
CONTEXT-AWARE STATE MANAGEMENT

for UBIQUITOUS APPLICATIONS

Pauline P. L. Siu, N. Belaramani, C. L. Wang and F. C. M. Lau

Department of Computer Science,
The University of Hong Kong, Pokfulam, Hong Kong.

{plpsiu, moti, clwang, fcmlau}@cs.hku.hk

Abstract. In a ubiquitous computing environment, users continuously
access computing services and interact with smart spaces, while moving
from one place to another. Application migration, therefore, is an impor-
tant and necessary feature. State capturing, migration and restoration
play a significant role to enable application migration. However, current
software systems usually capture the state at the source and restore it
in the destination as it is, without any modification. We believe that ap-
plication migration in the ubiquitous computing environment has to be
context-aware. In this paper, we introduce a context-aware state captur-
ing and restoring mechanism that can achieve context-aware application
migration. Our context-aware migration scheme has been implemented
in our Sparkle Pervasive Environment, and we demonstrate it with a
Universal Browser Application. We believe with this mechanism, appli-
cations can be more adaptive to the changing environment as the internal
program states will be processed to suit the new context environment at
the destination device and mobile code could be brought in from the
network to adapt to the new execution context.

Keywords: ubiquitous computing, context-aware, state management, mobility
support, component-based system.

1 Introduction

The ultimate vision of ubiquitous computing is to enable users to carry out
computing anywhere, anytime and on any device. This introduces the concept
of mobile users: users move from one location to another while carrying out their
tasks on their devices, such as PDA. On the other hand, users can also move their
tasks from one device to another, for example from their PCs to their PDAs.
Application migration, thus, becomes an important and necessary feature for
ubiquitous environments.

State management, including state capturing, migration, and restoration,
plays an important role to enable application migration. State capturing can
occur at several levels:

Machine State Level. States of the machine are captured. The states are
machine-dependent and hence are compatible with machines only of the same
architecture and configuration.

Process State Level. The current process state of the running application,
including the program counter, stack and instance variables, are captured.

Object State Level. Object states, including program code, data state,
and execution state are captured.

Application State Level. Higher-level states which are user perceivable
are captured.

Different systems capture state at different levels, and use it for migration.
However, most of them will restore the state without any modification and pro-
ceed to resume the execution on the target device. We argue that using the
captured state as it is, without any processing is not suitable for ubiquitous
environments.

Ubiquitous environments are characterized by heterogeneity. When an ap-
plication migrates to another device, there may be a big change in context (for
example, available computing resources, location, etc.). In addition, applications
in ubiquitous environments tend to be context-aware, i.e. the application execu-
tion is context-dependent. Thus, restoring a captured state without taking into
account the new context will have adverse impact on the execution of the ap-
plication. Thus we believe that for ubiquitous environments, state management
must take into account changes in context during state capturing, and state
restoration, i.e. state management has to be context-aware.

We have implemented a state migration mechanism in the Sparkle Pervasive
Computing Environment [1]. Our technique encompasses state capturing at the
application level. With context information, these application states could be
adjusted to suit the environment.

The rest of this paper is organized as follows: Section 2 describes our Mobility
Subsystem in the Sparkle System. Section 3 describes the proposed context-
aware migration method. Section 4 describes our implementation of a Universal
Browser with context-aware state migration. Section 5 discusses various related
projects. Conclusions and future work are given in Section 6.

2 Mobility Subsystem in the Sparkle System

Sparkle is an ideal platform for context-aware application-level state manage-
ment. For all applications running on Sparkle, the application state is centralized
in the container. Thus, during migration, only the state in the container needs
to be captured, processed, migrated and restored.

In this section, we first discuss the overall design and architecture of our
Sparkle system, followed by the details of the mobility subsystem that supports
context-aware migration of ubiquitous applications.

2.1 Sparkle System Overview

This section provides a brief overview of the Sparkle Pervasive Computing En-
vironment. Readers may refer to our previous work [1] [2] for more details.

2

In the Sparkle system, applications are composed of facets. Facets are pure
functional units which are independent of data or user interface. A facet has a
single publicly callable method and has no residual state. Every facet is associ-
ated with a manifest which contains a description of its resource requirements,
run-time behavior, context dependencies, etc.

Facets do not interact with the user and do not maintain any application
state. Hence, every application is associated with a container. The container
contains the user-interface (UI) and stores the data and execution state. It also
stores the set of functionalities that the application can offer.

