eXCloud:

Mobile Applications in Cloud

13 Dec 2011

Systems Research Group

The University of Hong Kong

Transparent Runtime Support for Scaling

Ricky K. K. Ma, King Tin Lam, Cho-Li Wang

Department of Computer Science

CSC2o011 HK

Outline

* Research background and motivation

e Execution model for resource utilization
» System design and implementation

e Performance evaluation

_Background

* Cloud computing:
e Computing power + data storage moved to the Web (data centers)
e PC - thin clients

* Mobile cloud computing:
e Mobile apps or widgets connect to the Cloud
e Support more complex and wider range of applications

More than 4.5 billion mobile-phone users all over the world.

— gmg- -

aliyun.com
| — w) Y @

Al voice-recognition engines

~—Mobile cloud computing

* Several benefits in shifting computing to the cloud

e More computing power, large memory and storage

e Rich software libraries

* Scaling (up) mobile applications
e To run mobile applications with more computing power
e To allow mobile applications to use more resources

* Privacy & Security Concerns

e March 2009, a bug in Google caused documents to be shared
without the owners’ knowledge.

e July 20009, a breach in Twitter allowed a hacker to obtain
confidential documents.

e Not all data/computing should be done in Cloud

2011/12/17

— -

_ Cloud Interopera D) Han

d 2

* Cloud APIs still proprietary.!!

e Data Lock-In: Customers cannot easily extract their data and
programs from one site to run on another

e Standard Cloud APIs

e More than 30 standards organizations are currently
drafting cloud computing standards

« Difficult (5000 APIs in 2011)
« Hinder the development of clouds + Easy to attack

e Libraries that talks to various clouds (Google, Amazon, ..)

« Deltacloud (Red Hat), Libcloud (Rackspace, phyton-based), jclouds (Java-
based), Simple Cloud API (IBM, Zend, Microsoft)

® No APIs => eXCloud

e Total transparency: migration-transparent, location-
independent, “cloud-transparent”

2011/12/17 5

Multi-level Mobility Support

Granularity Migration Technique (System) Target System Type (Area)
Cloud, cloudlet, mobile
Frame level Stack-on-demand (SODEE) network (WAN/LAN)
Thread level Thread migration (JESSICA2) Cluster (LAN)
Process level Process migration (G-JavaMPI) Grid (WAN/LAN)
Live VM migration (Xen) Cluster (LAN)
VM level

Wide-area live VM migration (WAVNet) E\:/I\(,):g’) PP

Adaptation granularity A”OW mUIti-Ievel

A

Coarse task migration
@ ranging from VM

Instance, process,

@@ thread, to stack

frame.

Fine

Small Large

a8 N
o* L
. g
) Method
n | Area
© !
. e . ‘\
1. Constraint-driven \ Code
migration using SOD oo
_________ []
St S S8 L]
,”, ™ '.
7 ‘ ‘\\. st
II/ ’ T \\\
/| Method ‘ 5 5 ‘:
g Area |
\\\ Code Stacks Heap -~
JVM process .-~

Stack

segments Partial tHeap

Internet

—

S~

| ..-'2. Scale out

g using SOD

|

é--: Cloud service
: provider
®
——]| 3. Roaming
using SOD
Cloud service
provider

Multi-thread — ! 9 | || 3690 |
Java process | ‘izzccoooo--
JVM |« » JVM
comm
MPI |e > MPI
guest OS guest OS
Xen VM Xen VM
Xen-aware host OS

—Current client-server model for mobile

cloud computing

» Requests sent to web servers (cloud service providers)
* Application executes completely within the Cloud

* Results sent back to mobile clients
Client

——eXCloud: elastic execution model

 Lightweight task migration : only “needed code” (not the whole
program) + “state” are migrated (Mobility is bidirectional)

« On-demand mobility : migration is triggered only when missing
library class on the device JVM (J2ME), or insufficient memory.
e Other migration policies, e.g., driven by resource constraints
(CPU power, network, battery power), data locality, cost saving ..

(1) Suspend and capture state
(2) Migrate code & state to server Code

L
N

(3) Restore s@

(4) Run on server
N TheCloud . | N\

=
-

(5) Migrate state back to client

(6) Restore state 4ty ¢
Biglnteger x = new Biglnteger();

int 1 = x.intvValue();
} catch (ClassNotFoundException e){
// suspend thread
// capture state
// migrate to server

}

(8) run locally for finishing
remaining execution.

—Seamless integration of mobile nodes

Mobile code Photos

submit request roams thru |
/applications trusted user
devices

migrate
\ 7
migrate ||| migrate back
to server||l with resulting

Issue specific

get

API calls :
execution Code vdata
%/ results =B
<=t "3 /0
Traditional our elastic

client-server model mobility model 10

—Benefits of our new execution model

* Integrated seamlessly with the mobile clients

e Allow better operability of cloud
 No need to write separate client and server codes

e Elastic use of users’ devices

e More powerful mobile applications can be built

Node 1 Node 2 Node 1 Node 2 Node 3 Node 1 Node 2 Legends:
[] Stack frame 1
& & I Stack frame 2
1 1 Il Stack frame 3
~ S
1 o 1 Stack with stack
2 H / 2 # H frame 1, 2, 3
3 ' ._ s —» Migration
-~ 3 $ L — Execution
= oo 7=
._ t I:I In execution
e Start and end
to # 4 4 ¢ Tte bl fime
(a) (b) (c)
(a) “Remote Method Call” (b) thread migration (c) “Task Roaming”

i

—‘V.

