
Contention-Aware Communication Schedule For High-Speed

Communication

Anthony T.C. Tam and Cho-Li Wang

Department of Computer Science and Information Systems

University of Hong Kong

{atctam, clwang} @csis.hku.hk

Abstract

Much of the effort has been devoted to address the software overhead problem in the past decade, which

is known as the major hindrance on high-speed communication. However, this paper shows that having a low-

latency communication system does not guarantee to achieve high performance, as there are other communication

issues that have not been fully-addressed by the use of low-latency communication, such as contention, commu-

nication patterns and scheduling of communication events. In this paper, we use the complete exchange operation

as a case study to show that with careful design of communication schedules, we can achieve efficient com-

munication as well as prevent congestion on a high-performance commodity network. We have developed a

complete exchange algorithm, the Synchronous Shuffle Exchange, which is an optimal algorithm on the non-

blocking network. To avoid congestion loss caused by the non-deterministic delays in communication events, a

global congestion control scheme is introduced. This scheme uses a global windowing concept to coordinate all

participating nodes to monitor and regulate the traffic load, which effectively avoids congestion loss and main-

tains sufficient throughput to maximize the performance. To improve the effectiveness of the congestion control

scheme when working on the hierarchical network, we incorporate information on the network topology to de-

vise a contention-aware permutation. This permutation scheme generates a communication schedule, which is

both node and switch contention-free as well as distributing the network loads more evenly across the hierarchy.

This relieves the congestion build-up at the uplink ports and improves the synchronism of the traffic information

exchange between cluster nodes. Performance results of our implementation on a 32-node cluster with various

network configurations are examined and reported in this paper.

1

1 Introduction

The performance problem related to the communication software has been an active research issue for the past

decade. Currently, lightweight messaging systems [7, 18, 19, 25, 32, 35, 36] offer the best communication perfor-

mance, as they create a fast communication path that bypasses the traditional in-kernel messaging protocol stack

(e.g. TCP/IP), which is a serious obstacle in exploiting the high performance of modern network [1, 15, 16]. Al-

though most of these lightweight messaging systems are successful in delivering the raw network performance

to higher-level applications, there remain a number of issues that are not well addressed by these lightweight

messaging systems, such as:

� Only focus on point-to-point performance - they lack of supports on guiding the development of efficient

high-level communication primitives atop of the lightweight messaging layer.

� System behavior under heavy load - with the availability of low-latency communication mechanisms, appli-

cations can now generate higher load to the network, that could result in congestion build up in some part of

the network, and of the worst scenario, this would induce congestion loss problem. As the TCP/IP protocol

suit is not included in the lightweight messaging systems, the system programmers have to consider about

supporting the congestion control mechanism on top of these communication systems.

� Contention issue - the degree of contention has a direct implication on the sustainable performance for

a particular architecture-application pair. Different combination of hardware and software, together with

different communication patterns and schedules may stimulate different congestion behavior. These make

modeling of congestion behavior on a global communication event a challenging task.

In this paper, we make use of the most demanding communication pattern on all message-passing machines, the

Complete Exchange operation, as an example to illustrate how we could address the communication issues on

a high-speed commodity network, which operates under a lightweight messaging system. This paper introduces

three techniques to exploit the advantages of low-latency communication, which optimize the communication

efficiency as well as guard against the congestion loss problem.

The first technique optimizes the pipelining efficiency by careful scheduling of all message exchanges accord-

ing to a node contention-free schedule at the packet level. This effectively balances the usage of available network

resources, and completely eliminates unnecessary startup overhead and synchronization overhead; and therefore,

achieves good communication performance. We make use of a realistic communication model to show that this

communication schedule is a bandwidth-optimal algorithm on any non-blocking network.

Even with a node contention-free communication schedule, other factors could introduce non-deterministic

delays to well-scheduled communication events, such as variations in process scheduling and competition with

2

high-priority system activities. Under such circumstances, the buffers of the switches play a crucial role. This

is because, as the network links are fully utilizing to achieve high-performance, any deviation from the normal

communication schedules will break the logical harmony and induce contention, and therefore, is handled by the

switch’s buffers. However, network buffers are scarce resources.

The second technique avoids performance loss caused by the overrun of network buffers by introducing a

congestion control scheme to prevent oversubscription to the network. The essential feature of this control scheme

is the proactive approach in handling congestion, which monitors and regulates the traffic loads and ensures a fair

sharing of network resources that avoids buffer overflow. We make use of available resource information, such as

the network buffer capacities of the switched network, the communication pattern and communication volume, to

derive this resource-aware congestion control scheme.

The third technique improves the effectiveness of the congestion control scheme when operating on the Hi-

erarchical network. The hierarchical network makes use of higher speed technology as the backbone network

to support full-connectivity between many smaller subnetworks, while these subnetworks can be composed of a

single switched network or another hierarchical network. We incorporate information on the network topology to

devise a contention-aware permutation, which generates a communication schedule that is both node and switch

contention-free as well as distributing the network loads more evenly across the hierarchy. This relieves the con-

gestion build-up at the uplink ports and improves the synchronism of the traffics information exchange between

cluster nodes.

The effects of these contention-aware techniques are evaluated on a cluster with 32 nodes, which are tested

by interconnecting these nodes with different network configurations. The experimental results show that our

complete exchange algorithm can utilize more than 90% of the underlying network bandwidth for most of the

testing configurations.

The rest of this paper is organized as follows. Section 2 provides an overview of the network technology and the

communication pattern that we are focusing on. We also describe a system model of the interconnection network,

in which our analyses are based on. Section 3 presents the three contention-aware techniques, which combine to

provide an efficiency complete exchange algorithm. In this section, we also explain the difficulties in achieving

high-performance communication under the real environment. The experimental evaluation of this contention-

aware complete exchange schedule on various network configurations are presented in Section 4. Section 5 discuss

others important related work, and finally, concluding remarks are made in Section 6.

3

2 Background

2.1 Complete Exchange Operation

Complete exchange, also known as all-to-all personalized communication, is a collective operation takes place

with a set of processes, and each process has a distinct set of data to transmit to every other process in the set. It

is known to be the most stringent communication requirement imposed on the interconnection network. Such a

communication pattern occurs in numerous numerical and scientific applications.

Due to its importance, complete exchange operation has been extensively studied in the past. Most of the

studies are focused on designing communication schedules to avoid contention delay induced by the topological

constraints of the underlying networks, such as hypercubes [2], meshes [29], tori [33], fat-trees [24], multistage

interconnection networks [37]and multi-dimension networks [10]. These algorithms exploit the full performance

of the underlying networks by carefully scheduling communications to avoid both node and link contention. Thus,

these communication schedules are almost shaped to the target network constraints.

General speaking, algorithms for complete exchange can be classified into two categories, the direct or indirect

approaches. For the direct algorithm, each process directly sends those data blocks to each of the destination

processes using separate communication steps. A clear advantage is that the messages are delivered right to

the destinations without going through any intermediate nodes; hence, each message appears only once in the

network. This favors networks with higher connectivity such as multistage interconnection networks and the

crossbar networks, since the major issue is to schedule the transmissions such that no link contention takes place.

For the indirect algorithm, data blocks for a set of destination processes are combined to a larger block and are sent

to a representative process, this is then forward to the correct destination processes. The indirect approach reduces

the number of communication steps to reduce the startup cost; however, it introduces more traffic in the network

and extra software overheads in performing data permutation. Thus, indirect approach favors small size messages

exchange, while direct approach favors long messages exchange [3, 4, 6].