Facets are housed on facet servers on the network. An application, during
execution, will request for a certain functionality. There may be more than one
facet which fulfills the same functionality. At run-time, the facet which is most
suitable for the run-time environment is brought in and executed. Once used, it
can be thrown away. Consequently, when you run an application in different con-
texts, to carry out the same task or to continue a task that has been suspended,
the actual components used may be different.

2.2 Mobility Subsystem

Operating System

Java Virtual Machine

Sparkle Client System Level

Application Level

Resource Manager

Discovery Manager

Network Handler

Facet LoaderFacet Cache

Central Manager
Context State

Manager

Data State

Manager

Facet

Manager

Mobility Manager

Container
Application Manager

Facet

Facet

Facet

Facet
UI Facet

Fig. 1. Design of the Sparkle System with the Mobility subsystem. The Mobility sub-
system consists of new components represented in dotted line.

The structure of the Sparkle Client System is shown in Fig. 1. In this section,
we discuss several modules which interact with each other to provide context-
aware application migration support. They are the Facet Manager, the Data
State Manger, the Application Manager, the Context State Manger, the Central
Manager and the Mobility Manager.

3

Facet Manager. The Facet Manager gathers the usage statistics of facets.
This helps the Mobility Manager to pre-load facets (on the destination side)
when the application migrates.

Data State Manager. When there is a migration request, the Data State
Manager is responsible to capture the state of the application, i.e. the state of
the container.

Application Manager. The Application Manager acts as the bridge be-
tween the Container and the user interface. It eases the job of programmer when
saving states, and it helps the communication among graphical components.

Context State Manager. The context of the environment or machine sta-
tus will change from time to time. The Context State Manager gathers the con-
text information periodically. It gets the current time, location, user schedule,
machine status, etc.

Central Manager. It is the central entity of the Sparkle Client System
which co-ordinates the activities of the various modules of the client system.

Mobility Manager. This is the core part of the mobility system. The Mo-
bility Manager checks if user needs to migrate. If yes, it will predict the desti-
nation. Mobility Manager performs processing on the captured state before (on
the source side) and after (on the destination side) application migration.

3 Context-aware Migration

Since context-aware state migration is essential in the ubiquitous environment,
in this section, we discuss our migration schemes that have been incorporated
in our Sparkle System, followed by the implementation details.

3.1 Context-aware Migration Phases

The migration mechanism takes places in five logical phases as shown in Fig.
2, namely State Capturing (at source), State Process (at source), State Trans-
mission, State Process (at destination) and State Restore (at destination). The
details are described below.

State Capturing Phase (at source). The Data State Manager captures
the application state and generates an XML document, DataState XML, repre-
senting the state of the application. DataState XML contains three categories
of data states:

(1) fixed. States that are essential for the restoration of the application and
are context-independent. They will not change under migration.

(2) mutable. States that are essential for the restoration of the application
but are context-dependent. They may change depending on the context of the
application.

(3) droppable. States that are not required for the restoration of the applica-
tion. These may give extra information for the restoration of the application.

DataState XML will be sent to the Mobility Manager for further processing.
The Context State Manager generates ContextState XML capturing the current

4

At source deviceAt source device At destination device At destination device

Data State
Capture

Data State

Manager

DataState_XML
from

Container

ContextState_XML
from

outside

environment

Facet_XML
from

Container

Mobility

Manager

Final_XML

Underlying

Network Connection

 (through socket connection)

Final_XML

Restoring state

to different components

State
Capture
Phase

State
Process
Phase

State
Transmission

Phase

State
Process
Phase

State
Restore
Phase

Context State
Capture

Facet usage
Capture

Facet

Manager

Context State

Manager

Mobility

Manager

Fig. 2. Context-aware Migration Process

context of the application and passes it on to the Mobility Manager. The Facet
Manager gathers the statistics of facet usage and generates Facet XML to send
to the Mobility Manager.

State Process Phase (at source). The Mobility Manager receives Facet XML,
ContextState XML, and DataState XML. If it knows where the application is
going to migrate to, it will send Facet XML to the target device for pre-loading
of facets. Then, it will adjust the mutable part in DataState XML to suit the
future context. It will also throw away the droppable states if space is at a
premium. Finally it will consolidate the state and generate Final XML.

State Transmission Phase. In this phase, a socket connection will be set
up between Sparkle clients. Final XML will be transferred to the destination
device through the underlying network connection.

