) · (
∑n

i=1

∑ni

j=1 e
2
ij)

(34)

The calculation of execution utility and task utility is described in Section
2. In our simulation, if a task fails to find any qualified resources such that its
execution cannot be started at all, its execution utility will be set to 0. PBR and
IER are shown in Formula (35) and (36), where Irealct (pe) and Iexpectct (pe) denote the
resource owner’s final income earned and its expected income (evaluated using its
own assigned prices) respectively.

PBR(tij) =
RPU(tij) · te(tij)

B(tij)
(35)

IER(pe) =
Irealct (pe)

Iexpectct (pe)
(36)

Our experiments are conducted under different competitive situations with
various workloads of submitted tasks. As a comparative baseline, we also imple-
ment two more node-selection strategy, namely random policy (RAN) and Earliest
Deadline First (EDF) strategy. The former is adopted in our previous work [14]
and the latter is commonly used in many other task scheduling designs [24, 25].
Under the random strategy, each scheduler node randomly selects one execution
node from the qualified candidate resources queried by PID-CAN protocol [14].
This random-selection design delivers satisfactory throughput due to mitigated de-
cision conflict among users. Under EDF, each task will select the nodes from the
candidate nodes on which it can be finished earliest as the final execution node.
From our experiments, we can observe both of the two solutions will suffer lim-
ited contributors’ payoffs which may easily mitigate contributors’ participating
motivations.

4.2. Experimental Result
In our previous work [14], the execution nodes are randomly determined from

candidate nodes queried by PID-CAN protocol at the task scheduling phase. Such
a method has been proved effective to deliver the high system throughput in terms
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of higher scheduled task ratio and finished task ratio. In comparison, we first com-
pare our new method, i.e. Double-sided Vickrey Auction algorithm (DVA) to the
random-selection policy and EDF policy w.r.t. scheduled task ratio, throughput
ratio and fairness index, as shown in Figure 4, Figure 5, and Figure 6 respectively.
We can observe that the three metrics based on DVA policy is no worse than those
of the other two policies. Specifically, the first two metrics imply that the over-
all task processing efficiency around the whole system will be exactly the same
among the three different node-selection policies. The fairness index of task ex-
ecution efficiency will converge to the same level, implying that all of tasks can
be treated in the similarly fair way around the whole system. Accordingly, we
conclude that our DVA approach will not degrade the task processing ratios and
fairness of treatment at all, in that the main factor impacting the task processing
ratios is the resource discovery protocol. In the following text, we will show that
our DVA approach will perform satisfactorily on the task utility and significantly
outperform the other two solutions especially w.r.t. the level of contributor’s in-
come.
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Figure 4: Processing Performance (λ=0.25)

Through Figure 7, Figure 8, and Figure 9, we show the average execution
utility and average task utility, among all the tasks (including finished ones and
failed ones). We do not show the scheduling utility of finished tasks because it is
observed always equal to 1 for any task scheduling under the three different ap-
proaches in our simulation. Through all of the six figures, we can clearly observe
that our designed DVA policy (selecting nodes based on reverse vickrey auction)
and RAN policy (random selection) will significantly outperform the traditional
Earliest Deadline First (EDF) policy. This is mainly because that EDF always
select the most powerful node in task scheduling, suffering from the serious de-
cision conflict among the individual schedulers. In the DVA policy, however, we
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Figure 5: Processing Performance (λ=0.5)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  6  12  18  24

S
c
h

e
d
u

le
d

 T
a
s
k
 R

a
ti
o

Time (Hour)

DVA
RAN
EDF

(a) scheduled ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  6  12  18  24

T
h
ro

u
g
h
p
u

t 
R

a
ti
o

Time (Hour)

DVA
RAN
EDF

(b) throughput ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  6  12  18  24

F
a
ir
n
e
s
s
 I
n
d
e
x

Time (Hour)

DVA
RAN
EDF

(c) fairness index

Figure 6: Processing Performance (λ=0.83)

also take into account user’s estimated payment (i.e., budget) and the resource
prices arbitrarily set by the owners, which can effectively disperse the decision
conflict. That is, its effect is a little similar to that of randomly selecting node to a
certain extent, so its performance is pretty close to that of random node-selection
policy.

