
A Collaborative and Semantic Data
Management Framework for Ubiquitous

Computing Environment ?

Weisong Chen, Cho-Li Wang, and Francis C.M. Lau

Department of Computer Science, The University of Hong Kong
{wschen, clwang, fcmlau}@cs.hku.hk

Abstract. One fundamental task to realize the envisioned ubiquitous
computing paradigm is the proper management of the data generated in
this environment. The special characteristics of high distribution, het-
erogeneity, mobility, and autonomy of the ubiquitous computing envi-
ronment introduce great difficulties in data management, which cannot
be easily overcome using existing solutions. We propose a collaborative
and semantic data management framework that is incentive-based. The
incentives encourage contribution from and foster cooperation among
different devices in the environment. Devices that contribute more to
the successful information accesses of other devices will gain more rout-
ing knowledge, which in turn improves the service of their own queries.
We suggest using ontology-based metadata to explicitly and formally de-
scribe data semantics. Our routing scheme would redirect queries to make
full use of cached data available in the environment. Experiment results
show that our system can serve information accesses in the ubiquitous
environment with less communication costs than other similar systems.

1 Introduction

Ubiquitous computing is an emerging computing paradigm that promises con-
tinuous and seamless access to information anytime, anywhere, via any device
[1]. Constant and rapid advances in hardware and communication technologies
are bringing us closer to this envisioned paradigm. We are starting to experience
some flavor of ubiquitous computing, though the complete realization is still not
completely within reach.

One fundamental task to make ubiquitous computing a reality is the proper
handling of the data generated in this environment. In order to support con-
tinuous and seamless information access, the underlying data should be care-
fully stored, distributed, and indexed. The special characteristics of ubiquitous
computing, namely, high distribution, heterogeneity, mobility, and autonomy
[2], introduce tremendous data management challenges, which cannot be easily
overcome by existing solutions.
? This research is partly supported by HKU Large Equipment Grant 01021001 and

Hong Kong RGC Grant HKU-7519/03E.

In this paper, we present a data management framework for ubiquitous com-
puting environment. One guiding principle behind our design is to encourage
contribution from and foster cooperation among devices owned by different users
in the environment. The people joining the environment are expected to agree
to share their devices and contribute to the networked community in which they
reside. In addition to serving their owners, user devices share their data, as well
as knowledge about their data, with other users’ devices. Devices that contribute
to the success of others’ information accesses will benefit through acquiring use-
ful routing knowledge in the process, which can enhance their ability to serve
subsequent queries. Routing refers to a query traveling from node to node until
finding an answer, and also the ensuing process of locating the desired data. The
more contribution a device makes, the more knowledge it will gain. Hence, we
have an incentive scheme for devices to participate in the activities of others.

We use the following techniques to address the data management challenges
in ubiquitous computing environment.

- Ontology-based Metadata An ontology is an explicit specification of
a conceptualization [3]. We suggest using ontology-based metadata to ex-
plicitly and formally describe data semantics, which should be an effective
approach to dealing with data diversity in the ubiquitous environment.

- Incentive-based Routing Protocol We propose a routing protocol which
provides incentives for devices to contribute to others’ information accesses.
The more contribution is made, the more knowledge will be gained. Devices
interact in a collaborative manner that generates many mutual benefits.

- Cooperative Caching User devices maintain local cached copies of the
downloaded data and share them with others. Popular data will be widely
cached and unused data will fade away eventually. No explicit distribution
control on the data sources is required.

The rest of the paper is organized as follows. In Section 2 we present the
design of our system. Section 3 discusses the experiments, which are used to
evaluate the performance of our system. We briefly discuss related work in Sec-
tion 4. Section 5 concludes the paper.

2 System Design

This section discusses the essential aspects of our design, including system overview,
ontology-based metadata, metadata similarity function, and incentive-based rout-
ing protocol.

2.1 System Overview

In the ubiquitous computing environment, there are two types of devices, shared
devices providing public access and private user devices owned by particular
users. Shared devices, such as sensors and server systems, generate or/and store
data that can be accessed by different users in the environment. Traditionally,

when two nearby user devices issue queries for similar data, two searches will
occur independently; and the search result in one user device cannot be shared
and reused by the other device. In our model, people joining the environment
will agree to share their devices and contribute to the infrastructure. Whenever
possible, devices would contribute to information accesses of other devices, and
thereby gain routing knowledge to their own advantage. As such, the devices of
different users form a peer-to-peer community based on mutual benefits. Devices
in the community share not just data but also knowledge.

