
PVTCP: Towards Practical and Effective
Congestion Control in Virtualized Datacenters

Luwei Cheng, Cho-Li Wang, Francis C. M. Lau
Department of Computer Science, The University of Hong Kong

{lwcheng, clwang, fcmlau}@cs.hku.hk

Abstract—While modern datacenters are increasingly adopting
virtual machines (VMs) to provide elastic cloud services, they still
rely on traditional TCP for congestion control. In virtualized dat-
acenters, TCP endpoints are separated by a virtualization layer
and subject to the intervention of the hypervisor’s scheduling.
Most previous attempts focused on tuning the hypervisor layer to
try to improve the VMs’ I/O performance, and there is very little
work on how a VM’s guest OS may help the transport layer to
adapt to the virtualized environment. In this paper, we find that
VM scheduling delays can heavily contaminate RTTs as sensed by
VM senders, preventing TCP from correctly learning the physical
network condition. After giving an account of the source of the
problem, we propose PVTCP, a ParaVirtualized TCP to counter
the distorted congestion information caused by VM scheduling
on the sender side. PVTCP is self-contained, requiring no
modification to the hypervisor. Experiments show that PVTCP is
much more effective in addressing incast congestion in virtualized
datacenters than standard TCP.

I. INTRODUCTION

Cloud datacenters allow users to rent a cluster of VMs in an
on-demand fashion and access them remotely. In datacenters,
TCP is primarily and unequivocally used for communication.
A recent study [4] reveals that 99.91% of traffic in today’s dat-
acenters is TCP traffic. Since its inception, TCP has been suc-
cessfully deployed in: (i) various WAN environments, where
the network delay can be tens or hundreds of milliseconds, and
(ii) physical datacenters, featuring sub-millisecond network
delay. However, as illustrated in Figure 1, whether TCP is able
to function well in virtualized datacenters is largely an open
question. Unlike in WANs and physical datacenters where
the network delay is relatively stable and predicable, it has
been observed that the network delay in virtualized datacenters
can vary significantly and tends to be highly unpredictable
[6], [32]. This unlikeness calls for a re-examination of TCP’s
effectiveness in virtualized execution environments.

TCP incast [27] is a particular form of network congestion
which has become a bothersome issue in datacenter networks.
It is commonly seen in large-scale distributed data processing
such as those using MapReduce [12] and web search. Among
virtualized clouds, Amazon for one is using VMs to provide
Elastic MapReduce (EMR) service [1]. When multiple senders
communicate with a single receiver via a bottleneck link,
the highly synchronized traffic can quickly fill the limited
output buffer of that switch port. Due to the tail-drop policy

TCP

Virtualized

Datacenter

Physical

Datacenter
WAN

Very low:

< 1ms

Very high:

~ 100x ms

Very unpredictable

From < 1ms

to 100x ms

The RTT is relatively predictable

O
O ?

Fig. 1. Can TCP still work as well as before?

implemented in most commodity switches, late-coming pack-
ets will be abandoned, resulting in intensive packet loss as
suffered by the TCP senders. And hence the receiver-perceived
throughput (goodput) can be orders of magnitude lower than
the link capacity. Despite much prior work on TCP in physical
datacenters [16], [8], [7], a good understanding of how TCP
behaves in virtualized datacenters is still lacking.

Previous studies on VMs’ I/O performance mostly focused
on modifying the hypervisor layer, whereas the study of how
VM’s transport-layer protocol can automatically adapt to this
virtualized platform appears to have been overlooked. This
paper provides three major contributions. First, a finding: We
find that VM scheduling delays make TCP unable to cor-
rectly learn the network condition from round-trip time (RTT)
measurements, causing serious disorder to standard congestion
control methods. Second, we provide a concrete analysis to
explain TCP’s peculiar behaviors, and address the necessity of
paravirtualizing TCP. Third, we propose PVTCP for the sender
side, a practical solution to effectively filter out negative effect
arising from VM scheduling delays. We have implemented our
solution in Linux. The evaluation results show that PVTCP
can: (1) avoid performance drop caused by pseudo-congestion
from the hypervisor scheduler, and (2) avoid incast throughput
collapse caused by multiple synchronized traffic patterns.

The rest of the paper is organized as follows. We introduce
the background and bring out our motivation in §II. The
experimental methodology is presented in §III. We describe
TCP’s dilemma in handling incast congestion in a virtual
cluster in §IV. We then provide a concrete understanding of the
problem in §V. Possible approaches are discussed in §VI. We
propose our solution in §VII. Implementation and evaluation
are presented in §VIII and §IX. The future work is discussed
in §X and the related work in §XI.978-1-4799-1270-4/13/$31.00 c⃝2013 IEEE

II. MOTIVATION AND BACKGROUND

A. Congestion Control – the Core of TCP

TCP is designed to be end-to-end: there is no global
coordinator and each host relies on implicit signals to infer the
condition of the network and then adjusts its own sending rate.
Reliable transmission is achieved via the use of a retransmit
timer: for the segments sent each time, the sender expects
an ACK from the receiver before the timer expires; without
receiving the ACK in time, some segment is considered to
be lost, presumably due to network congestion and will be
retransmitted at some appropriate instant later. A key to TCP’s
retransmission is the accurate RTT measurements. The sender
measures the time between when data is sent and when the
corresponding ACK returns. Standard TCP uses a low-pass
filter to estimate the timeout values:

SRTTi =
7

8
SRTTi−1 +

1

8
MRTTi (1)

RTTV ARi =
3

4
RTTV ARi−1 +

1

4
|SRTTi −MRTTi| (2)

RTOi+1 = SRTTi + 4×RTTV ARi (3)

where MRTTi is the measured RTT at time i, calculated using
successfully returned ACK packets, SRTTi is the smoothed
RTT, and RTTV ARi represents the variance (mean deviation)
of recent RTTs.

If ACK packets are returned quickly, the sending window
will be increased by one segment each time in slow-start
phase, allowing TCP to transmit data more quickly. If however
an ACK packet does not return before the retransmit timer
expires, the sender will double the RTO value for each
consecutive timeout (exponential backoff):

RTOi+1 = RTOi × 2 (4)

To protect the sender from spurious timeouts, standard TCP
explicitly sets a lower bound, RTOmin. Linux adopts 200ms
as the default value for RTOmin, which may be suitable for
WANs. But for datacenters where delays are sub-millisecond,
a small value (e.g. 1ms) has been proven to be more suitable
when dealing with network congestion [31], [8].