ﬂud

* Middleware system for mobile cloud computing

 No modification of underlying system
* Allow multi-level task migration
e ranging from VM instance to stack frame

* Seamlessly integration mobile devices and cloud
nodes

e allow utilization of resources in different nodes.

« So as to achieve scaling (up) of mobile applications

* Stack-on-demand approach (focus of this paper) is
used to support the mobility

2011/12/17 g2

ﬁOn—Demand (SOD)
e Allow lightweight task migration

Stack frame 4
Data Stack frame 3
Stack frame 2 Data
_f
: Stack frame 1 XXX
—
Code Stack Code Stack
Migrating task on Worker process on

Source Node Destination Node

13

P Svstem

* Design goal
e Low overhead

- Allow lightweight task migration. Induce low overhead,
especially during normal execution when there is no migration

 Transparency

» No need for users to modify their programs and libraries
e Portability

« No need to use a specific JVM.
e Adaptation to new environment

« allow to use resources in new location to utilize resources

* Our approach

e Bytecode instrumentation is taken by Class Preprocessor in the
preprocessing step, which is taken offline

14

: : process location and
: object R e ing i R A roh s R A
: injfo e 2 Ersfetchlng info — .
. AR < N 7/ 3 : it
: ; . Migration Manager | “idfo. :
<—-—C—> Object Manager 4-)—‘L> g g \
e R fee———
Cloud : — objects ~ S policy -t
: 5 T :
node i JVM f process f
: 5 Heap | | Threads " , = 7| \otaton
/ A\
FAT [Worker :
Application data = Manager </ : >
N o :
A A ~ SRR Y
transformed
bytecode Class migration
preprocessor info.
R e E e MEBL iy :
L Native MBI~ = l communication i Vi chanrgel_;

-~ i communication laifoiziieaies

¢ : MPI D ‘| Communication <:> N
N < : > iRl $ Manager : /

a

— System architecture

Mobile node

N 2
objects ~ _policy _~

JVM

pn =y =

Fo ~
o«

- e S
object prefetching info o o
infq. = < e it S migration
: g » |, Migration Managen | ififo.
<;?> { Object Manager ¥ > \
E ~ — 2 - \

4 .
SRR | Task partitioning |/ <:>

exception |~

>

%
Heap Threads ’/<—iﬁfo—7/ Resource A :
\| Manager |’ procss

Application data N A :
\ === location

Worker Manager <:>

--

16

_—— Performance Ev

e Platform A

¢ Cluster nodes
« Each node: 2 x Intel 6-Core Xeon 2.66 GHz, 48GB DDR3 RAM
« OS: RedHat Enterprise Linux AS 4.6 (32 bit) with Xen 3.0.3
» JVM: Sun JDK 1.6 (64 bit), nodes interconnected by Gigabit Ethernet

e Platform B

e Cluster nodes
« Each node: 2 x Intel 4-Core Xeon 2.53 GHz, 32GB DDR3 RAM
« OS: Fedora 11 x86_64 with Xen
» JVM: Sun JDK 1.6 (64 bit), nodes interconnected by Gigabit Ethernet

e Mobile nodes
« iPhone 4 handset: 8oo0MHz ARM CPU, 512 MB RAM

» JVM:JamVM 1.5.1b2-3; Java class library: GNU Classpath 0.96.1-3
» Connected to Cluster through Wi-Fi (bandwidth controlled by a router)

folg

457

* Focus on performance of task migration of SOD

Overhead analysis

B Scaling out for parallel
programs
C Migration from mobile device
to cloud node
D Migration from cloud node to

mobile device

2011/12/17

A

ion

Evaluations Description Platform Nodes
used involved

cloud nodes

cloud nodes

cloud nodes
+
mobile nodes

cloud nodes
+
mobile nodes

18

_eEvaluation A: Overhea

* Testing programs

nalysis

App Description Max._ stack | Total field size
height (byte)

Fib Calculate 46th Fib. No. 46 <10

NQ Solve N-Queens problem with board size 14 16 <10

FFT Calculate 256-point 2D FFT 4 > 64M

TSP | Solve travelling Salesman Problems with 12 cities 4 ~ 2500

* Testing Migration Technique
* Stack-On-Demand Migration (SOD) in the execution engine
(SODEE)

* Java Process Migration (G-JavaMPI)
* Use Sun JDK and JVMTI, and perform eager-copy migration