Ontology-based metadata are used to explicitly describe data semantics.
Metadata can be widely propagated. Through metadata propagation, a device
advertises its knowledge about certain data. By receiving metadata, a device
incrementally builds up its routing knowledge. Devices request information in-
dependently. Queries are forwarded to the nodes that have the closest matching
metadata using a similarity function. Once results are found, the corresponding
metadata are sent to the device that initiated the query, following the query
path in reverse direction. The intermediate nodes along the query path are ben-
efited too—they copy the metadata to their own store and update their routing
knowledge accordingly. The initiating device, based on the received metadata,
then makes a direct request to the data source for the desired data and main-
tains a cached copy. Future similar queries received by the intermediate nodes
will be directly forwarded to the initiating node, where the cached data has been
stored.

2.2 Ontology, Metadata, and Query

Ontology is the formal and explicit conceptualization of a particular domain. It
includes a set of concepts and their inter-relationships. Based on [4], we define
ontology structure as O = {C,P, HC , R}. Using the example ontology in Fig.1,
we explain each component of the ontology structure.

– Concepts (C): well-defined terms referring to classes (or types) of objects
in a particular domain. In the sample ontology, C = {Publication, Staff,
Institute, Report, . . . }.

– Relations (P): properties of concepts defining the concept semantics. In
the sample ontology, P = {Publish, Author, Work, Graduate, . . . }.

– Concept Hierarchy (HC): a hierarchy of concepts that are linked together
through relations of specialization and generalization. HC(Report, Publica-
tion) means that Report is a sub-concept of Publication.

– R: a function that relates two concepts non-taxonomically, using the rela-
tions in P . R(P) = (C1, C2) is usually written as P (C1, C2). For example,
R(Publish)= (Staff, Publication), is written as Publish(Staff, Publication).

There are other terms relating to the usage of ontology, defined as follows.

– Concept Instance : An object is an instance of a concept if it is a member
of the class denoted by the concept.

– Relation Instance : relations relating two concepts in the ontology can be
used to relate concept instances of these two concepts. Instances of these
relations are called relation instances.

– Ontology Instance : comprising concept instances and relation instances.

Publication

Report
 Book

Staff

Professor
 Associate

Publish
 Work

Ontology

Ontology Instance

Is-a
 Is-a
 Is-a
Is-a
 Is-a

Concept Hierarchy

Relation

Graduate
Author

University

Institue

Work
Author

Author

JAVA
 Prof. Smith
 Dr. Black
 HKU

Work

Metadata

Data
 Data

Metadata

Relation Instance

Concept Instance

Data - Metadata

Concept

Fig. 1. Ontology, Metadata and Data

In our system, we use ontology instances as metadata to describe data se-
mantics. A metadata structure is a 6-tuple M = {O, I, C, PI, IC , IR}, where
O is the referenced ontology, I the set of concept instances, C the set of con-
cepts (a subset of the concepts in the ontology), PI the set of relation instances,
IC : I → C the function that relates concept instances to the corresponding
concepts, and function IR : PI → I × I the function to relate concept instances
using relation instances; IR(PI) = (I1, I2) is usually written as PI(I1, I2).

For each piece of metadata, there is one concept instance that serves as the
identifier of the described data. This concept instance is called the central con-
cept instance of the metadata, denoted as M I . The corresponding concept of
the central concept instance is called the central concept, denoted as MC . The
central concept identifies the class of objects that the described data belong to.
Other concept instances, together with the relation instances, describe the prop-
erties of the central concept instance. The properties are also called attributes
of the central concept instance.

While metadata describe data semantics, queries state the desired properties
of the requested information. The query structure and the meaning of each
element in this structure are the same as those of the metadata. They can be
used in the operations where metadata are applicable. The only difference is that
query allows wildcard instance (denoted as I∗), i.e., any instance of a particular
concept.