B. Virtualization Makes a Difference

Virtualization technology is a key enabler of cloud com-
puting. The hypervisor allows multiple VMs to run on a
single physical host by multiplexing the underlying physical
resources, such as CPU, memory and I/O. Figure 2 shows the
conceptual organization of Xen [5], the most widely deployed
open-source hypervisor. Xen provides basic mechanisms for
the upper-layer domains, such as VM scheduling, event deliv-
ering, shared memory, etc. For safety reasons, guest domains
are not allowed to access the hardware directly but rely on
the driver domain (also called domain zero) to act on their
behalf, which embraces real hardware drivers; this is known
as the split-driver model. Take network traffic for example,
the packets from the TCP layer are firstly delivered to the
frontend (netfront, a layer-2 device), and then passed to

netback

Bridge

driver

Administration

utilities

The driver domain Guest domains

Hypervisor

scheduler

Shared

memory

Event

channelXen

NIC

netfront

Applications

TCP stack

Fig. 2. Xen and its split-driver model for network.

the backend (netback, also a layer-2 device) residing in
the driver domain; through the network bridge, the packets
arrive at the real device driver and are eventually pushed to
the physical network; and vice versa. A very important role
of the hypervisor is to proportionally allocate CPU cycles
among the VMs. The hypervisor scheduler guarantees that
each VM receives a CPU allocation commensurate with its
relative ‘weight’ as set by the administrator. Since the driver
domain is responsible to forward I/O for all guest domains,
in order to guarantee the efficiency, it often runs on dedicated
CPU cores. In our experiments, we also follow this practice.

Virtualization can cause performance problems to applica-
tions, which do not exist when they directly run in physical
machines. First, since all I/O traffic must go through the
driver domain, extra software overhead is incurred. Second,
hypervisor scheduling activities can significantly degrade a
VM’s I/O performance, because the VM’s scheduling delays
eventually translate into the processing delays of its I/O events.

III. EXPERIMENTAL METHODOLOGY

We did not use public cloud platforms like Amazon EC2,
because they would not allow access to the hypervisor. We
conduct the experiments in our own cluster emulating a cloud,
in which we can completely control the VM settings and the
guest OS kernels, so that the experimental phenomena can be
reproduced in a deterministic way. The cluster contains 21
Dell PowerEdge M1000e blade servers, connected through a
Brocade FastIron SuperX GbE switch. Each server is equipped
with two quad-core 2.53GHz Intel Xeon 5540 CPUs, 16GB
physical memory, and two 250GB SATA hard disks.

VM

VM

CPU

Physical Machine Physical Machine

GbE Switch

Under

test

…

…

VM

VM

…

CPU

Fig. 3. Experimental setups

We avoid simulation because it is difficult to simulate so
many non-deterministic factors, especially those due to the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

P
in

g
 R

T
T

 (
m

s
)

Time (second)

(a) [PM → PM]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

P
in

g
 R

T
T

 (
m

s
)

Time (second)

(b) [1VM → 1VM]

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
in

g
 R

T
T

 (
m

s
)

Time (second)

(c) [1VM → 2 co-located VMs]

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
in

g
 R

T
T

 (
m

s
)

Time (second)

(d) [1VM → 3 co-located VMs]

Fig. 4. How virtualization affects RTTs, with and without VM consolidation.

hypervisor. Our benchmark is identical to that in [31] as we
have simply reused their source code1: the client issues a
certain number of requests to several servers for data blocks;
only after all responses of the current request are received will
the client issue the next request. Without loss of generality,
we load each CPU core with 2 or 3 co-located VMs to share
the CPU cycles (Figure 3), which is a common loading in
public cloud platforms. We use the Xen 4.1.2 hypervisor and
Linux 2.6.32 with TCP NewReno implementation in the guest
OS. We use tcpdump and netstat to collect corresponding
information. Besides, tcp_probe kernel module is modified
to observe the in-kernel TCP variables.

IV. PROBLEM DESCRIPTION

A. RTTs in a Virtualized Datacenter

In this section, we separately examine the two types of
delays as mentioned in §II-B: the delays caused by the running
of the hypervisor software per se (when there is no CPU
sharing), and the delays due to VM scheduling (when multiple
VMs are consolidated in one CPU core). We use ping with
a 0.1 second interval to get a fine-grained view, with each test
lasting for 60 seconds. For consolidated VMs, each VM runs
certain CPU workload to trigger the hypervisor scheduling.

Figure 4(a) shows that the average delay of the physical
network (two hops, connected to the same switch) is 0.147ms.
When both communicating hosts are VMs, as in Figure 4(b),
the average RTT increases to 0.374ms (2.54×). The extra
0.227ms is the software overhead introduced by additional data
movements between the driver domain and guest VMs. When
one communicating VM runs with consolidation in Figure
4(c)(d), RTT largely varies without any apparent predictability.
For example, with 3 co-located VMs per core in Figure 4(d),
the maximum RTT is about 60ms.

Since the scheduling latency of each VM, Latsched vm, is
actually its queuing delay in the VM scheduling queue, the

1Available at: https://github.com/amarp/incast.

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

G
o
o
d
p
u
t
(M

b
p
s
)

of concurrent senders

200ms
100ms
10ms
1ms

(a) block size = 1024KB

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

G
o
o
d
p
u
t
(M

b
p
s
)

of concurrent senders

200ms
100ms
10ms
1ms

(b) block size = 512KB

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

G
o
o
d
p
u
t
(M

b
p
s
)

of concurrent senders

200ms
100ms
10ms
1ms

(c) block size = 256KB

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

G
o
o
d
p
u
t
(M

b
p
s
)

of concurrent senders

200ms
100ms
10ms
1ms

(d) block size = 128KB

Fig. 5. TCP incast in a virtual cluster, with different requested block sizes
and different RTOmin values.

maximum value of Latsched vm is:

max(Latsched vm) = (N − 1)× TShypervisor (5)

where N is the number of co-located VMs on that core, and
TShypervisor is the time slice used in the hypervisor scheduler.
Xen’s scheduler [2] uses a 30ms time slice by default. So when
N is 3, the maximum scheduling delay of each VM is 60ms.