To avoid both link and node contention, some complete exchange algorithms split the communication schedule

into multiple phases. Each phase corresponds to a contention-free routing of messages between nodes. This

approach restrains the parallelism between different phases, as a process would not enter next phase unless it has

finished the message exchange of the current phase. Besides, not all processes are active in each phase [17, 33];

therefore, inactive processes have to be kept idle for the whole phase. Furthermore, to achieve this contention-free

synchronism, the schedule would induce substantial synchronization overhead. First, processes ahead of schedule

cannot continue, this means some of the links carry no data. Second, it is hard to enforce this synchronism on a

distributed system. In particular, synchronization achieved by software solutions (e.g., barrier) could contend with

normal data transfer and this may become a waste of bandwidth. Bokhari et al. [5] have pointed out that by using

4

a relaxed synchronization scheme that possibly increases the network contention, the overall performance of the

complete exchange communication could be improved.

2.2 Ethernet-Based Cluster Interconnect

Ethernet-based network is the most widely used local area networking technology. Although standard Ethernet has

limited bandwidth in supporting cluster computing, its enhanced versions, such as Fast Ethernet (FE), Gigabit Eth-

ernet (GE) and 10 Gigabit Ethernet provide sufficient bandwidth with a steady upgrade path in building large-scale

commodity clusters. Therefore, many self-made large-scale clusters are using Fast Ethernet and/or its successor as

the base of their interconnections.

Currently, there are two approaches in building a large-scale cluster using the Ethernet-based interconnections.

First, using a single high-performance, high port density chassis switch to connect all machines. Second, using

a hierarchical network, in which cluster nodes are connected to Fast Ethernet switches and using the Gigabit

Ethernet as a backbone network to interconnect all Fast Ethernet switches. Given that the backbone capacity of the

interconnection network is greater than the bandwidth demands of the whole cluster, both approaches could support

a fully connected network with similar performance. In reality, both approaches could suffer on architectural

constraints that limit their actual performance.

Non-Blocking Switch The use of switches in LANs becomes an effective way to increase the network band-

width. Besides of the improvement in network performance, these switches provide greater flexibility and inter-

connect scalability in network design. For example, some commercial network products even support non-blocking

switching capability up to hundreds or even thousand ports [21]. A switch is said to be non-blocking if the switch-

ing fabric is capable of handling the theoretical total of all ports, such that any routing request to any free output

port can be established successfully without interfering other traffics.

Hierarchical Network The hierarchical approach makes use of compatible network technologies, which is a

cost-effective method in incremental scaling of the cluster. With Ethernet-based devices, connections between

different technologies are commonly bridged by one or more uplink ports, which are add-ons to those "lower"

end devices. Due to the requirement of having higher channel bandwidth for the uplinks, this limits the switching

mechanism adopted on this type of interconnection. For example, cut-through switching is not suitable for the

uplink connections, and makes the store-and-forward switching be the only feasible solution. However, the change

of channel bandwidth between two technologies may induce hot spot since store-and-forward switching causes

cumulating of upstream and downstream packets over those uplink ports.

5

Performance limitations Theoretically, connecting all cluster nodes via a single non-blocking switch provides

the best performance. However, there are other internal factors that hinder the switch performance. In particular,

the buffering mechanism used within the switches is one of the crucial factors. There are many variations of

switch’s buffering architecture, most commodity switches fall into one or a combination of these three basic types:

input-buffered, output-buffered and shared-buffered.

For the input-buffered architecture, incoming packets are queued in buffers, one per input port. This is the

simplest design as the internal speed of the buffers only operates at the same speed as the input/output links.

However, it is known to have the Head-Of-Line (HOL) blocking problem. Packets block at the head of the queue

also block the packets behind them, even if some of these packets are destined for idle output ports. By using

queuing analysis, HOL blocking is shown to reduce throughput to 58% even under uniform traffic. While for the

other two architectures, output-buffered and shared-buffered, their buffering mechanisms avoid the HOL problem,

and thus have a higher congestion tolerance and provide better performance than input-buffered switches. However,

due to technological constraints, the performance of the buffers must be fast enough to sustain simultaneous access,

and this requires more complex and stringent design.

Apparently, even under a node contention-free schedule, sharing of uplinks is needed on a hierarchical network.

For instance, all cross-switch traffics are going via the uplinks to the Gigabit Ethernet switch, packets have to

contend for the shared links although they may be from distinct sources and to distinct destinations. In theory,

under a node contention-free schedule, any transient congestion over the uplinks could be handled by the buffers

in the switches as well as the higher throughput of the uplink connections. However, the loosely-coupled nature

of the clusters does not guarantee to adhere to a tightly synchronized schedule. Any random delay on scheduling

communication events of the complete exchange operation may result in considerably contention. As congestion

is handled by the buffers in the switches, therefore, we see that the buffering mechanism plays a critical role in the

overall performance of the hierarchical network.

2.3 System Model

We analyze the performance of the complete exchange algorithms based on a communication model discussed

in [30]. This communication model involves several parameters: send overhead (
���

), network latency (�), network

gaps (� � , ���), receive overheads (
� � , ���) and network buffer capacity (�
). The parameter

���
stands for the

software overhead associated with the send process for sending a b-byte data packet. The overall cost reflects the

performance of the host node, e.g. CPU and system bus speeds, and the involved communication protocol. The

parameter � is the hardware latency of moving a b-byte packet from the physical memory of the source node to the

physical memory of the destination node. It encapsulates network-dependent features, such as network topology,

network speed, and diameter between communicating entities. The value of � is subjected to the traffic load in

6

a real network. With the hierarchical network, we have two different latency values for communication between

cluster nodes within a switch and across switches.

The parameter 	�
 corresponds to the available buffers in a switch, which is a measure of the network tolerance

of the switch in handling contention. Parameters � � and ��� encapsulate the minimum time between consecutive

injection or reception of b-byte packets to or from the network by the communication hardware. It models the

data transfer capabilities of the host machine and the network interface controller, such as DMA transfer and

the network technology in use. For a homogeneous cluster, we generally assume that � ��� � � and simplify the

expression by ��������� 	 � ��
 ���� . Lastly, parameters
� � and � � stand for the software overheads induced by the

asynchronous reception of a b-byte packet. With
� � captures the costs of all kernel events including interrupt

overhead and memory copy, and � � captures the cost of user-space events such as data processing and high-level

protocol handling.

With current CPU performance and the adoption of low-latency communication support, software overheads

induced in communication have been significantly reduced. To take advantage of the full-duplex communication,

we assume that the cluster communication system satisfies this condition,
	 � ��� � � � ������ ��� � . As a result,

under no conflict, the one-way point-to-point communication cost (������) in transferring an M-byte long message

between two processes at any two machines of the cluster is modeled as :

������� 	�� ��� � � � 	���� � � � � � � � � � � � (1)

where
� �"! # , which corresponds to the fragmentation of an M-byte message to k data packets of size b bytes.

For optimal performance, b usually stands for the maximum transfer unit (mtu) of the underlying communication

scheme.

To abstractly describe a two-level switch hierarchy, we use a tree topology as depicted in Figure 1. All cluster

nodes are the leaf nodes, and are grouped into disjoint sets with $&% members in each set. Members of the same

set are connected to a parent which is a switch node located at Level 1, and all communications generated by

the set - both within set and across set, have to go through this switch node. Communications between sets

are established through the root switch node, which fully connects all Level 1 switch nodes. To support high

performance communication, we assume that the switch-to-switch link bandwidth ' � and the node-to-switch link

bandwidth ' % satisfy this constraint, $ % ' %)('�� , which ensures that the throughput capacity of the uplink is able

to handle all upstream/downstream traffics generated by the whole set at any particular instant. We also assume

that the backbone bandwidth of those Level 1 switches are greater than or equal to $�%�'*% � ' � , and the backbone

bandwidth of the root switch is greater than or equal to $ � ' � . With these assumptions, the aggregated bandwidth

available to a cluster with p nodes (where +,�-$.%$ �) is bounded by $.%�$ � '*% .