2.3 Metadata Similarity

To determine the degree that metadata M2 is similar to metadata M1, we first
independently calculate the degree that the concept instances in M2 is similar
to their corresponding concept instances in M1. The following formula is to
determine the corresponding concept instances between two metadata. If the
corresponding concept instance does not exist, we denote it as INIL. Suppose
the concept instance set in M2 is IM2 and relation set is PM2 respectively, the
central concept instances in M1 and M2 are M I

1 and M I
2 respectively, for any

concept instance I1 in M1 , whose relation with M I
1 is P ,

CP (I1) =





M I
2 if I1 = M I

1

I2, s.t. I2 ∈ IM2 and P (M I
2 , I2) if P ∈ PM2

INIL otherwise

Other ontology research projects [5] have defined a numerical function to
measure the similarity level between two concepts in a concept hierarchy. The
basic principle is to exploit the shared concepts that are super-concepts for both
concepts. A concept’s super-concepts (SC) in the ontology can be determined
using the following formula,

SC(Ci) = {Cj |Cj ∈ C, HC(Ci, Cj)} ∪ {Ci}
The degree that concept Cj is similar to concept Ci, denoted as CSim(Ci, Cj),

is given by the following formula, where ρ is a tuning parameter with a range of
[0,1].

Csim(Ci, Cj) = ρ
|SC(Ci) ∩ SC(Cj |

|SC(Ci)| + (1− ρ)
|SC(Ci) ∩ SC(Cj |

|SC(Cj)|
The similarity level between two concept instances is given by the following

formula,

Isim(I1, I2) =





0 if I1 = INIL or I2 = INIL

1 if I1 = I2

Csim(IC(I1), IC(I2)) if I1 = I∗ and I2 6= I∗
Csim(IC(I1), IC(I2))

2 otherwise

The degree that metadata M2 is similar to M1 is given by the following
formula, where IM2 denotes the concept instance set of M2, excluding the central
concept instance M I

2 .

Msim(M1,M2) = Isim(M I
1 ,M I

2) ∗
∑

Isim(Ii, Ij), Ij ∈ IM2 and Ij = CP (Ii)
|IM1|

2.4 Incentive-based Routing Protocol

As nodes participate in routing processes, they continuously receive metadata
from other nodes. The received metadata are classified according to their central

concepts (C1, C2, . . . , Cn). A list (Li) will be used to store the metadata with
the same central concept. The lists are indexed by the central concepts of the
stored metadata. Associations between the metadata and the nodes providing
the metadata are created and the metadata are inserted into the corresponding
lists. Newly received metadata will be inserted at the head of the lists. When
receiving a query (Q), the node searches the routing table to find the list (Li)
that is indexed by the central concept of the query. For each metadata (Mi) in
(Li), we compute the metadata similarity using the formula Msim(Q,Mi). The
query is forwarded to the node that has the most similar metadata.

In our model, nodes that help forward queries will obtain more knowledge
about data and their locations in the network, thus enhancing the ability of
these nodes to serve future queries. When forwarding queries, nodes record the
nodes that initiated the queries. When passing the query results to the initi-
ating nodes, the nodes record the nodes providing the results. This way, nodes
obtain knowledge about the cached data in the network, and knowledge of the
actual data sources. This knowledge will prove to be useful in serving subsequent
queries. The nodes that participate more in forwarding queries will have more
knowledge, and incentive scheme attracting participation from nodes.

3 Performance Evaluation

We modified the NeuroGrid [7] system to support ontology-based metadata and
incorporate our proposed routing protocol. The parameter settings of our simu-
lation system are based on the observation provided by [12]. Table 1 shows the
detailed meanings and default values of the key parameters used in our simu-
lation system. We evaluate our proposed framework based on the performance
metrics hit ratio and average path length. Hit ratio measures the percentage
of the queries got served within bounded time-to-live (TTL), and average path
length estimates the cost of finding the data.