State Process Phase (at destination). At destination, if the context is
different from the predicted one before migration, mutable data states in Fi-
nal XML may need to be re-adjusted to suit the current context. The Mobility
Manager at destination will obtain the latest ContextState XML from Context
State Manager; then it will analyze Final XML. On the other hand, if no ad-
justment on Final XML is needed, it will go to the next phase, State Restore
Phase, immediately.

State Restore Phase (at destination). Lastly, in order to restore the
application, the container will be reconstructed. The related data states are
restored based on Final XML.

5

3.2 Implementation Details

The whole system is implemented in Java. State capturing is done through Java
reflection [9]. In Sparkle, programmers can migrate their program by triggering
the command Migrate(destination). Once the Migrate(destination) method is
called, the underlying mechanisms will take care of all the migration related
chores. Programmers need not explicitly program the migration details of the
application. Byte streams are used for the transmission of states from the source
to the destination. At destination, the reconstruction of the container is carried
out through dynamic class loading.

4 Universal Browser

Fig. 3. Screenshot of Universal Browser

In this section, we will discuss the implementation of a Sparkle applica-
tion, named Universal Browser. Unlike traditional browsing tools, the Universal
Browser is not a tool only for browsing HTML files. It is a special user interface
for users to run any functions they want. For example, you can play games with

6

peers nearby, get current location’s floor plan, or send messages to your friends.
The Universal Browser is built using the facet programming model. Fig. 3 shows
the Universal Browser running on a PC.

4.1 Context-aware Migration Support in Universal Browser

When a user migrates the Universal Browser from the PC to the PDA, data
state is captured. Fig. 4 shows the states in XML format. The data state will
be divided into three categories. For fixed types, they will not be changed no
matter how the context changes. For mutable types, they will adjust depending
on context. For example, the screen resolution as a mutable type may reduce
from 1400×1050 to 320×480. For droppable ones, they will be removed to keep
the XML size small.

<DataState>
 <Application>
 <containerName>webBrowser.webBrowserContainer</containerName>
 <state>
 <name>Bookmark</name>
 <data>
 <value>http://www.cs.hku.hk</value>
 <value>http://www.cs.hku.hk/~plpsiu</value>
 <type>fixed</type>
 </data>
 <data>...</data>
 </state>
 <state>
 <name>History</name>
 <data>
 <value>http://www.cs.hku.hk/~plpsiu/Browser.html</value>
 <type>fixed</type>
 </data>
 </state>
 <state>
 <name>WindowSize</name>
 <data>
 <value>1400x1050</value>
 <type>mutable</type>
 </data>
 </state>
 ...
 </Application>
</DataState>

<state>
 <name>WindowSize</name>
 <data>
 <value>320x480</value>
 <type>mutable</type>
 </data>
</state>adjustment is made

according to context

Fig. 4. The DataState XML: Data states in different categories—fixed, mutable and
droppable. For mutable ones, adjustment will be made to suit the future context.

4.2 Development and Performance

The original Universal Browser program has approximately 2,500 lines of code.
When the Universal Browser is written using facet programming, the main Uni-
versal Browser program is reduced to 1,500 lines. When the Universal Browser
needs different functionalities, it needs to bring in facets. These facets are ap-
proximately of 50 to 200 lines depending on the facet complexities.

We have measured the migration latency of application migration. Migration
latency is the time elapsed from when the migration is initiated, states are cap-
tured, and then processed to the moment when the application is completely

7

restored on the target device. We have measured the latency for the Universal
Browser, and the Bomberman and Blackjack games migrating from one desktop
PC (Intel Pentium 4 CPU 2.26GHz running Windows 2000) to a notebook PC
(Intel Pentium III Mobile CPU 1133 MHz running Windows XP). In addition,
we have measured the size of transferred state using our context-aware scheme.

Applications Migration latency(ms) Size transferred(bytes)

Universal Browser 3837 1984
Bomberman 4038 2542
Blackjack 3933 2375

Table 1. Migration latency and size transferred

Measurements show that the migration latency of the Universal Browser is
less than that of the other two games. This is mainly because less states need to
be captured and processed in the Universal Browser. More, the size transferred
in the Universal Browser is much less than that of the other two games. This is
due to the fact that most of the states in the Universal Browser can be dropped.