 Java Thread Migration (JESSICAZ2)
* Use Kaffe VM

* Migrations taken in 2 nodes

19

nt sy

:j?gguﬁonthn

Execution Time (sec
SODEE on Xen |JESSICAZ2 on Xen |G-JavaMPI on Xen
App | W/mig | w/omig | w/mig | w/omig | w/mig | w/o mig
Fib 12.78 12.70 47.31 47.25 16.45 12.68
NQ 7.72 7.67 37.49 37.30 7.94 7.64
FFT 3.60 3.56 16.54 19.45 3.67 3.59
TSP 10.8 10.6 253.6 250.2 15.13 10.75

* Execution time with SOD migration is the shortest

* Migration overhead = execution time w/ migration - execution time w/o migration

Migration Overhead (ms)
SODEE on Xen JESSICAZ2 on Xen G-JavaMPI on Xen
Fib 83 60 3770
NQ 49 193 299
FFT 13 96 84
TSP 194 3436 4381

*SOD has the smallest migration overhead among most of the applications
*Migration overhead of SOD ranges from 13ms to 194ms
oIt can be 1/45 — 1/6 of G-JavaMPI

20

- Migration latency in different systems

* Migration latency of SOD migration is the smallest
among the applications.

SODEE on Xen G-JavaMPI on Xen JESSICAZ2 on Xen
App Mig. latency (ms) Mig. latency (ms) Mig. latency (ms)
Capture | Transfer | Restore | Capture | Transfer | Restore | Capture | Transfer | Restore
Fib 6.31 894.73 275
025 | 271 | 34 R L e ey R e v
NO 6.8 69.25 8.06
032 | 28 | 36 T e v R T gl a3 603
FET 19.39 3659.6 59.08
035 | 149 [41 e T e e b Q0B a2 566
8.08 78.84 19.4
TSP
03 | 28 | 5 R e 005 | 106 | 874

* Transfer time = time needed for the state data, upon being
ready for transfer, to reach the destination

21

_«Evaluation B: Scaling out by SOD Migration

* Application: parallel Java ray-tracing program using MPI
» Starts with all processes executed in a single node.

* Scale-out by migrating rendering worker processes to idle
nodes.

Ray Tracing Application

4 e
/

2 -] ughput)
. increases accordingly by scaling out.

0 1 2 3) 5 6 7

Throughout (1073 pixels/sec)
w

No. of migrations

22

__Evaluation C: Migration from mobile device to

cloud node

* Migrate computation-intensive tasks from mobile devices to cluster
nodes.

* The performance gain through migration are 3 to 56 times.

* Total migration latency is larger due to ﬂle%wer processing

power of mobile nodes and WiFi

s

comhection

)/

exec. time |exec. time : capture | transfer | restore _tota_l

w/o mig. (s)|w/ mig. (s) 84N 1 time (ms) | time (ms) |time (ms) SR

' : latency (ms)
Fib 56.79 0.99 x56 140.33 94.33 11.67 246.33
NQ 32.67 1.04 x30 183.26 86.31 10.52 280.09
FFT 6.06 1.26 x3.8 156.48 232.46 14.58 403.52

20

| IEEE Intanations! Conferencn 66

CLUSTR™

|

T capture time transfer time restore time (ms) total migration
(ms) (ms) latency (ms)
DBRetrieve 85 76 6 167
FaceDetect 103 155 265

Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

exception NoClassDefFoundError

24

/ﬁuation D: Migration from cloud node

to mobile device * Current settings
» 5 directories with images
* Memory footprint (in server): * empty directory name “ip4”

1,007,096 bytes (~30MB
31,907,096 Dyt (3) A search task
IS created.

* Memory footprint (in iPhone):
852,544 bytes (~833KB)

It is then
migrated to
iPhone.

¢ SOD avoids memory

consumption (up to 97%) HTML with file

information is

® As there are active network
connections between the

server program and clients,

; . . ' -

the need of migrating native 1he fask refrieves the -
: specific file information

states are avoided

sends a
request

‘L1 1] Results are
returned v

25

Bandwidth _Capture Transfer _Restore Migration Migration from cloud
(kbps) [time (ms)|time (ms) |time (Ms)| time (ms) :
50 14 | 1674 | 40 1729 gOd.e o melollle
128 13 1194 50 1040 cvices
384 14 728 29 772
764 14 672 31 717 A photo sharing

Size of class file and state data = 8255 bytes Cloud service

A search task

IS created.
Web server

Stack frame is then

HTML files
with photo er

links |§ —1 sends a
returne
Search request

~ results are
The task searches for photos returned

available in the specific directory

3

=Conclusion and Future Work

* A middleware system eXCloud is introduced

e To provide seamless, multi-level task mobility support at different granularity
* Stack-On-Demand execution model is used

e To allow lightweight partial state migration to allow migration among cloud
nodes and mobile nodes.

* Experiments show that

e SOD induces less overhead than other migration system for most of the
benchmarks

e Significant performance gains in mobile devices are archived by utilizing
cloud resources.

* Various policies can be further explored
e Migration, prefetching, task distribution

a0

Thank you!

Q&A