From the observations above, we have two findings: (1)
virtualization does incur some software overhead, increasing
RTT by several hundred microseconds; (2) even when there
is no congestion, the VM scheduling can make RTT fluctuate
heavily, with the peak linearly increasing with the number
of co-located VMs. Comparing the two types of delays, VM
scheduling latency is the dominant factor affecting RTT.

B. TCP Incast in a Virtual Cluster

For a physical cluster, previous studies [27], [8] have
examined several techniques (limited transmit, reduced dupli-
cate ACK threshold, disabling slow-start, randomizing timeout
values) and several lost-recovery variants (Reno, NewReno,
SACK), but they concluded that none of them can fully
eliminate the incast throughput collapse. On the other hand,
significantly reducing RTOmin has been shown to be a safe
and effective approach [31]. However, whether this approach
is still effective in a virtual cluster is still unknown. In this
section, we add competing flows using multiple VMs to in-
vestigate how TCP would react when real network congestion
happens together with spiked RTTs. There are 3 co-located
VMs per core (including the sender VM), with background
VMs running certain CPU workload to trigger hypervisor
scheduling. The receiver VM runs on a dedicated core (more
discussions are in §X). In each group test, the receiver requests
the same amount of data from the senders: 2000 blocks for
1024KB size, 4000 blocks for 512KB size, 8000 blocks for
256KB size and 16000 blocks for 128KB size.

TABLE I
TO STROBE 2000 1024KB BLOCKS FROM ONE VM SENDER.

RTOmin 200ms 100ms 10ms 1ms
Goodput (Mbps) 559.7 517.2 256.4 234.2

Time taken (seconds) 32 34 66 72
Segments sent 42756 53139 104242 106140
Retransmitted 0 39 587 698
TCP timeouts 0 17 587 698

Spurious RTOs 0 12 108 105
Duplicate ACKs 0 14 584 694

Figure 5 shows that although TCP-1ms causes very serious
performance degradation at the beginning, when the number
of concurrent senders increases, surprisingly the performance
gap shrinks and eventually TCP-1ms remarkably outperforms
TCP-200ms. For example, in the cases of 20 senders, TCP-
1ms achieves more goodput: 102.8% for 1024KB, 188.4% for
512KB, 225.8% for 256KB and 198.7% for 128KB respec-
tively. This catch-up-then-surpass phenomenon has also been
observed in other experiments with different VM densities.

V. UNDERSTANDING THE PROBLEM

A. One-to-one Communication

Among the experiments above, we first select the cases of
one sender, as in Figure 5(a), for deeper investigation. The
results are shown in Table I. First, a large number of TCP
timeouts happen when using small RTOmin values, resulting
in a great deal of retransmissions. The smaller the RTOmin is,
the more timeouts the sender experiences. Second, with TCP-
1ms and TCP-10ms, only a small part of timeouts are iden-
tified to be spurious by F-RTO [29]. Intuitively, all timeouts
should be spurious because no packet actually gets lost when
there is only one sender. Third, the number of duplicate ACKs
received is almost the same with the number of timeouts.

Compared with the overall throughput, the extra network
load due to retransmissions is small. What is more serious
is the reduction of the sending window after RTOs. Upon
a timeout event, the sending window will be reduced to 1
MSS (maximum segment size). If the RTO is detected to be
spurious, Linux TCP typically has two policies to respond:
(1) a conservative (default) response is rate halving, namely
to reduce the congestion window (cwnd) and the slow-
start threshold (ssthresh) by half; (2) a more aggressive
response is to undo the congestion control by restoring cwnd
and ssthresh to the values before timeout. In Figure 6, we
examine the effectiveness of the two policies. The undo policy
can indeed improve the VM’s sending performance to some
extent, but when comparing with TCP-200ms, the performance
gap is still not negligible.

1) What happens in the guest OS: Figure 7 presents
a schematic explanation for RTOs in the sender VM. The
vertical dimension is time and the horizontal dimension is flow
direction. Supposing that VM1 is the TCP sender, after sending
a number of data packets, if the receiver can return the ACK
packet within VM1’s scheduling time slice: (1) the retransmit
timer will be cleared and reset with a new timeout value; (2)
the sending window will be doubled if TCP is in the slow-start

 0

 100

 200

 300

 400

 500

 600

 700

 800

1024KB 512KB 256KB 128KB

G
o

o
d

p
u

t
(M

b
p

s
)

1ms-ratehavling
1ms-undo
10ms-ratehavling
10ms-undo
200ms

Fig. 6. The effectiveness of two response policies to spurious RTOs.

phase. Otherwise, if VM1 has been preempted, the ACK will
be buffered in the driver domain (VM1’s netback). Later when
VM1 receives CPU cycles again, it will check all pending
interrupts: (1) the guest OS updates the system clock and runs
the expired timers – immediately RTO happens; (2) soon after
the RTO, the ACK is received by VM1’s netfront via network
interrupt. Due to common OS design, since kernel timers are
used to create timed events for many other kernel services,
such as process scheduler and networking, timer interrupt is
always executed before other interrupts. In contrast, much of
the network’s processing is executed a bit later using bottom-
half. Once RTO happens, TCP assumes that there is serious
network congestion, but actually the congestion sensed by the
VM is pseudo-congestion2.

To verify our analysis in Figure 7, we show a micro-view
of TCP’s behavior in Figure 8 by capturing the picture around
the happening of VM scheduling delays. In steps 2 and 3,
even though the receiver has returned the ACKs (stored in
the driver domain of the sender machine), after the sender
VM wakes up, RTO is still triggered. If there are no less
than two consecutive ACKs that can all advance snd_una,
F-RTO uses this heuristic to declare the timeout to be spurious
[29]. But the number of ACKs that will be returned each time
is uncertain, subject to the receiver’s situation, e.g. available
buffer space, delayed ACK, etc. Therefore F-RTO is not able
to identify all spurious timeouts. As for the receiver, once
receiving the old segment sent in step 3, it returns an duplicate
ACK to the sender in step 4. Both RTO and duplicate ACKs
are detrimental to TCP’s sending speed.

Figure 7 and Figure 8 only reveals the problem on the sender
side. In fact, hypervisor scheduling can also delay the return
of ACK packets on the receiver side, but the situation there is
different, which we will discuss in §X. In this paper, we mainly
focus on understanding how the sender side is affected by VM
scheduling delays.