7

3 Contention-Aware Complete Exchange Algorithm

In this section, we show how to apply the three contention-aware techniques

� Efficient pipelining - to generate a bandwidth-optimal complete exchange algorithm, the Synchronous Shuf-

fle Exchange, which operates efficiently on any non-blocking network.

� Global windowing - a proactive congestion control scheme that avoids buffer overflow problem.

� Contention-aware permutation - which helps alleviating the congestion loss problem on the hierarchical

network.

The combined effects of these techniques is to optimize the communication efficiency and guard against the con-

gestion loss problem.

3.1 Synchronous Shuffle Exchange Algorithm

The spirit of this algorithm is the node contention-free schedule operated at the packet level without explicit

synchronization operation. By effectively utilizing the send and receive channels, this scheme multiplexes all

the messages seamlessly to a single pipeline flow by scheduling consecutive packets to different destination nodes

according to a node contention-free permutation (�). Such that at a particular instant ��� , each process is sending the
�����

packet to process � 	�	�
 � $
 ��� directly. There are three numerical functions that can be used online to compute

the node contention-free permutation. They are the shift pattern, bitwise XOR pattern and the edgecolor pattern

[31]. As each process can uniquely match to different process at each packet transmission step, it guarantees no

two packets are directed to the same destination at the same instant, thus achieving no node contention. Algorithm

1 shows the corresponding communication schedule used by this algorithm, and Figure 2 presents an example

packet transmission sequence that generated by using the edgecolor permutation on a 6-node cluster.

We now derived the lower bound cost for the synchronous shuffle exchange algorithm on our system model -

the complete-connected cluster. Assuming that each node is capable to send and receive a message in one time

unit, such that
	 ����� � � � ������ � � � . With this capability, a process can actively send and receive at the

same time, thus can fully utilize the bidirectional channels. If we assume that each process sends and receives k

data packets to and from p-1 nodes, then the minimum amount of packets being sent and received in the complete

exchange operation by each process is � ��	 + � � � packets or � ���	 + � � � bytes if each data packet is of size b bytes.

As the minimal time in sending or receiving a packet of size b bytes is bounded by the send gap (� �) and

receive gap (� �), and each machine can inject or receive no more than one packet within this gap, we deduce that

the minimal time required for the synchronous shuffle exchange algorithm under such a cluster communication

abstraction is

8

� ������� � � � � 	��	� 	 	�� 	 + � � � � � � � �
 	 ��	 + � � � � � � ���� � � � � � � � �
� 	���	 + � � � � � � 	
��� 	 � �
 � � � � � � � � � � � � � �
� ��	 + � � � � � �� (2)

where � � � ��� � � � � � � � � ���

From this formulae, we see that the necessary conditions to achieve the above time bound on the k-item complete

exchange are:

1. Each data packet must be sent directly to the target node without detour.

2. Each cluster node is actively sending and receiving the data packets without network stalling during the

whole course of operation.

Condition 1 ensures that all messages appear once in the network, and therefore, minimizes the total transmission

delay and messaging overhead. While with Condition 2, we ensure that no bubble exists in the network pipelines.

As our performance goal is to minimize the communication time, existence of bubbles in the network pipeline

means that we have to take longer time to complete the transmission. Thus, any schedule that ensures no bubble

appears in the network pipelines achieves better performance.

3.2 Global Window Congestion Control

If every operation is executed on schedule and the network resources are scalable, then the synchronous shuffle

exchange could finish with minimal time. However, in reality, logical synchrony is not enforced due to the dis-

tributed nature of the cluster system. Random delays between communication events, such as scheduling delays,

could break this harmony and result in “transient hot-spot” in the switch. Observed that the more packets are tar-

geting to the same output link, which are arriving from different sources at different time period, the higher chance

of having conflicts even under a regular and uniform pattern. When two or more packets contend for the same

output link, buffering of conflicting packets would result in routing delay. As the buffering technique within the

switch has a significant impact on the network performance, we reckon that the effectiveness of the synchronous

shuffle exchange algorithm would be affected by the head-of-line blocking problem on the input-buffered switch.

Generally, having logical synchrony on all cluster nodes is an idealistic assumption for the case of commodity

clusters, which have no hardware synchronization support. To impose this synchrony, explicit synchronization

operations can be used, e.g. Gang Scheduling is one of the approaches to solve this problem. However, this

9

brings on extra synchronization overhead to the total communication time, and also stalls the communication

pipelines as no data communications are taking place during synchronization. Since performance loss is caused

by oversubscription to the network, which induces packet loss at the bottleneck region, the best solution to avoid

congestion loss is to prevent oversubscription to the network. That can be done by applying some form of traffic

control on each node to minimize and manage the contention problem.

The conjecture behind the contention problem induced by the synchronous shuffle exchange algorithm on a

non-blocking network is the non-deterministic delays on communication events. With the hierarchical network,

two more sources of delay could contribute to this non-determinism.

� Queuing delay at the uplinks: with the hierarchical network, inter-switch traffics have to go through shared

uplinks and conflicting packets are buffered; therefore, increases the network delay.

� The difference of network latencies between nodes: even with the use of faster technology for upper level

interconnections, additional transmission delays on delivering the data across the hierarchy would induce

the contention problem.

To achieve optimal performance on the hierarchical network, sharing of links is necessary. Thus, having link con-

tention is a fact that we must confront with. Although mild contention increases network delay, it does not severely

degrade the performance, unless the congestion persists for a long period of time, which results in buffer overflow.

Therefore, it would be useful to have a congestion control scheme to prevent oversubscribing the network.

In this study, we adopt a proactive approach in the congestion control. This congestion control scheme is

different from traditional approaches. Conventional mechanisms for controlling congestion are based on end-to-

end windowing schemes [28]; however, they are not suitable for collective operations in high-speed networks.

This is because they are usually reactive schemes. They probe for congestion signals, such as packet loss and

timeout signals, and respond by recovering the loss and regulating the traffic load to avoid further loss. However,

we have already lost some packets, and this has affected the performance. Besides, the feedback information from

the network is usually outdated due to the propagation and transmission delays. Hence, any reactive action taken

may be too late to avoid further loss. Furthermore, end-to-end windowing only provides traffic information on

individual connection. It lacks in a global picture of the network, such as the number of traffic sources and the

communication pattern in used.

With cluster computing, the traffic pattern is predictable in the case of collective operations on an enclosed

network. Therefore, we can utilize those available information, such as the network buffer capacities (�
) of

the switched network, the communication pattern and communication volume, to derive some resource-aware

congestion control scheme. With our global congestion control scheme, each source is assigned with a predefined

resource limit, and our scheme forces them to regulate their traffic loads below this limit. By having a fair share of

10

resources, this ensures that no source will exceed its allowed traffic capacity and avoids congestion loss.

We have observed that during the execution flow, at � ��� communication step, a process is sending a data packet

to another process according to the node contention-free permutation scheme � . If every operation is on schedule,

the number of outstanding data packets (�) in transit from a process to other process is bounded by
�
����� . Under

mild congestion, the process experiences slight increase of � . If congestion persists, this eventually induces packet

loss, and � will increase considerably. The above observation implies that to avoid overflowing the network buffers,

we need to regulate the number of outstanding packets (�).
The principle behind our congestion control scheme is quite simple. When applying this scheme on our com-

plete exchange algorithm, all senders are assigned with a global window (� �) at the beginning of the communica-

tion event. This � � factor acts as a controller to limit the amount of traffic that a particular sender can inject into

the network. If a sender finds that sending out a data packet may overload the network, when � ��� � , it just halts

current transmission and waits until it is safe to transmit, i.e. � �	� � . By picking the correct value for � � , this

scheme guarantees that during any interval, the total number of packets entering the network does not exceed the

sum of a pre-specified limit, which is the network buffer capacity at the bottleneck region. To compute � � , we

need to identify the bottleneck region and measure the buffer capacity (
) associated to the bottleneck, then we

derive � � from 	
 on the principle of fair sharing.