5 Related Work

Currently, there are many systems supporting mobility through capturing dif-
ferent kinds of states. Boyd and Dasgupta [3] suggest three migration methods
based on the type of state information required: minimal state migration, full
state migration, and full distributed state migration. In minimal state migration
model, they suggest to collect and restore minimum amount of state information.
They have the same idea as ours to move less data when migration is needed.
However, their model does not suit the pervasive computing environment since
some of the states may change according to external context.

Perimorph [6] is a system that supports compositional adaptation. They
suggest the transfer of non-transient state between old components and their
replacement, which has a similar goal as our design. However, they only focus
on the concept of collateral change. In our system, we focus on state manage-
ment and adaptation. Our system supports the transformation of state in order
to adapt them to the new facet.

ROAM [5], is a seamless application framework that assists developers to
build multi-platform applications that can run on heterogeneous devices. They
also allow a user to move/migrate a running application among heterogeneous
device. In their project, the user interface (presentation) is device-specific. Dur-
ing migration, they need to save all states and map running states between the
source presentation and the target presentation. Hence, extra time is needed to

8

transform states between different GUI components. In our system, we categorize
and process data states before migration, and less data is kept and transferred.
More, our states are in XML format, which is a machine-independent format, so
no transformation of states is needed.

6 Conclusion

Ubiquitous computing environment is the coming trend of the computing world.
In such environment, a new software architecture design is needed. With our soft-
ware infrastructure, Sparkle, it is possible to perform computing and information
access anytime, anywhere, from any device. Furthermore, in ubiquitous environ-
ment, users are usually of high mobility and contexts are changing continuously.
Thus, we have proposed a new mobility system to achieve better application
mobility and adaptability. Since most current systems usually transfer captured
states to destination devices without further processing, thus, transferred states
may not be suitable to the destination context. Hence, our proposed mobility
system is designed to capture states, and to do some processing on states before
they are transmitted. With the processing of states, the states will suit the next
context, making the application more adaptable to the destination environment,
and users’ satisfaction would be increased.

Acknowledgments. This research has been partly supported by HKU Large
Equipment Grant 01021001 and Hong Kong RGC Grant HKU-7519/03E. We
would like to thank our colleagues for their assistance.

References

1. N. Belaramani, Y. Chow, V.W.M. Kwan, C.L. Wang, and F.C.M. Lau: A
Component-based Software Architecture for Pervasive Computing Intelligent Vir-
tual World: Technologies and Applications in Distributed Virtual Environments,
World Scientific Publishing Co.

2. N. Belaramani, C.L. Wang and F.C.M. Lau, ”Dynamic Component Composition
for Functionality Adaptation in Pervasive Environments,” in the 9th International
Workshop on Future Trends of Distributed Computing Systems (FTDCS2003), pp.
226-232, San Juan, Puerto Rico, USA, May 28 to 30, 2003.

3. T. Boyd and P. Dasgupta, ”Process Migration: A Generalized Approach using a Vir-
tualizing Operating System,” in the 22nd International Conference on Distributed
Computing Systems, July 2002.

4. G. Chen and D. Kotz., ”A Survey of Context-Aware Mobile Computing Research,”
in Technical Report, Dartmouth Computer Science Technical Report TR2000-381,
2000.

5. H. Chu, H. Song, C. Wong, S. Kurakake, and M. Katagiri ”ROAM, A Seamless
Application Framework,” in Journal of Systems and Software, Vol. 69, Issue 3, pp.
209-226, 2004

9

6. E. P. Kasten and P. K. McKinley, ”Perimorph: Run-Time Composition and State
Management for Adaptive Systems,” in Proceedings of the Fourth International
Workshop on Distributed Auto-adaptive and Reconfigurable Systems (with ICDCS
2004), March 2004.

7. V.W.M. Kwan, F.C.M. Lau, and C.L. Wang, ”Functionality Adaptation: A Context-
Aware Service Code Adaptation for Pervasive Computing Environments,” in
IEEE/WIC International Conference on Web Intelligence, Halifax, Canada, October
13-17, 2003.

8. L. Silva, P. Simões, G. Soares, P. Martins, V. Batista, C. Renato, L. Almeida, and N.
Stohr., ”JAMES: A Platform of Mobile Agents for the Management of Telecommu-
nication Network,” in 3rd International Workshop on Intelligent Agents for Telecom-
munication Applications, Stockholm, Sweden, August 1999.

9. Sun MicroSystems Inc, Java Core Reflection
10. Sun MicroSystems Inc, Java Object Serialization Specification

10