2) Why RTTV AR can not adapt: A spurious timeout oc-
curs when RTT suddenly increases and exceeds the retransmit
timeout value that has been determined previously. The low-
pass filter used by standard TCP was developed according
to queuing theory that predicts the delays from the physical
network. However, hypervisor scheduling is totally transparent
to the VMs. Once it suddenly happens, the added delay can

2In the rest of this paper, we use this term to refer to the RTOs caused by
the VM scheduling delays from the hypervisor.

Timer

VM1 is running

Buffer

Timer TCP

sender

Driver

domain

TCP

receiverACK

data data data

Physical

network

Within

hypervisor

VM2 is running VM3 is running VM1 is running

clear

timer

clear

timer

Hypervisor scheduling latency

VM2 is waiting

VM3 is waiting VM1 is waiting

VM3 is waiting VM1 is waiting

VM2 is waiting

VM2 is waiting

VM3 is waiting

wait ..

1

2

Timer IRQ;

RTO happens!

Network IRQ:

Receive ACK;

Spurious RTO!

deliver

ACK

VM scheduling

queue

Expire time

. . .

Timer Timer Timer

data data

clear

timer

clear

timer

ACK ACK ACK ACK

. . .

Fig. 7. How pseudo-congestion happens in the guest operating system when the TCP sender is a consolidated VM.

2.65

2.7

2.75

2.8

2.85

2.9

2.95

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

x106

snd_una

snd_nxt

(1) After sending a few

segments [snd_una, snd_nxt],

the VM is descheduled.

(2) The VM receives the segments

[snd_una, snd_nxt], then returns ACKs.

(3) The sender VM wakes up. RTO happens

first, so it resends the segment that triggers

RTO (snd_una). Then, in_flight ACKs arrive.

(4) The VM receives an old

segment. Send an duplicate

ACK (snd_nxt).

(5) First, receive in_flight ACKs.

Second, receive two duplicate

ACKs. Reduce the sending rate

snd_nxt

in_flight

ACKs

Time (ms) vs. sequence number (from the sender VM) Time (ms) vs. ACK number (from the receiver VM)

snd_una: the first sent but unacknowledged byte. snd_nxt: the next byte that will be sent.

Fig. 8. How TCP behaves with a small RTOmin, when there is CPU sharing on the sender side.

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5

T
C

P
’s

 m
e
a
s
u
re

m
e
n
t
(m

s
)

Time (second)

icsk_rto
meas_rtt

(a) RTOmin = 200ms

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5

T
C

P
’s

 m
e
a
s
u
re

m
e
n
t
(m

s
)

Time (second)

icsk_rto
meas_rtt

(b) RTOmin = 100ms

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5

T
C

P
’s

 m
e
a
s
u
re

m
e
n
t
(m

s
)

Time (second)

icsk_rto
meas_rtt

(c) RTOmin = 10ms

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5

T
C

P
’s

 m
e
a
s
u
re

m
e
n
t
(m

s
)

Time (second)

icsk_rto
meas_rtt

(d) RTOmin = 1ms

Fig. 9. The measured RTTs and calculated RTO values in a sender VM
when varying RTOmin.

be hundreds of times of the physical network delay. RTT
estimation algorithm thus has no chance to react to it timely.

In Figure 9, we use our modified tcp_probe kernel
module to report the measured RTTs (meas_rtt) and the
calculated RTO values (icsk_rto) in the sender VM when
altering RTOmin. We can see that RTT spikes always appear

TABLE II
TO STROBE 40GB DATA FROM 20 VM SENDERS (1024KB BLOCK SIZE).

RTOmin 200ms 100ms 10ms 1ms
Goodput (Mbps) 309.5 498.6 729.3 759.9

Time taken (seconds) 1058 656 450 424
Retransmitted 137478 141642 68448 67604
TCP timeouts 26060 27181 50967 59182

Spurious RTOs 0 377 27032 31415
Duplicate ACKs 26134 27957 49452 58392

without any prior prediction from its historical measurements.
The variable RTTV ARi in Equation 2 can only reflect the
variance of previously measured RTTs. Without the protection
of a sufficiently large RTOmin, TCP timeout happens before
the current RTTV AR can adapt to the change. Upon each
RTO, TCP would exponentially increase subsequent timeout
values using Equation 4, e.g. in Figure 9 (c)(d).

B. Many-to-one Communication

We further select the cases of 20 concurrent VM senders,
as in Figure 5(a), for deeper investigation. Table II shows
the collective statistical results from 20 VM senders. With
TCP-200ms, TCP timeout happens much less frequently than
TCP-1ms (56% less). However, the number of retransmitted
segments is 103.4% more than that of TCP-1ms. Even though
53.1% of the timeouts in the TCP-1ms case are detected to be
spurious, the goodput in this case is much higher than that of
TCP-200ms (145.5% more). This proves that even in a virtual

Datacenter

Applications

one-to-one

communication

many-to-one

communication

RTT largely

varies in VMs

Big value

for RTO timer

Small value

for RTO timer

Dilemma

Avoid pseudo-

congestion

Handle real-

congestion

Fig. 10. TCP’s inability to effectively function in virtualized datacenters

cluster, a small RTOmin is still necessary. Although it would
make VMs vulnerable to pseudo-congestion, when there is
heavy network congestion with many concurrent senders, the
determining factor is whether the VM can sense the packet loss
as quickly as possible and perform retransmissions in time.

C. Summary

Hypervisor scheduling can cause RTT spikes, even when
there is no congestion in the physical network. Since the delay
variability induces serious pseudo-congestion, one effective
way to solve the problem is to use a sufficiently large RTOmin

(say 200ms). However, when real congestion happens, a large
RTOmin makes TCP senders numb to packet losses, leading
to stalled flows for a long time and thus low goodput. The
more aggressive RTOmin is, the less time a connection
spends waiting for needed RTOs, but meanwhile it experiences
more spurious ones. It seems impossible to determine a good
RTOmin which can work well for all scenarios. The two
contradictory requirements present a dilemma to VM’s TCP
design, as illustrated in Figure 10.

This problem is not limited to a specific congestion control
algorithm, such as Reno, BIC, CUBIC, Vegas, etc. Virtualiza-
tion shakes the foundation upon which all TCP variants have
been built: RTT can no longer be a reliable indicator to infer
the network condition, because the measured RTTs may have
been contaminated by VM scheduling delays.