Takes the hierarchical network as an example. Based on the communication pattern and schedule, we estimate

the average number of packets (
) generates at each communication step which are forwarded to the bottleneck

region. Without lost of generality, let’s take the FE/GE hierarchical network as an example. Assume that the

uplink ports are the critical bottlenecks and they are of input-buffered architecture. Under the synchronous shuffle

schedule, in p-1 communication steps, a process generates p-1 data packets which are destined to p-1 distinct

nodes. However, only $.% � � packets are switched locally, and the rest, + � $&% packets, are forwarded by the

Fast Ethernet switch to its uplink port. Therefore, there are
	 + � $&%��$ % packets being forwarded upstream by each

FE switch in p-1 communication steps. Based on the node contention-free permutation, the same amount of data

packets are switched from the Gigabit backbone back to each FE switch. Thus, the average number of data packets

directed to each uplink port per communication step is

�� 	 + � $ % ��$ %+ � � (3)

From this, we derive the value of � � , which is

� � ��� 	

� ��� 	�
 	 + � � �	 + � $ %��$ %� (4)

11

3.3 Contention-Aware Permutation

However, knowing the value of � � is a necessary but not sufficient condition to avoid congestion loss on the

hierarchical network. This is because � � is derived from taking the average traffic load, and unlike traditional

end-to-end scheme, global windowing needs to monitor and regulate all traffic flows of a process, not just one

connection. If the traffic distribution is not uniformly spread across the network, the global windowing scheme

could not fulfill its function correctly. This is being shown in Figure 3. In this example, we assume that the

bottleneck region of the 4X4 two-level hierarchical network is at the uplink ports with 	�
 ����� . However, under

the XOR permutation scheme, we could experience the contention loss problem even though global windowing is

adopted.

In this example, the size of � � is ������
	 ��� �� . Assume that at communication step i, four packets originate

from switch 2 and head for switch 3 are blocked by some cause, e.g. HOL, so as those packets that follow in

step i+1, i+2, and i+3 from the same switch. However, no process is aware of the congestion problem unless their

global windows become saturated. This may only be happened until step i+8 when processes in switch 3 detect

the congestion problem. By that time, processes in switch 1 have already sent out all their packets to processes in

switch 3, which further increases the queue length at switch 3. Moreover, processes in switch 0 are not aware of

the problem. This is because global windowing collects traffic information on the base of past events, but none of

these past events could indicate the congestion problem in switch 3. As a result, processes in switch 0 continue to

send all their packets to processes in switch 3, which finally overflow the buffer.

An obvious reason for this failure is that the feedback information on traffic condition is not regularly gathered

from all part of the network. Thus, information on part of the network is outdated. Although the overflow situ-

ation could be detected and resolved by both global windowing and individual end-to-end flow control scheme,

performance has been suffered as packets are lost inevitably. If we can arrange all communication events in a way

that each process is communicating with different processes reside in a node linked to different switches at each

communication step. Then, the traffic loads would become more evenly distributed as well as having more regular

information feedback between different processes in different part of the network.

An approach in generating this kind of dispersive pattern is by adopting a contention-aware permutation, which

includes knowledge on the network constraints to generate the communication schedule. Observed that the original

permutation is obtained by some simple functions (�) which operate on inputs such as current communication step

and node id. A simple method to incorporate the network structure into the original permutation is by redefining

a mapping between the logical node id to its physical id. One example of such permutation scheme (�) can be as

follows:

logical id ��� physical id
$ % � 	 physical id � $ %*��� $ � (5)

12

Carry on with the previous example. If we apply the XOR permutation on the re-mapped logical id, we get

the communication schedule as shown in Figure 4, which is a more evenly distributed pattern with respect to both

switches and cluster nodes. We observe that with this new communication pattern, a process is communicating

with different processes located in different part of the network in consecutive communication steps. This greatly

relieves the contention at the uplink ports and improves the effectiveness of our congestion control scheme.

Based on the global windowing and the contention-aware permutation scheme, we have transformed the syn-

chronous shuffle exchange algorithm (Algorithm 1) to work efficiently on the two-level hierarchical network, and

the modified algorithm is given in Algorithm 2.

3.4 Related Algorithm - Pairwise Exchange

As mentioned in Section 2.1, quite a bit of work has been done in implementing complete exchange operation on

specific network topologies. With the use of switched network that supports full connectivity, the internal commu-

nication flows within the network become less critical, but avoiding node contention is crucial to the performance.

A commonly used scheme in this type of network is to schedule the sequence of communication events so that p-1

rounds of disjoint pairwise exchanges are performed [9]. The standard approach is using the XOR bitwise operation

to pair up processors in each round. However, the major drawback of the XOR bitwise operation is the requirement

of + � ��� in order to symmetrically pairing up all the nodes. For the case with + �� ��� , the number of rounds

becomes �����
	 ��� �� � � , and during each round, not all the nodes find a matching partner. A general solution to the

disjoint pairing problem is by using the edgecolor pairing of the complete graph [31], which does not have the

power of two constraint. The resulting algorithm becomes the Generalized Pairwise Exchange algorithm (Algo-

rithm 3). Under this mapping scheme, the performance is only slightly deteriorated with p communication rounds

for all odd cases, instead of having p-1 communication rounds for all even cases.

However, as depicted in Algorithm 3, the non-stalling condition (Condition 2) is not enforced under this

scheme. Although there is no explicit synchronization appeared between consecutive rounds and both send and

receive operations are of non-blocking semantics, the p-1 rounds have an implicit synchronization cost that intro-

duces bubbles to the network pipelines. The predicted communication cost for this complete exchange operation

is

� � � � � 	 + � � � 	 ����� � � � � � � � � � � � ��
� � � 	 + � � � � 	 + � � � � � (6)

When comparing the two cost formulae, Eq. 2 & 6, we notice that the generalized pairwise exchange algorithm

13

has a higher messaging overhead, which is proportional to the number of cluster nodes as denoted by
	 + � � � � � .

4 Performance Evaluation

Our experimental platform is a cluster consists of 32 standard PCs running Linux 2.2.14. Each cluster node equips

with a 733MHz Pentium III processor with 256KB L2 cache, 128MB of main memory, an integrated 3Com 905C

FE controller. We use the Directed Point (DP) communication system [19] to drive the network and conduct all

our experiments. We have implemented a variant of the Go-Back-N protocol to support limited reliability on DP.

In this study, we use four Fast Ethernet switches and one Gigabit Ethernet switch to set up various configurations

to evaluate our algorithm.

The GE backbone switch is a chassis switch from Alcatel. It is the model PowerRail 2200 (PR2200) with

backplane capacity reaches 22 Gigabit per second (Gbps). This switch is equipped with 8 GE ports on 2 modules,

but we only use at most 4 ports in our experiments. Four FE switches are from IBM, which are of the model

8275-326. It is a 24-port input-buffered switch with backplane capacity reaches 5 Gbps. A one-port GE uplink

module is installed on each FE switch for connecting to the Gigabit backbone switch. Table 1 summaries all the

buffer parameters (�
) of the above switches, which are used in our algorithm to compute the global windows

(� �) on different network configurations.