The most outstanding feature of the DVA algorithm is realizing the win-win
effect, such that any resource consumer and resource contributor will be both
satisfied on their payment or incomes. Specifically, the Payment-to-Budget Ratio
(Formula (35)) should never be greater than 1, and any contributor’s Income-to-
Expectation Ratio (Formula (36)) should keep over 1 at any time. We show the
results in Figure 10 and Figure 11, where the demand ratio (λ) is set to 0.5.

Figure 10 (a) presents the average PBR over time. We can clearly observe that
the average of PBR under our DVA policy is a little greater than those of RAN
and EDF. This is because that the final real payment unit (RPU) under the DVA
policy is calculated based on Formula (21), whose value must be no lower than the
previous auction-based budget (AB). In the Figure 10 (b), we can clearly see that
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Figure 7: Task Utility (λ=0.25)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  6  12  18  24

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 U

ti
lit

y

Time (Hour)

DVA
RAN
EDF

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 6  12  18  24

(a) average execution utility

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  6  12  18  24

A
v
e
ra

g
e
 T

a
s
k
 U

ti
lit

y

Time (Hour)

DVA
RAN
EDF

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 6  12  18  24

(b) average task utility

Figure 8: Task Utility (λ=0.5)
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Figure 9: Task Utility (λ=0.83)
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Figure 10: Task’s Payment-to-Budget Ratio (PBR)

from among all of about 1700 finished tasks during the one-day test, the largest
PBR under RAN and EDF scales up to 4 and 2.5 respectively, while that of DVA
policy is less than 2, which means that the DVA policy delivers higher stability on
the PBR.

In Figure 11 (a), we present the average IER of resource contributors over
time. We can observe that our DVA policy will achieve much higher average
IER than the other two policies. Moreover, from the Figure 11 (a), we can also
conclude that: (1) almost all of the nodes get the prominently greater income
than their own expectation based on their own prices, and (2) the largest IER can
even get up to about 2. This is because of the reverse Vickrey auction design
(i.e., Formula (20) can make sure that any final real payment unit will be greater
than the one computed by the current owner’s prices). All in all, through these
two figures, we can conclude that the resource contributors will get much more
satisfied under DVA policy than under the other two policies.

5. Related Work

Some socially optimal resource allocations are extensively studied in litera-
tures.

• U. Endriss, et al. [26], for example, propose a negotiation-based allocation
for getting socially optimal effect, in the sense that the social welfare is max-
imized in a distributed utilitarian environment. They also discuss the Pareto
and Lorenz optimality [27], as well as envy-freeness [28]. The significant
difference between their work and this paper is three-fold: (1) the resources
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Figure 11: Node’s Income-to-Expectation Ratio (IER)

in their work are assumed to be indivisible and non-sharable, while the re-
sources in Cloud system are actually allowed to be divided on demand or
time-shared; (2) they adopt the negotiation method, which may suffer the
serious transmission overhead caused by multiple times of communication,
while we adopt the sealed auction that implies the minimized demand on
communication between suppliers and consumers; (3) our designed Double-
sided Vickery Auction algorithm can bring both resource consumers and
contributors to truthfully expose their expectations, but theirs cannot do so.

• I. Menache [29] build a cloud model to analyze the socially optimal pric-
ing mechanism over the divisible resources for cloud computing platform.
They could prove that the social optimum among resource consumers can
be reached under their cloud model. Our work significantly different from
their work in two facets. On one hand, the resources in our model are ge-
ographically distributed instead of being centrally managed, which is faced
with more challenges in resource discovery and allocation. On the other,
our work aims to realize the win-win effect, which also takes into account
the resource contributor’s payoff (or motivation), while their work only con-
cerns the consumers’ benefits.

• Y.M. Teo and M. Mihailescu [30] propose a strategy-proof pricing scheme
for multiple resource type allocations. In addition to the objective of reach-
ing “social optimum”, their solution can also guarantee three features, in-
dividual rationality (rational agents gain higher from actively participation
than from avoiding it), incentive compatibility (dominant strategy for each
agent is to reveal its true valuation) and budget balance (sum of all agent
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payments is balanced). However, there are three key problems in their
work making it unsuitable for our Self-Organizing Cloud model. Firstly,
they adopt the central-controlled market-maker to organize the overall re-
source allocation, which is not scalable. Secondly, the multiple types of re-
sources consumed by any task are assumed to come from different resource
providers, which cannot be realized in the current cloud model. For exam-
ple, it is costly and inefficient to execute a single application using CPU
resource on one node but memory resource on another node, especially for
the high communication overhead. Lastly, their work does not consider the
difference of priorities of tasks but use a First-Come-First-Serve (FCFS)
policy instead. In comparison, our utility function also takes the scheduling
priority into account in addition to the execution utility, leading to higher
flexibility based on user’s demand.