VI. POSSIBLE APPROACHES

A. Hypervisor-level Solutions?

One possible solution to improve a VM’s TCP performance
which is affected by VM scheduling is to modify the hypervi-
sor scheduler: when network packets arrive (either data packets
arriving on the receiver’s side or ACKs arriving on the sender’s
side), schedule the concerned VM as soon as possible as in
[26], [19], [10], [34], regardless of its priority, state, credits,
etc. This approach can alleviate the problem to some extent,
since obviously it would shorten the scheduling delays of the
VM. It would however introduce a different problem: the VM
context switching overhead in the hypervisor will increase
substantially, because the hypervisor needs to keep swapping
the VMs in response to incoming I/O events, making these
solutions too expensive in practice. We are aware that the
vCPU switching of SMP VMs can be less frequent by properly
migrating interrupts from a preempted vCPU to a running one
inside the guest OS [9], but VMs with only a single vCPU
will not be able to enjoy this benefit.

In virtualized clouds, in fact, VM scheduling needs to hap-
pen in order to properly and fairly share the CPU, and should
not be perturbed by ordinary I/O events. As the hypervisor
scheduler is used very frequently to manage all the VMs, it is
important that its design and implementation be as simplistic
and focused as possible: the main function of the hypervisor
scheduler is to proportionally allocate CPU time among the
VMs, and not so much to satisfy VM’s I/O requirements.
Therefore, our direction is to stay away from the hypervisor
and try to redesign the upper-layer protocols to automatically
tolerate the VM scheduling delays.

B. Other TCP Variants?

RTT spikes can also appear in other network types and
cause spurious timeouts, for example and notably in wireless
environments. In these networks, high bit error rate is another
main cause of packet loss, aside from network congestion.
Since there are many different access technologies for wire-
less networks, each TCP wireless solution tends to have its
own unique problems to tackle. For example, TCP-Peach [3]
considers long propagation delay in satellite networks, ATCP
[20] solves the problem of frequent route changes in ad-hoc
networks, and Freeze-TCP [14] focuses on the hand-off prob-
lem in cellular networks. It is unlikely that a universal TCP
solution can be developed that fits all types of networks [30].
Seemingly, to accurately identify the cause of packet loss has
become a focal point in TCP design. Virtualized datacenters,
because of their unique causes of unpredictable network delays
of large magnitude (100×) and high frequency (every 10×ms),
present another case needing special adaptation.

C. Timestamping the Packets in the Device Driver?

As shown in Figures 7 and 8, the sender VM can not know
the arrival of the ACK until the sender is scheduled again.
The time that the sender receives the ACK is not the time
that the ACK arrives at the sender’s machine. To solve the
problem, one would be tempted to try correcting the timestamp
of the ACK on reception in the device driver and exposing
the value to the guest OS. TCP can use a timestamp option to
measure RTT: the sender timestamps the transmission, and the
receiver will echo back this value via its ACK to the sender.
Upon receiving the ACK, the sender calculates the difference
between the current system clock and the ACK’s timestamp:

MRTT = system clock −ACK.timestamp (6)

So ACK.timestamp is actually the sending time of last
transmission from the sender, and not the arriving time of the
ACK. As for system clock, it can be obtained only inside
the guest OS after the VM wakes up. Therefore, changing the
ACK timestamp in the device driver will easily end up faulty.

VII. PROPOSED SOLUTION – PVTCP

PVTCP is a ParaVirtualized TCP that does not require
any modification to the hypervisor. It accepts the latencies
thus introduced by the hypervisor scheduler as they are, but
suggests a way to capture the true picture of every transmission

Standard TCP

VM scheduling

latency

Periodic timer

interrupt

Hypervisor

+1+10xGuest OS

Update System Clock

PVTCP

Run

expired

timers

RTO

Management

RTT

Measurement

Detect Spikes

Fig. 11. The architecture of PVTCP.

involving these latencies, which is then used to determine more
accurate RTO values that can help filter out pseudo-congestion.

A. The Architecture of PVTCP

Figure 11 shows the architecture of PVTCP. Since pseudo-
congestion only happens when the sender VM just wakes
up, if we can detect its wakeup, we have the chance to deal
with the problem. The retransmit timer relies on the system
clock (jiffies in Linux) for its expiry time. RTT is also
calculated using the system clock. In a consolidated VM,
there are two sources in the hypervisor that contribute to the
VM’s clock ticks: VM scheduling latency and periodic timer
interrupt. The latter is very regular and increases jiffies
by one each time, whereas VM scheduling latency is very
unpredictable and can cause sudden increase to jiffies.
Hypervisor scheduling disrupts the guest OS’s updating of
its system clock. This problem is generic and not specific to
Xen/Linux. Therefore, our key idea is to detect these sudden
changes (spikes) of jiffies, and use this in a heuristic to
filter out the negative effect of the spikes.

1) Detect Spiked Jiffies: The kernel increases the system
clock by one at each timer interrupt. There are HZ timer
interrupts in a second. In modern operating systems, especially
64-bit ones, HZ is mostly 1000 for precise time accounting,
and jiffies is incremented every 1ms. Xen hypervisor
uses a “one-shot” timer to provide the clock source to VMs.
Normally when a VM is running, it can periodically register
clock events and receive virtual timer IRQs from the hyper-
visor to continuously update its jiffies. However, if the
VM has been preempted, it is unable to set clock events
to the hypervisor and the pre-registered clock event has to
be backlogged until the VM resumes getting CPU cycles,
as shown in Figure 12. When there are three VMs sharing
one CPU core, the maximum scheduling delay can be 60ms,
resulting in a sudden change of 60 increments to jiffies.
Therefore, if jiffies is detected to be not continuously
increasing, it is a strong indication that there was a backlogged
timer interrupt and the VM has just been delayed by the
hypervisor scheduler.

2) RTO Management: Spurious RTOs may occur when the
sender VM has just experienced a delay from the hypervisor
scheduler. Suppose that TCP’s retransmit timer is activated at

Virtual timer IRQs

(every 1ms)

Time
Guest OS

Hypervisor

VM is not running

. . .

jiffies += 60

VM is running

Virtual timer IRQs

(every 1ms)

VM is running

ji
ff

ie
s+

+

ji
ff

ie
s+

+

ji
ff

ie
s+

+

ji
ff

ie
s+

+

ji
ff

ie
s+

+

ji
ff

ie
s+

+

VM is not able to set clock

event to the hypervisor

The backlogged event will be

delivered after the VM wakes up

. . .

. . .

. . .