To analyze and evaluate the performance of our congestion control mechanism, we have set up five different

configurations on this cluster - 16X1, 8X2, 8X3, 6X4 and 8X4, with each configuration corresponds to a different

degree of contention on the uplink ports (except configuration 16X1). The configuration AXB corresponds to

connect A cluster nodes to each FE switch, and there are total B FE switches interconnected by the GE switch.

This makes up a cluster size of � � 	 nodes.

4.1 16-Node Single Switch - 16X1

Our objective of designing efficient communication schemes atop of lightweight messaging system is to support

high-level programming model such as MPI. Therefore, it would be informative to have a direct comparison of

the DP implementation of the synchronous shuffle exchange algorithm against the MPICH [20] implementation of

the complete exchange operations on the same platform. Figure 5 presents the measured results of four complete

exchange implementations on a 16-node cluster interconnected by a single input-buffered switch (IBM 8275-326).

They are the synchronous shuffle exchange with global windowing (sync+GW), the generalized pairwise exchange

(pair), the original MPICH implementation (MPICH) and the generalized pairwise exchange MPI implementation

(pair-MPI), which is implemented with the MPI_sendrecv() communication primitive. The experiment is con-

ducted with each node sending a long message to every node in the cluster, which ranges from 1 KB to 1200 KB of

14

data to each node. Both the measured performance and the per-node achieved bandwidth of each implementation

are shown in the graphs.

With the global windowing scheme to guide against the congestion loss problem, we show that the synchronous

shuffle algorithm can operate efficiently and effectively for the whole message ranges. When compared to the

predicted performance (Eq. 2), the contention-aware synchronous shuffle exchange algorithm has its efficiency

ranged from 87% to 97% of the theoretical bandwidth. When compared with the generalized pairwise exchange,

the results show that the synchronous shuffle algorithm can effectively mask away synchronization overhead and

achieves better performance. This shows that the add-on congestion control scheme does not affect the efficiency

of the synchronous shuffle exchange algorithm. Indeed, it effectively guards against congestion loss.

When compared with both MPI implementations, we clearly see that the original MPI_Alltoall() function

performs extremely inefficient. This is because their implementation is based on simple non-blocking MPI_Isend()

and MPI_Irecv() functions, which are issued in an uncoordinated manner. Therefore, it would subject to both node

and switch contention as well as the high overhead problem that inherits from the TCP protocol stack. To avoid the

node and switch contention, the “pair-MPI” carefully coordinates the communications, and achieves considerable

improvement. However, our DP implementation of synchronous shuffle exchange even outperforms the “pair-MPI”

implementation significantly. This shows that the traditional protocol stack has severe limitation on achieving high-

speed communication. In other words, it is inadvisable to drive the high-performance communication network with

the conventional communication protocols.

4.2 16-Node Hierarchical Configuration - 8X2

We start our experiments on the hierarchical network by first using a 16-node configuration. This configuration uses

two Fast Ethernet switches with eight nodes connect to each switch, and they are interconnected via the Gigabit

Ethernet switch. With this setup, the theoretical bisection bandwidth [12] is 1 Gb/s, which should be sufficient

for this configuration. However, our preliminary investigations showed that the uplink circuitry of the IBM 8275-

326 switch has some performance limitation. In order to provide the correct judgment on the performance of all

implementations, we have performed some baseline measurements to determine the best achievable throughput

across these GE uplinks.

By changing the configuration to the 10X2 setting, we measure the achieved aggregated bandwidth across

the hierarchical network by having multiple concurrent bi-directional data exchanges. Figure 6 shows the results

of this baseline study. The peak aggregated bandwidth achieved on this setting is 103 MB/s with 12 concurrent

bi-directional flows across the uplink ports. Beyond that, the communication performance starts to deteriorate

gradually. With the same software and hardware settings, but replacing the hierarchical network with a single

IBM 8275-326 switch, we can achieve a linearly scaled aggregated bandwidth, which is labeled as “local” in

15

the graph. This demonstrates that the limitation is on the uplink circuitry, not on other components. With this

baseline measurement, we have a solid foundation to justify on the expected communication efficiency across the

problematic uplink ports, such that we have

Best cross switch data exchange time � Total cross switch volume� ��� � 	���� (7)

Take the 8X2 configuration as an example, the total cross-switch volume on the k-item complete exchange is

� � � 	���� � 	��	� � $ % �
� $ % bytes. Thus, the best timing in delivering this volume of data across the uplink connection is

% ��
���	��� ���% � � seconds. Assumed that an efficient communication schedule should be able to arrange all local and cross-

switch communications be happened concurrently. Therefore, the execution time of the k-item complete exchange

should be bounded by the best cross-switch data exchange time. Then, the best achieved per-node bandwidth for

this k-item complete exchange operation on the 8X2 configuration is bounded by ����� ��� � %��� �������������! ��"�# � � �%$ �'& MB �(� .
After understanding about the performance limitation of the network, we carry on with our analysis. With the

8X2 configuration, the theoretical computed value of � � is 10; however, when considered together with implemen-

tation issue, such as the existence of control packets with the GBN reliable support, the calculated value of � � is)+*-,/.10 %�2�3
�45��
6� �%�� 7 � ,
. We have measured the performance of the synchronous shuffle algorithm with this global

windowing setting, and the results are presented in Figure 7. Five sets of measurements are shown in the graphs.

They are the synchronous shuffle with global windowing and contention-aware permutation (sync+GW+CA), gen-

eralized pairwise exchange (pair), generalized pairwise exchange with contention-aware permutation (pair+CA),

the original MPICH implementation and the generalized pairwise exchange MPI implementation (pair-MPI). The

results show that the contention-aware synchronous shuffle exchange performs the best amongst all tested imple-

mentations in this configuration. When compared to the expected best achievement, the synchronous shuffle shows

its effectiveness in utilizing the network pipelines as well as avoiding the congestion loss, since it reaches 93% of

the best achieved performance.

However, we find that the performance of the DP pairwise exchange implementation has degraded considerably

under this hierarchical configuration when compared to its performance on the single-switch case (Figure 5b).

Initially, the performance of the DP pairwise implementation (labeled as “pair”) increases with the increase in

message length until the maximum capacity of the uplink ports has reached. After that, the performance is affected

by the congestion loss problem. However, our GBN reliable protocol could only recover from the loss with long

message exchanges. This is being shown as the slow increased in the achieved bandwidth after experiencing the

congestion loss problem. To investigate on whether the contention-aware permutation scheme would also benefit

the pairwise exchange algorithm, we have applied the same contention-aware permutation on the DP pairwise

implementation. The measured results (labeled as “pair+CA”) show that this augmentation exhibits a similar

16

behavior as compared to the pure pairwise exchange.

On the other hand, it is interested to see that the performances of the two MPI implementations do not have

significant performance changes, except that the original MPICH implementation has considerable decreased in

performance on exchanging small messages. This could be the result of contention over the uplinks as the MPICH

implementation does not carefully schedule those communication events. This indicates that under this hierarchical

configuration, it demands for a better communication scheme to coordinate the communication events.

4.3 24-Node Hierarchical Configurations - 8X3 and 6X4

To construct a 24-node cluster with our hardware resources, we can arrange the hierarchical network in two differ-

ent configurations:

1. 8X3 - With this configuration, the computed value of � � is 4 and the experimental results are shown in

Figure 8.

2. 6X4 - With this configuration, the computed value of � � is 5 and the experimental results are shown in

Figure 9.

We have performed the same set of tests on these two configurations as compared to the 8X2 setup. When compar-

ing their expected best achievements on these two configurations, which are of 9.25 MB/s on the 8X3 configuration

and of 10.96 MB/s on the 6X4 configuration, we see that the 6X4 configuration has a better throughput perfor-

mance. Once again, we see that the synchronous shuffle performs the best on both setups; however, it only reaches

89% and 88% of the expected best achievements on the 8X3 and 6X4 configurations respectively. A possible

explanation on the performance degradation is due to the use of small global window settings, which may reduce

the pipelining efficiency. However, increase the global window size would increase the congestion loss probability,

this could create an adverse effect on the overall performance.