Table 1. Parameter Settings

Parameter Base Value

Total number of concepts in the ontology 150

The number of shared devices 50

The number of user devices 50

Total number of data objects 3000

The size of the cache memory 1 MB

The size of the routing table 100 KB

Staring TTL of the queries 7

Total number of queries by all user devices 10000

Disconnection probability of shared devices 20%

3.1 Ontology Vs. Keyword Searching

Our first experiment is to show the performance of our system, using two test
cases. One uses ontology-based searching. The other uses keyword-based search-
ing. The performance results are shown in Fig.2. We can see that, in both cases,
as more queries are issued, the cached data contribute more to the overall hit
ratio. However, the ontology-based searching has far superior performance, com-
pared with keyword-based searching.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
 4
 6
 8
 10

H
it

R
at

io

Iterations (*1000)

Ontology-based Metadata

Overall Hit Ratio

Hit by Cached Data

Hit by Original Sources

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2
 4
 6
 8
 10

H
it

R
at

io

Iterations (*1000)

Keyword-based Metadata

Overall Hit Ratio

Hit by Cached Data

Hit by Original Sources

Fig. 2. Overall Performance

3.2 Effect of Cache Replacement Policies and Query Patterns

In the second experiment, we adopt three cache replacement policies, namely,
First In First Out (FIFO), Least Recently Used (LRU), and Least Frequently
Used (LFU). Cache replacement occurs when a cache is full and there are new
data coming in to be cached. We study their effect on the system performance by
running simulation for each policy. The results are shown in the left part of Fig. 3.
We can see that when the number of searches is small, the hit ratio monotonically
increases and there is no major difference among these three policies. This is
because the caches in the user devices are not full. Then, after around 4000
iterations, the caches become full. New data will start to push away other data,
and different cache replacement policies start to show different effects on the
system performance. We found that FIFO has the worst performance, due to
the fact that it indiscriminately replaces cached data solely based on the time
of caching, which may swap out popular data needed by other devices.

We also want to know how different query patterns might affect the perfor-
mance of our system. We test three different query patterns, namely, Random
Query Pattern, Interest-based Query Pattern, and Popularity-based Query Pat-
tern. As their names suggest, the random query pattern will generate queries

randomly without any predefined pattern. The interest-based query pattern will
generate queries only for some limited number of concepts that are of interest to
each device. The popularity-based query pattern will generate queries according
to what are popular in the network. The effect of these three query patterns
are shown in the right part of Fig. 3. As expected, the popularity-based query
pattern has the best performance, as most of the queries can be served by the
cached copies in the network.

 0.2

 0.3

 0.4

 0.5

 0.6

 4
 5
 6
 7
 8
 9
 10

C
ac

he
 H

it
R

at
io

Iterations (*1000)

Effect of Cache Replacement Algorithms

LFU

LRU

FIFO

 0.2

 0.4

 0.6

 0.8

 2
 4
 6
 8
 10

O
ve

ra
ll

H
it

R
at

io

Iterations (*1000)

Effect of Query Patterns

Random Query Pattern

Interest-based Query Pattern

Popularity-base Query Pattern

Fig. 3. Effect of Cache Replacement Policies and Query Patterns

3.3 Comparison with FreeNet, NeuroGrid, and Gnutella

Our third experiment is to evaluate the efficiency of our proposed routing proto-
col against some well-known protocols. We compared our system with FreeNet,
NeuroGrid, and Gnutella, using the same values for the parameters listed in the
above table. Our incentive-based routing protocol has very similar performance
with FreeNet system, in terms of overall hit ratio and the number of messages
transferred. Both systems have much better performance than NeuroGrid and
Gnutella. FreeNet only supports exact ID matching; our proposed framework
allows users formulate semantic descriptions of the queried data, which is more
flexible. In addition, we can achieve higher hit rate and less messages when the
number of iterations is getting larger. This is because we store routing knowledge,
instead of caching the data themselves. Routing knowledge is much smaller com-
pared with the data themselves and our system can accommodate much more
knowledge for locating data.

 0

 0.2

 0.4

 0.6

 0.8

 2
 4
 6
 8
 10

H
it

R
at

io

Iterations (*1000)

Comparison of Hit Ratio

Our Protocol

FreeNet

NeuroGrid

Gnutella

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2
 4
 6
 8
 10

N
um

be
r

of
 M

es
sa

ge
s

Iterations (*1000)

Comparison of Messages Transferred

Our Protocol

FreeNet

NeuroGrid

Gnutella

Fig. 4. Comparison with FreeNet, NeuroGrid, and Gnutella

4 Related Work and Discussion

There are some existing research work that have motivated us. In NeuroGrid
[7], each node maintains routing knowledge by incrementally building up a list
of queries together with which other nodes have been good at answering these
queries in the past. In their implementation, keyword strings are used to index
local resources and routing knowledge.