In the domain on economic auction, ex-post efficiency is studied for years.
M. Perry et al. [31] first proposed an ex-post efficient auction in 1999. They im-
proved Vickrey auction and proved their solution may get the ex-post efficiency,
such that each participant would never regret his/her equilibrium bids, and this
remains so even after finding out the winning bids of other bidders. The key
feature of our work is designing a practical ex-post efficient method for the Self-
organizing Cloud (SoC). Each user task under our model follows an elaborative
utility function, that takes into account both scheduling priority and execution pri-
ority. The final effect of our solution is rather valuable, because of the guaranteed
user payoffs under the demands on specific budgets. P. Dasgupta et al. [32] ex-
plored a central-controlled efficient auction based on Vickrey auction, which can
maximize surplus conditional on all available information. Differently, our work
intensively studied how to improve Vickrey auction into the Cloud computing sce-
nario, where the resources are divisible on demand. Some new researchers (such
as [33]) also discussed the ex-post equilibria in double auctions of divisible assets.
In comparison, our work is based on a fully distributed architecture, which can
query compute resources on the Internet for tasks based on a fully-decentralized
P2P protocol, possessing higher flexibility and robustness.

6. Conclusion and Future Work

This paper proposes a novel ex-post efficient resource allocation, which can
guarantee the ex-post win-win effect such that resource consumers are always sat-
isfied with the task execution and the resource contributors are also content with
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their payoffs for their resource-provisioning. By extending the traditional second-
price bidding policy to a novel double-sided next-price bidding policy, ex-post
incentive compatibility can be guaranteed: both rational resource consumers and
contributors will truthfully reveal their demands on resources and prices. Finally,
we confirm the efficiency of our design via a large-scale event-driven simulation.
In the future, we plan to improve the fault-tolerance ability of this win-win re-
source allocation scheme by combining the replica-task execution strategy and
check-pointing technology.
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Appendix A. Notation Summarization

Table A.3: Summarization of Notations used in Problem Formulation and Analysis
Notation Description
n number of nodes in the SoC system
pi a node (acting as both scheduler and supplier), where i = 1,2,· · ·,n
c(pi) capacity vector of node pi
b(pi) the price vector of node pi’s resources on multiple dimensions
tij the jth task submitted to pi
l(tij) the workload vector of task tij
r(tij) the resource share vector allocated to tij
r∗(tij) the optimal resource share vector allocated to tij , outputted by LOVRA
β(tij) the resource price vector expected by task tij ’s owner
tpeij the task tij is scheduled to be executed on node pe
e(tij) expected resource vector of tij (i.e., least qualified resource requirement)
B(tij) budget of tij ’s user (evaluated by per-time-unit)
a(pi) the availability vector of pi (=(a1(pd), a2(pd), · · · , aD(pd))

T , where ak(pd)=ck(pd)−
∑

∀i,j r
∗
k(t

pd
ij )

su(tij) scheduling utility of task tij
eu(tij) execution utility of task tij
λij the coefficient customized based on users expectation, to tune weight of su(tij) and eu(tij)
RPU(tij) final real per-time-unit payment by tij ’s user on tij ’s execution
EPU(tpeij ) expected per-time-unit payment of resource owner
EP(tpeij ) expected payment of resource owner by executing tij on pe
DB(tpeij ) demanded per-time-unit budget calculated based on consumer’s expected resource vector and price vector
AB(tij ) auction-based budget (competed among submitted tasks on the same node)
APU(tij ) auction-based payment unit (competed among candidate resource nodes)
TP(tij) total payment of task tij by its user
P sch
cs (tij) consumer’s payoff of scheduling task tij

P exe
cs (tij) consumer’s payoff of executing task tij

Pct(pe) contributor’s payoff of supplying node pe’s resources
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