As for the two MPI implementations, their measured performances look similar to the performance observed in

the 8X2 configuration. In addition, we observe that as the cluster size has increased from 16 nodes to 24 nodes, the

contention problem of the original MPICH implementation on small message exchanges is getting worse than the

8X2 configuration. Nevertheless, all these findings support our belief that conventional communication libraries

are restrained by the high software overheads.

As for the DP pairwise implementations, their measured results exhibit different performance behaviors on

these two configurations. On a configuration that supports less aggregated bandwidth (8X3), we find that we

have experienced severe performance loss starting at small size message exchanges. But, with a less restrictive

configuration (6X4), the losses start to appear only on medium size message exchanges. After that, the performance

slowly increases when exchanging longer messages. On the other hand, we find that the add-on contention-aware

17

scheme (pair+CA) performs better on the 8X3 configuration when compared to the pure pairwise implementation.

A possible explanation to this observation is that the contention-aware permutation is more effective when operates

on a more stringent configuration.

4.4 32-Node Hierarchical Configuration - 8X4

Carry on with the same set of experiments with the global windowing parameter (� �) set to 3, the measured results

are shown in Figure 10. Same as other experiments, the synchronous shuffle algorithm shows its clear advantage

over other implementations when running on this configuration. In particular, it achieved per-node bandwidth

peaks at 7.67 MB/s, which is around 92% of the expected best achievement (8.32 MB/s) on this configuration.

As for the two MPI implementations, their performances seem to have no big difference as compared to other

configurations. However, the performance of our DP pairwise exchange implementation suffers considerably when

exchanging small to medium size messages, as the results show that the pairwise MPI implementation outperforms

the DP pairwise implementations on this message range. This indicates that our GBN reliable protocol is not

working as effectively as the TCP protocol except with large message exchanges. Once again, we observe that the

add-on contention-aware permutation on the pairwise implementation has slight performance improvement on the

current configuration. When compared this finding with the results on other configurations, we believe that the

contention-aware scheme works better on a more stringent configuration. This observation shows that contention-

aware permutation alleviates the congestion build-up at the uplink ports; however, it still has to work together with

the global windowing scheme in order to avoid congestion loss.

5 Related Work

The uses of models in designing algorithms, in particular communication algorithms, are not uncommon in the

parallel community [13, 14, 22, 23, 27]. These algorithms are mostly shown to be efficient or optimal with respect

to the based models using paper and pen or simulations. For example, Karp et al. [14] had designed an optimal

k-item broadcast algorithm based on the LogP model [8]. This algorithm is presented as a communication schedule

where the root sends each data item only once, but alternates among recipients in order to retain the logarithmic

depth of a tree broadcast. The principle behind this communication schedule matches with our synchronous shuffle

exchange algorithm, as both schedules try to arrange the communications such that a processor would only at most

send out one data item and receive one data item in one communication step. However, as demonstrated in our

experimental studies, these types of communication schedules may be too idealistic, which demand to have logical

synchronism in order to achieve the optimal bounds; therefore, it is hard to achieve the claimed performance on a

real platform unless more control of the communications is enforced.

18

Similar to our contention-aware permutation scheme, Nupairoj et al. [22] has reported of using architecture-

dependent characteristics of a system to ensure the efficiency of their optimal multicast algorithm, which is built on

top of an architecture independent parameterized model [23]. This is because in real network, network contention

is likely to occur if concurrent message transmissions are not scheduled properly. Their approach makes use of

the topology information, e.g. mesh and multistage networks, to order nodes in the multicast tree to avoid network

contention. This supports our belief that optimal performance achievable on parallel machines can be first designed

by using realistic architecture independent model, and then perform performance tuning of an implementation on

the based of some architecture dependent characteristics.

Donaldson et al. [11] also reported that their BSPlib package, a communication library for BSP [34] program-

ming, is using information related to the global state to improve the collective use of the communication system.

Due to the synchronous nature of the BSP machines, communications are constrained to take place only in certain

stages. This constraint, although limits its flexibility, can be transformed to make enhancement on communica-

tions as each processor can infer the global state of the communication in which it is involved. For example, a

BSP process knows which other processes are about to communicate, and how much they plan to send, and then

can estimate the global network loading; this in turn, can be used to determine the ideal schedule and transmission

rate. Their objective is similar to our approach, but we are working on an asynchronous model, which makes use

of the buffering information and communication pattern to devise the corresponding information.

Instead of using the buffer resources as a guide to monitor the congestion problem, other approaches have

been proposed to explicitly manage the allocation of scarce resources to different purposes. For example, Roy et

al. [26] propose the uses of Quality of Service (QoS) mechanisms at the application level to manage contention,

so as to improve the performance of MPI applications. They argue that if appropriate mechanisms can be provided

for expressing application requirements, for arbitrating between different requirements, for enforcing allocations,

and for providing feedback to applications concerning achieved performance, then applications can adapt their

behavior according to resource availability. However, their approach requires that the underlying network supports

the QoS mechanisms.

6 Conclusion

The performance of communication networks is the limiting factor of most existing clusters. Improvement of the

communication performance by well scheduling of communication events could leverage the overall performance

of the clusters. Based on the architecture and communication model of cluster, we observe that to achieve optimal

result, the network pipes must be fully utilized. Any waiting stage would stall the pipelines and decrease the overall

communication efficiency. This is achieved by the synchronous shuffle exchange algorithm which has adopted a

19

node contention-free schedule at the packet level.

Theoretically, under a contention-free schedule on a complete-connected network, all packets arrived to dif-

ferent input ports are destined to different output ports; therefore, can be routed instantaneously. However, in

reality, no global clock is implemented to coordinate all cluster nodes and their events. Thus, their operations are

not lock-step synchronized. Any variations in communication schedules will result in drifting from the theoretical

harmony. The consequence is packets start to cumulate in the network due to experience of conflicts. Under this

situation, the buffering architecture of the switch plays a critical role in the performance issue.

To avoid congestion loss, we propose the use of synchronous shuffle exchange algorithm with congestion con-

trol scheme and contention-aware permutation. With the proactive approach in handling congestion, this algorithm

makes use of architectural characteristics to avoid congestion build-up in the first place and reduces congestion

whenever it happens. We derive a global window scheme from information on the network buffer capacity, which

forces each node to limit their traffic loads and ensures a fair sharing of network resources that avoids congestion

overflow. We also make use of information on the network topology to derive a contention-aware permutation in

generating a communication schedule, which avoids contention at the node and at the switch, as well as creating

a more evenly distributed traffic pattern on the network. This improves the synchronism of the traffic informa-

tion exchange between cluster nodes, and hence, improves the effectiveness of the global windowing scheme in

monitoring the network. The proposed algorithm is implemented on a 32-node cluster with different network con-

figurations. And the results have showed that it can efficiently utilize the network as well as effectively control the

congestion problem.

We believe that the hierarchical network model is a practical design to construct large-scale clusters. With this

system configuration, clusters can be scaled up to hundreds or thousands of nodes, and support enough bandwidth

for high-speed communication. Our research can be used in any combination of Ethernet-based switched net-

works, which we belief, over 60% of the self-made clusters are based on. And the concept is applicable to future

technologies, such as 10 Gigabit Ethernet, which simply extends the topology to multi-level hierarchy.

References

[1] Ammon Barak, Ilia Gilderman, and Igor Mctrik. Performance of the Communication Layers of TCP/IP with

the Myrinet Gigabit LAN. Computer Communication, 22(11), Jul 1999.