MoGATU [2] is a project explicitly designed to deal with data management
in the ubiquitous computing environment. Profile and context information are
used to guide the interactions among different devices. Caching and replica-
tion are deployed at the devices, according to profile and context information.
MoGATU considers each device individually to serve their users’ information
accesses. Their results can be used to complement our system.

HyperCuP [6] organizes the peer nodes in the P2P network into a hypercube
topology. It guarantees that each peer node receives exactly one message in any
broadcasting request. HyperCuP was among the early research that adopted on-
tology. Peers with similar resources or interests are grouped into concept clusters.
The concept clusters are organized into a hypercube topology. Concept clusters
themselves are hypercubes or star graphs. Queries in the network are first prop-
agated to the intended concept clusters, which in turn optimally broadcast the
queries within the clusters.

5 Conclusion and Future Work

In the paper, we propose a collaborative and semantic data management frame-
work to address the challenges of data access in the emerging ubiquitous com-
puting environment. Experiment results have shown that our system can make
efficient use of cached data in the network, and therefore it will not easily suc-
cumb to disconnection of original data sources. We studied the effect of different

cache replacement policies and query patterns on the performance of our system.
We also compared our system with some similar projects. We have proved the ef-
ficacy of our proposed framework in providing effective and efficient information
access to device users.

In this paper, we have assumed that complete ontology knowledge is avail-
able at each device, which is not always possible in the ubiquitous computing
environment. We did not explicitly deal with ontology variations either. In the
next stage, we will incorporate ontology management into our infrastructure to
bring the system closer to the reality.

References

1. M. Satyanarayanan, “Pervasive Computing: Vision and challenges,” IEEE Personal
Communications, pp. 10–17, August 2001.

2. F. Perich, A. Joshi, T. Finin, and Y. Yesha. “On Data Management in Pervasive
Computing Environments,” IEEE Transactions on Knowledge and Data Engineer-
ing, May 2004.

3. T. Gruber. ”A Translation Approach to Portable Ontology Specifications,” Knowl-
edge Acquisition, pp. 199-220, 1993.

4. A. Maedche, and V. Zacharias. “Clustering Ontology-based Metadata in the Se-
mantic Web,” in Proceedings of 6th European Conference, PKDD 2002, Helsinki,
Finland, August 19-23, 2002.

5. T. Andreasen, H. Bulskov, and R. Knappe. ”From Ontology over Similarity to
Query Evaluation,” 2nd CoLogNET-ElsNET Symposium, Questions and Answers:
Theoretical and Applied Perspectives, 2003.

6. M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. “HyperCuP–Hypercubes, On-
tologies and Efficient Search on P2P Networks,” International Workshop on Agents
and Peer-to-Peer Computing, Bologna, Italy, July 2002.

7. S. Joseph, ”NeuroGrid: Semantically routing queries in peer-to- peer networks,”
In Proceedings of the International Workshop on Peer-to-Peer Computing, 2002.

8. A. Crespo and H. Garcia-Molina. ”Semantic overlay networks for p2p systems,”
Technical Report, Computer Science Department, Stanford University, October
2002.

9. I. Clarke, O. Sandberg, B. Wiley and T.W. Hong, ”Freenet: A Distributed Anony-
mous Information Storage and Retrieval System.” In Designing Privacy Enhancing
Technologies: Lecture Notes in Computer Science 2009.

10. F.M. Cca-Acuna, C. Peery, R.P. Martin, and T.D. Nguyen. ”PlanetP: Using Gos-
siping to Build Content Addressable Peer-to-Peer Information Sharing,” Interna-
tional Workshop on Peer-to-Peer Computing, Pisa, 2002.

11. M.J. Franklin. ”Challenges in Ubiquitous Data Management,” Informatics 10 Years
Back, 10 Years Ahead, 2001.

12. M.T. Schlosser, T.E. Condie, and S.D. Kamvar, ”Simulating a File-Sharing P2P
Network.” First Workshop on Semantics in P2P and Grid Computing, December,
2002.