Fig. 12. How jiffies changes in a VM, when there is CPU sharing.

time Tbegin, and it is set to expire at time Tend; then its active
period can be expressed as [Tbegin, Tend]. In the case of no
scheduling delays from the hypervisor:

Tend = Tbegin +RTO (7)

Otherwise, the timer’s expiry time would be postponed:

Tend = Tbegin +max(Latsched vm, RTO) (8)

In order to avoid the problem of “RTO-ACK-SpuriosRTO”,
PVTCP slightly extends the expiry time of the retransmit timer
by 1ms, if a spiked jiffies has been detected:

Tend ← Tbegin +max(Latsched vm, RTO) + 1ms (9)

In this way, if an ACK does arrive in the driver domain,
it gets an opportunity to reach the VM sender before RTO
happens. After the ACK is received, the retransmit timer will
be reset with a new timeout value. If there is no ACK packet
in the driver domain due to real network congestion, TCP can
know the packet loss at jiffies+1 via RTO event, and then
will retransmit the lost segments. Compared with the delays
from the hypervisor scheduler (10×ms), the overhead of this
temporary 1ms postponement is negligible.

3) RTT Measurement: With the RTO being avoided in the
above, the received ACK will be used to calculate RTT in
the sender VM. However, its arrival has been delayed by the
hypervisor. Therefore, the measured RTT can not truly reflect
the congestion condition of the physical network:

MRTT = max(Latsched vm, trueRTT) (10)

Since Latsched vm is usually 10×ms, it can cause acute
increase to both SRTT and RTTV AR (Equation 1 and 2).
As a result, the calculated timeout value for RTO will seriously
deviate from the reasonable value (Equation 3). In our solution,
since we are able to detect the moment when a spiked RTT
happens, the untrustful measurement can be identified and then
filtered out. PVTCP adopts a conservative way to measure
RTT when the VM experiences hypervisor scheduling delays,
by reusing the previously calculated “smoothed RTT”:

MRTTi ← SRTTi−1 (11)

VIII. IMPLEMENTATION

PVTCP has been implemented in Linux 2.6.32, containing
less than 200 lines of code. The design is generic and hence
potentially portable to other types of guest operating systems.

TABLE III
THE IMPLEMENTATION OF PVTCP IN LINUX.

PVTCP Components Where in Linux
Detect Spiked Jiffies run_timer_softirq()
RTO Management __run_timers()
RTT Measurement tcp_rtt_estimator()

Algorithm 1: PVTCP algorithm
Global variables: jiffies, prev_jiffies, is_spiked_jiffies;

DetectSpikedJiffies()
begin

for each virtual timer interrupt in the guest OS do
if jiffies > prev_jiffies+1 then

is_spiked_jiffies← true;
else

is_spiked_jiffies← false;
end
prev_jiffies← jiffies;

end
end
RTOManagement()
begin

for each timer softirq in the guest OS do
if is_spiked_jiffies is true then

Identify all of TCP’s retransmit timers;
Reset them to expire at jiffies+1;

end
Run the other expired timers;

end
end
RTTMeasurement()
begin

for each received ACK packet do
if is_spiked_jiffies is true then

mearsured rtti ← smoothed rtti−1;
else

Follow standard TCP to measure RTT;
end

end
end

The implementation aims to minimize the footprint by reusing
existing Linux code as much as possible. The components of
PVTCP are implemented as hook functions and are highly
modular in Linux, as shown in Table III.

As illustrated in Algorithm 1, PVTCP is triggered only after
a spiked jiffies has been detected in the guest OS; otherwise,
it will adaptively switch to standard TCP for congestion
control. The access to is_spiked_jiffies is protected
by a spinlock to avoid race condition. We add a type
variable in struct timer_list, and this variable will
be set to TCP_RETRANS when TCP initializes its timers in
tcp_init_xmit_timers(). In this way, we are able to
distinguish exactly which timers should be slightly postponed
when spiked jiffies happen, without affecting the other timers.
It is possible that there are more than one retransmit timer
belonging to multiple TCP connections; they are therefore put
in a separate struct list_head for easy manipulation.

IX. PERFORMANCE EVALUATION

Recall in §IV that it is difficult to choose a suitable RTOmin

that can fit the range of scenarios: too small a value (1ms) will
suffer from pseudo-congestion in those one-to-one cases, but
too large a value (200ms) will miss the real congestion in
the many-to-one cases. We repeated the previous experiments
with the addition of PVTCP, as shown in Figure 13, where we

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

G
o
o
d
p
u
t
(M

b
p
s
)

of concurrent senders

TCP-200ms
TCP-1ms
PVTCP-1ms

(a) block size = 1024KB

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

G
o
o
d
p
u
t
(M

b
p
s
)

of concurrent senders

TCP-200ms
TCP-1ms
PVTCP-1ms

(b) block size = 512KB

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

G
o
o
d
p
u
t
(M

b
p
s
)

of concurrent senders

TCP-200ms
TCP-1ms
PVTCP-1ms

(c) block size = 256KB

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

G
o
o
d
p
u
t
(M

b
p
s
)

of concurrent senders

TCP-200ms
TCP-1ms
PVTCP-1ms

(d) block size = 128KB

Fig. 13. PVTCP in a virtual cluster to handle incast congestion.

TABLE IV
PVTCP STATISTICS – TO STROBE 2GB DATA FROM ONE VM SENDER

USING DIFFERENT BLOCK SIZES.
PVTCP-1ms 1024KB 512KB 256KB 128KB

Goodput (Mbps) 561.1 487.2 475.1 392.1
Time taken (seconds) 30.2 33.8 36.6 41.8

Retransmitted 7 10 13 11
TCP timeouts 2 3 3 6

Spurious RTOs 2 3 2 4
Duplicate ACKs 3 2 2 2

can see that PVTCP-1ms outperforms both TCP-200ms and
TCP-1ms in almost all cases. More specifically, (1) PVTCP
effectively avoids performance loss as happened in TCP-1ms
with a small number of senders, and at the same time (2)
it also avoids throughput collapse as experienced by TCP-
200ms under heavy network congestion with a large number
of senders. This benefit is important in practice as users can
be freed from the worry of an improper RTOmin.