[2] D. Bertsekas, C. Ozveren, G. Stamoulis, P. Tseng, and J. Tsitsiklis. Optimal communication algorithms for

hypercubes. Journal of Parallel and Distributed Computing, 11:263–275, 1991.

20

[3] S. Bokhari. Multiphase complete exchange: a theoretical analysis. IEEE Transactions on Computers,

45(2):220–229, February 1996.

[4] S. Bokhari. Multiphase complete exchange on paragon, sp2, and cs-2. IEEE Parallel and Distributed Tech-

nology, 4(3):45–59, Fall 1996.

[5] S.H. Bokhari and D.M. Nicol. Balancing contention and synchronization on the Intel Paragon. IEEE Con-

currency, 5(2):74–83, 1997.

[6] J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient Algorithms for All-to-All Com-

munications in Multiport Message-Passing Systems. IEEE Transactions on Parallel and Distributed Systems,

8(11):1143–1156, 1997.

[7] G. Chiola and G. Ciaccio. Gamma: a low-cost network of workstations based on active messages. In

Proceedings of the 5th EUROMICRO workshop on Parallel and Distributed Processing PDP’97, January

1997.

[8] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von

Eicken. LogP: Towards a realistic model of parallel computation. In Fourth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, May 1993.

[9] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Architecture: A Hard-

ware/Software Approach. Morgan Kaufmann, 1999.

[10] V. Dimakopoulos and N. Dimopoulos. A theory for total exchange in multidimensional interconnection

networks. IEEE Transactions on Parallel and Distributed Systems, 9(7):639–649, July 1998.

[11] S. Donaldson, J. Hill, and D. Skillicorn. Exploiting Global Structure for Performance on Clusters. In Pro-

ceedings of IPPS/SPDP’99, pages 176–182, 1999.

[12] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing. McGraw-Hill, 1998.

[13] G. Iannello. Efficient Algorithms for the Reduce-Scatter Operation in LogGP. IEEE Transactions on Parallel

and Distributed Systems, 8(9):970–982, 1997.

[14] R. Karp, A. Sahay, E. Santos, and K. Schauser. Optimal broadcast and summation in the logp model. In

Proceedings of Symposium on Parallel Algorithms and Architectures (SPAA), pages 142–153, June 1993.

[15] Jonathan Kay and Joseph Pasquale. The importance of non-data touching processing overheads in TCP/IP.

In Proceedings of ACM SIGCOMM 93, pages 259–268, 1993.

21

[16] K. Keeton, T. Anderson, and D. Patterson. Logp quantified: The case for low-overhead local area networks.

In Hot Interconnects III: A Symposium on High Performance Interconnects, Aug. 1995.

[17] C. Lam, C. Huang, and P. Sadayappan. Optimal Algorithms for All-to-all Personalized Communication on

Rings and Two Dimensional Tori. Journal of Parallel and Distributed Computing, 43:3–13, 1997.

[18] M. Lauria, S. Pakin, and A. Chien. Efficient layering for high speed communication: Fast messages 2.x. In

Proceedings of the 7th High Performance Distributed Computing Conference (HPDC7), July 1998.

[19] C.M. Lee, A.T.C. Tam, and C.L. Wang. Directed point: An efficient communication subsystem for cluster

computing. In International Conference on Parallel and Distributed Computing Systems (IASTED), Oct.

1998.

[20] MPICH. MPICH-A Portable Implementation of MPI. http://www-unix.mcs.anl.gov/mpi/mpich/.

[21] Extreme Networks. http://www.extremenetworks.com/products/.

[22] Nupairoj, Ni, Park, and Choi. Architecture-Dependent Tuning of the Parameterized Communication Model

for Optimal Multicasting. In IPPS: 11th International Parallel Processing Symposium, pages 578–582. IEEE

Computer Society Press, 1997.

[23] J.-Y.L. Park, H.-A. Choi, N. Nupairoj, and L.M. Ni. Construction of Optimal Multicast Trees Based on

the Parameterized Communication Model. In Proceedings of the 1996 International Conference on Parallel

Processing, pages 180–187, Aug 1996.

[24] R. Ponnusamy, R. Thakur, A. Choudhary, and G. Fox. Scheduling regular and irregualar patterns on the

CM-5. In Proceedings of Supercomputing ’92, pages 394–402, November 1992.

[25] Loic Prylli and Bernard Tourancheau. BIP: A New Protocol Designed for High Performance Networking on

Myrinet. In IPPS/SPDP Workshops, pages 472–485, 1998.

[26] A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and B. Toonen. MPICH-GQ: Quality-of-Service for

Message Passing Programs. In Proceedings of the IEEE/ACM SC2000 Conference, 2000.

[27] S. Shibusawa, H. Makino, S. Nimiya, and J. Hatta. Scatter and Gather Operations on an Asynchronous

Communication Model. In ACM Symposium on Applied Computing, Mar 2000.

[28] M. Sidi, W. Z. Liu, I. Cidon, and I. Gopal. Congestion control through input rate regulation. IEEE Transac-

tions on Communications, 41(3):471–477, 1993.

22

[29] Y.J. Suh and S. Yalamanchili. All-to-all communication with minimum start-up costs in 2D/3D tori and

meshes. IEEE Transactions on Parallel and Distributed Systems, 9(5):442–458, 1998.

[30] Anthony T.C. Tam and Cho-Li Wang. Realistic Communication Model for Parallel Computing on Cluster.

In Proceedings of the 1st IEEE International Workshop on Cluster Computing (IWCC’99), December 1999.

[31] Anthony T.C. Tam and Cho-Li Wang. Efficient Scheduling of Complete Exchange on Clusters. In the ISCA

13th International Conference On Parallel And Distributed Computing Systems (PDCS-2000), August 2000.

[32] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: A operating system coordinated high performance

communication library. In High-Performance Computing and Networking ’97, 1997.

[33] Yu-Chee Tseng and Sandeep K. S. Gupta. All-to-all personalized communication in a wormhole-routed torus.

IEEE Transactions on Parallel and Distributed Systems, 7(5):498–505, 1996.

[34] L. Valliant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–111, Aug.

1990.

[35] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A mechanism for integrated

communication and computation. In Proceedings of the Nineteenth International Symposium on Computer

Architecture. ACM Press, 1992.

[36] M. Welsh, A. Basu, and T. Von Eicken. Low-latency communication over Fast Ethernet. In Lecture Notes in

Computer Science, volume 1123, 1996.

[37] Y. Yang and J. Wang. Optimal all-to-all personalized exchange in self-routable multistage networks. IEEE

Transactions on Parallel and Distributed Systems, 11(3):261–274, 2000.

23

GELevel 2

Level 1

Level 0

FE

d2

d1

c2

c1

0 1 d
1 -1

d
1

d
1 +1

d
1 d

2 -1

FE FE FE

Figure 1: Interconnection topology of the two-level switch hierarchy

Algorithm 1 Synchronous Shuffle Exchange

for (s = 1 to k) & (r = 1 to k) in parallel do
 for (is = 1 to p-1) & (ir = 1 to p-1) do

 to = As(myid, is)

 from = Ar(myid, ir)

 status = send_item_to(tos, to)
 if (status = SUCCESS) then
 inc is
 fi
 status = recv_item_from(fromr, from)
 if (status = SUCCESS) then
 inc ir
 fi
 endfor
endfor

24

packet sequence ii
((i % 5) = 0
((i % 5) = 1
((i % 5) = 2
((i % 5) = 3
((i % 5) = 4

00

11

22

33

44

55

Figure 2: The resulting packet transmission sequences by the synchronous shuffle exchange algorithm using edge-
color permutation on a 6-node cluster

node id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
switch id 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

step i-3 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
i-2 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
i-1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
i 1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2

i+1 1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
i+2 1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
i+3 1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
i+4 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
i+5 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
i+6 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
i+7 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
i+8 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
i+9 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
i+10 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
i+11 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

This communication pattern is generated by the XOR

permutation scheme. With each entry of the lower matrix
represents the target node id of the communication event
and each row corresponds to a communication step.