With one VM sender when there is no network congestion,
the performance of PVTCP-1ms nearly coincides with that of
TCP-200ms. The results in Table IV show that RTO happens
rarely. Take blocksize of 1024KB for example, the number of
timeouts is reduced from 698 (in Table I) to 2. A spurious RTO
happens when the VM has just come out of a scheduling delay,
and since PVTCP is able to detect this moment, it causes the
ACK in the driver domain enter the VM slightly before the
TCP timer expires.

Even when comparing with TCP-1ms in the case of 20
senders, the results in Table V show that PVTCP-1ms can still
deliver a performance improvement of 3.6%, 5.8%, 7.9%, and
9.4% for the various blocksizes respectively. The numbers of
RTOs, spurious RTOs, retransmissions and duplicate ACKs are
all considerably reduced. This is because when real network
congestion happens together with spiked RTTs, PVTCP is able
to distinguish RTOs caused by pseudo-congestion from those
caused by real packet losses. By weeding the bogus RTOs,
the sender’s congestion window suffers much less reduction.

TABLE V
PVTCP VS. TCP: TO STROBE 40GB DATA FROM 20 VM SENDERS CONCURRENTLY, USING DIFFERENT BLOCK SIZES

RTOmin=1ms block size = 1024KB block size = 512KB block size = 256KB block size = 128KB
TCP PVTCP Gain TCP PVTCP Gain TCP PVTCP Gain TCP PVTCP Gain

Goodput (Mbps) 759.9 787.1 +3.6% 667.1 706.1 +5.8% 464.6 501.2 +7.9% 301.2 329.5 +9.4%
Time (seconds) 424 411 -3.1% 476 450 -5.5% 684 638 -6.7% 1067 998 -6.5%
Retransmitted 67604 65325 -3.4% 55969 46022 -17.8% 75801 17705 -76.6% 104778 36495 -65.2%
TCP timeouts 59182 26828 -54.7% 51408 15984 -68.9% 74672 17161 -77.0% 102461 36161 -64.7%

Spurious RTOs 31415 233 -99.3% 23303 253 -98.9% 22630 423 -98.1% 20120 346 -98.3%
Duplicate ACKs 58392 18822 -67.8% 47740 7729 -83.8% 61832 1596 -97.4% 72167 1620 -97.8%

DupACKs/Retrans. 86.4% 28.8% -57.6% 85.3% 16.8% -68.5% 81.6% 9.0% -72.6% 68.9% 4.4% -64.5%

Besides, since the old segments sent to the receiver caused
by the bogus RTOs are also largely avoided, duplicate ACKs
being returned to the senders are much reduced. The last row
shows the ratios of duplicated ACKs to retransmissions, which
clearly indicate that PVTCP is more capable of making valid
retransmissions.

X. DISCUSSION AND FUTURE WORK

A. Sender-side vs. Receiver-side

Although VM scheduling can happen on both the sender’s
side and the receiver’s side, the natures of the two situations
are quite different. From TCP’s perspective, and supposing
a scheduling delay on either the sender side or the receiver
side has caused an RTO: (1) if the sending VM has been
preempted, RTO should not happen after the VM wakes up,
because the ACK does arrive at the sender’s side before the
retransmit timer expires; (2) in contrast, if the receiving VM
suffers the delay, RTO should happen in the sender because
the generation and the return of the ACK is indeed too late.

The problem on the sender side is more an OS problem
than a networking problem, because RTOs can be caused by
the simple fact that timer interrupt is always executed before
network interrupt. Our solution is not about how to detect the
wrong RTOs or how to recover the congestion window after
RTOs have happened. Instead, we aim at how to avoid the
wrong RTOs, by giving the ACK a chance to be seen by TCP
before the retransmit timer expires. This way, TCP does not
need to go through a complicated path to handle RTOs at all.

We perceive the situation on the receiver side as a non-
OS problem, by viewing the scheduling delay on the receiver
side as just a part of the overall transmission “delay” which
happens to have a large variance, and is similar to that of
an unstable wireless path. But whether the guest OS on the
receiver’s side should or can do anything at all about this
scheduling delay or not is an open problem, which is also the
next step of our project.

B. The Principle of Packet Conservation

A very important principle of TCP design is “packet conser-
vation”: a new packet will not be pushed into the network until
an old packet has left. The window-based transport protocol
expects that each connection reaches an equilibrium using
slow-start, and then counts on RTT (or ACK clock) to maintain
the equilibrium [15]. However, the transmission of a VM is
intermittent due to the scheduling delays, and RTT varies
considerably with high frequency in virtualized datacenters.

It has been proved that TCP has equilibrium and stability
problems showing large and unstable network delays [21].
Therefore, all original models developed upon this principle
need to be reexamined in virtualized datacenters, including
RTT estimation algorithms, exponential backoff, the heuristics
for fast retransmit and fast recovery, etc.

XI. RELATED WORK

A. TCP in Virtual Machines

vSnoop [17] lets the driver domain acknowledge the sender
on behalf of the receiver VM, so as to elicit the sender to
issue more packets. vFlood [13] encourages the sender VM to
opportunistically flood as many packets as it can to the driver
domain, as a way to make compensation for the period when
the sender VM is descheduled and can not send packets.

First, the essence of both vSnoop and vFlood is to allow
the guest VM to consume more resource from the driver
domain, so that the TCP flow can still progress even when
the VM has been descheduled. Instead, our solution avoids
violating the resource allocation scheme in which each VM is
supposed to consume a fixed amount of computing resources.
Second, their solutions are typically of split-TCP [18] style, by
dividing the TCP connection between VMs into two separate
connections with the driver domain serving as the proxy point.
A major problem is that the idea violates the end-to-end
security protection between the sender and receiver. Third,
their implementations are technically too complex because all
TCP flows need to be monitored and manipulated in Xen’s
driver domain, making it less portable. In contrast, PVTCP is
self-contained and highly hypervisor-independent.

Research [25] proposes to offload the whole socket layer
(open, accept, read, write, close) into the hy-
pervisor. However, this would greatly complicate a key feature
of virtualization: VM live migration [11], because it would
introduce a problem similar to that of residual dependencies in
process migration [22]. PVTCP is self-contained, and therefore
it will not be an obstacle to VM live migration.

B. Incast in Datacenters

This phenomenon was first described in the context of a
distributed storage cluster [23]. Increasing the switch buffer
size was one adopted solution, which however is too expen-
sive. On the other hand, any particular switch configuration
will have some maximum number of servers that can send
simultaneously before throughput collapse occurs [27].

Application-level solutions were proposed in [28], [24],
which requires building applications that conform to new
programming interfaces. Although the synchronization pattern
originates from the application layer, the problem actually
happens in the transport layer. Since a datacenter needs to
support a large number of applications, a solution at the
transport layer is preferred.

ICTCP [33] adjusts the receive window to limit the band-
width of each TCP sender before incast happens. However,
under the anonymous sharing of the network, since each host
has no idea of how the others behave, network congestion is
essentially inevitable. Therefore, timeout-based solution on the
sender side is still irreplaceable for dealing with packet loss.

DCTCP [4] leverages ECN capability in modern switches
to mark congested packets. Both TCP sender and receiver
are slightly modified for a fine-grained congestion window
adjustment. Their experiments show that when the number of
concurrent senders increases, DCTCP still needs to work with
a small timeout value to handle heavy network congestion.

In virtualized datacenters, due to fluctuating delays caused
by the hypervisor scheduler, TCP in VMs can not obtain
trustable congestion information of the physical network from
RTT feedbacks and RTO events. Therefore, none of the solu-
tions designed for physical datacenters can be directly applied
to virtualized datacenters without addressing the problem of
VM scheduling delays.

XII. ACKNOWLEDGEMENTS

We thank the authors of [31] for sharing their source code
for evaluating the incast problem. This research is supported
in part by a Hong Kong UGC Special Equipment Grant (SEG-
HKU09).

REFERENCES

[1] Amazon Elastic MapReduce: http://aws.amazon.com/elasticmapreduce/.
[2] Xen’s Credit Scheduler: http://wiki.xen.org/wiki/credit scheduler.
[3] I. F. Akyildiz, G. Morabito, and S. Palazzo. TCP-Peach: a new conges-

tion control scheme for satellite IP networks. IEEE/ACM Transactions
on Networking (ToN), 9(3):307–321, 2001.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In
ACM SIGCOMM Conference, 2010.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
ACM Symposium on Operating Systems Principles (SOSP), 2003.

[6] S. K. Barker and P. Shenoy. Empirical evaluation of latency-sensitive
application performance in the cloud. In ACM SIGMM Conference on
Multimedia Systems (MMSys), 2010.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data
center traffic characteristics. SIGCOMM Comput. Commun. Rev. (CCR),
40(1):92–99, Jan. 2010.

[8] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph. Understanding
TCP incast throughput collapse in datacenter networks. In ACM
Workshop on Research on Enterprise Networking (WREN), 2009.

[9] L. Cheng and C.-L. Wang. vBalance: using interrupt load balance to
improve I/O performance for SMP virtual machines. In ACM Symposium
on Cloud Computing (SoCC), 2012.

[10] L. Cheng, C.-L. Wang, and S. Di. Defeating network jitter for virtual
machines. In IEEE/ACM International Conference on Utility and Cloud
Computing (UCC), 2011.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI, 2005.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[13] S. Gamage, A. Kangarlou, R. R. Kompella, and D. Xu. Opportunistic
flooding to improve TCP transmit performance in virtualized clouds. In
ACM Symposium on Cloud Computing (SoCC), 2011.

[14] T. Goff, J. Moronski, D. S. Phatak, and V. Gupta. Freeze-TCP: A true
end-to-end TCP enhancement mechanism for mobile environments. In
IEEE International Conference on Computer Communications (INFO-
COM), 2000.

[15] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM
Conference, 1988.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of data center traffic: measurements & analysis. In ACM Internet
Measurement Conference (IMC), 2009.

[17] A. Kangarlou, S. Gamage, R. R. Kompella, and D. Xu. vSnoop: Improv-
ing TCP throughput in virtualized environments via acknowledgement
offload. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2010.

[18] S. Kopparty, S. Krishnamurthy, M. Faloutsos, and S. Tripathi. Split
TCP for mobile ad hoc networks. In IEEE Global Telecommunications
Conference (GLOBECOM), 2002.

[19] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik.
Supporting soft real-time tasks in the xen hypervisor. In ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE), 2010.

[20] J. Liu and S. Singh. ATCP: TCP for mobile ad hoc networks. IEEE
Journal on Selected Areas in Communications (JSAC), 19(7):1300–1315,
2001.

[21] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle. Dynamics
of TCP/RED and a scalable control. In IEEE International Conference
on Computer Communications (INFOCOM), 2002.

[22] D. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou.
Process migration. ACM Comput. Surv., 32(3):241–299, 2000.

[23] D. Nagle, D. Serenyi, and A. Matthews. The panasas activescale storage
cluster: Delivering scalable high bandwidth storage. In ACM/IEEE
Conference on Supercomputing (SC), 2004.

[24] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y. Suzue.
Flat datacenter storage. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2012.

[25] A. Nordal, A. Kvalnes, and D. Johansen. Paravirtualizing TCP. In
International Workshop on Virtualization Technologies in Distributed
Computing (VTDC), 2012.

[26] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O in virtual machine
monitors. In ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE), 2008.

[27] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G. Ganger,
G. Gibson, and S. Seshan. Measurement and analysis of TCP throughput
collapse in cluster-based storage systems. In USENIX Conference on File
and Storage Technologies (FAST), 2008.

[28] M. Podlesny and C. Williamson. Solving the TCP-incast problem
with application-level scheduling. In IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2012.

[29] P. Sarolahti, M. Kojo, and K. E. E. Raatikainen. F-RTO: an enhanced re-
covery algorithm for TCP retransmission timeouts. SIGCOMM Comput.
Commun. Rev. (CCR), 33(2):51–63, 2003.

[30] Y. Tian, K. Xu, and N. Ansari. TCP in wireless environments: problems
and solutions. IEEE Communications Magazine, 43(3):S27–S32, 2005.

[31] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller. Safe and effective fine-
grained TCP retransmissions for datacenter communication. In ACM
SIGCOMM Conference, 2009.

[32] G. Wang and T. Ng. The impact of virtualization on network perfor-
mance of Amazon EC2 data center. In IEEE International Conference
on Computer Communications (INFOCOM), 2010.

[33] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: incast congestion
control for TCP in data center networks. In International Conference on
Emerging Networking EXperiments and Technologies (CoNEXT), 2010.

[34] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella, and D. Xu.
vSlicer: latency-aware virtual machine scheduling via differentiated-
frequency CPU slicing. In ACM International Symposium on High
Performance Distributed Computing (HPDC), 2012.