The induced cross-switch pattern with each entry stands
for the target switch id to which the destination node
resides

node id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
switch id 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 3: An example permutation in which global windowing alone fails to regulate the traffic.

Switch/uplink Architecture ���
Alcatel PR2200 Shared-buffered 820
IBM 8275-326 Input-buffered 43
IBM GE uplink Input-buffered 45

Table 1: The 	�
 parameter of different switches in our experimental setup

25

node id 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
switch id 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

4 0 12 8 5 1 13 9 6 2 14 10 7 3 15 11
8 12 0 4 9 13 1 5 10 14 2 6 11 15 3 7
12 8 4 0 13 9 5 1 14 10 6 2 15 11 7 3
1 5 9 13 0 4 8 12 3 7 11 15 2 6 10 14
5 1 13 9 4 0 12 8 7 3 15 11 6 2 14 10
9 13 1 5 8 12 0 4 11 15 3 7 10 14 2 6
13 9 5 1 12 8 4 0 15 11 7 3 14 10 6 2
2 6 10 14 3 7 11 15 0 4 8 12 1 5 9 13
6 2 14 10 7 3 15 11 4 0 12 8 5 1 13 9
10 14 2 6 11 15 3 7 8 12 0 4 9 13 1 5
14 10 6 2 15 11 7 3 12 8 4 0 13 9 5 1
3 7 11 15 2 6 10 14 1 5 9 13 0 4 8 12
7 3 15 11 6 2 14 10 5 1 13 9 4 0 12 8
11 15 3 7 10 14 2 6 9 13 1 5 8 12 0 4
15 11 7 3 14 10 6 2 13 9 5 1 12 8 4 0

After applying the contention-aware mapping to re-map
each node’s logical id, a new communication pattern is
generated with the same XOR permutation scheme.

The induced cross-switch pattern with each entry stands
for the target switch id to which the destination node
resides

node id 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
switch id 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

Figure 4: The resulting communication pattern after applying the contention-aware permutation scheme.

Algorithm 2 Contention-aware Synchronous Shuffle Exchange Algorithm

set η = 0
for (s = 1 to k) & (r = 1 to k) in parallel do
 for (is = 1 to p-1) & (ir = 1 to p-1) do

 to = As(φ(physical id), is)
 from = Ar(φ(physical id), ir)
 if (η < Wg) then

 status = send_item_to(tos, to)
 if (status = SUCCESS) then
 inc is

 inc η
 fi

 status = recv_item_from(fromr, from)
 if (status = SUCCESS) then
 inc ir

 dec η
 fi
 endfor
endfor

26

16 nodes - single switch (326)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

0 400 800 1200

Per node message length (KB)

M
ea

su
re

d
tim

e
(u

s)

pair

sync+GW

MPICH

pair-MPI

(a) Measured execution time

16 nodes - single switch (326)

0

2

4

6

8

10

12

1 10 100 1000
Per node message length (KB)

A
c

h
ie

v
e

d
 b

a
n

d
w

id
th

(M

B
/s

)

pair
sync+GW
MPICH
pair-MPI
predicted

(b) Achieved bandwidth

Figure 5: Performance of contention-aware synchronous shuffle exchange on a single input-buffered switch. (Leg-
ends: sync - synchronous shuffle; pair - pairwise; GW - global windowing)

27

Algorithm 3 Generalized Pairwise Exchange Algorithm

round = odd((pp) ? pp : pp−1
f or ii = 1 to round do
 partner = edgeColor(ii, myid, pp))
 if (partner = −1)
 No mat ch par t ner , i dl e on t hi s r ound
 el se
 f or (ss = 1 to kk) & (rr = 1 to kk) in parallel do
 status = send_item_to(partner

ss
, partner)

 if (status = Success) then
 inc ss
 endif
 status = recv_item_from(partner

rr
, partner))

 if (status = Success) then
 inc rr
 endif
 endfor
 endif
endfor

Bidirectional Bandwidth

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

No. of exchange nodes

A
ch

ie
ve

d
 a

g
g

re
g

at
ed

b

an
d

w
id

th
 (

M
B

/s
)

cross-switch

local

103MB/s

Figure 6: The achieved performance of the 10X2 hierarchical network under multiple bidirectional message ex-
changes. (Legends: cross-switch - measured aggregated bandwidth over the hierarchical network; local - measured
aggregated bandwidth on the single switch)

28

16 nodes - HN (8x2)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

0 400 800 1200 1600 2000

Per node message length (KB)

M
ea

su
re

d
tim

e
(u

s)

sync+GWCA
pair
MPICH
pair-MPI
pair+CA

(a) Measured execution time

16 nodes - HN (8x2)

0

2

4

6

8

10

12

1 10 100 1000 10000
Per node message length (KB)

A
ch

ie
ve

d
ba

nd
w

id
th

 (M
B

/s
)

sync+GWCA
pair
MPICH
pair-MPI
Best
pair+CA

(b) Achieved bandwidth

Figure 7: The performance of contention-aware synchronous shuffle exchange on the 8X2 configuration - 8
nodes connect to each FE switch, which is connected to the PR2200. (Legends: GWCA- global windowing
plus contention-aware permutation scheme; CA-contention-aware permutation scheme only)

29

24 nodes - HN(8x3)

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

0 500 1000 1500 2000

Per node message length (KB)

M
ea

su
re

d
tim

e
(u

s)

sync+GWCA
pair
MPICH
pair-MPI
pair+CA

(a) Measured execution time

24 nodes - HN(8x3)

0

1

2

3

4

5

6

7

8

9

10

1 10 100 1000 10000

Per node message length (KB)

A
ch

ie
ve

d
ba

nd
w

id
th

 (M
B

/s
)

sync+GWCA
pair
MPICH
pair-MPI
Best
pair+CA

(b) Achieved bandwidth

Figure 8: Performance of different complete exchange implementations on the 8X3 hierarchical configuration

30

24 nodes - HN(6x4)

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

0 500 1000 1500 2000

Per node message length (KB)

M
ea

su
re

d
tim

e
(u

s)

sync+GWCA
pair
MPICH
pair-MPI
pair+CA

(a) Measured execution time

24 nodes - HN(6x4)

0

1

2

3

4

5

6

7

8

9

10

11

12

1 10 100 1000 10000

Per node message length (KB)

A
ch

ie
ve

d
ba

nd
w

id
th

 (M
B

/s
)

sync+GWCA
pair
MPICH
pair-MPI
Best
pair+CA

(b) Achieved bandwidth

Figure 9: Performance of different complete exchange implementations on the 6X4 hierarchical configuration

31

32 nodes - HN(8x4)

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

0 200 400 600 800 1000 1200

Per node message length (KB)

M
ea

su
re

d
tim

e
(u

s)

sync+GWCA
pair
MPICH
pair-MPI
pair+CA

(a) Measured execution time

32 nodes - HN(8x4)

0

1

2

3

4

5

6

7

8

9

1 10 100 1000 10000

Per node message size (KB)

A
ch

ie
ve

d
ba

nd
w

id
th

 (M
B

/s
)

sync+GWCA
pair
MPICH
pair-MPI
Best
pair+CA

(b) Achieved bandwidth

Figure 10: Performance of different complete exchange implementations on the 8X4 hierarchical configuration

32

