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Chapter 1

Building a Global Object Space
for Supporting Single System
Image on a Cluster

BENNY W.L. CHEUNG, CHO-L1 WANG, FraNcIsS C.M. LAvU

Department of Computer Science and Information Systems
The University of Hong Kong
{wlcheung, clwang, femlau}@csis.hku.hk

1.1 Introduction

Advances in computer technologies have turned personal computers and worksta-
tions into commodity products. By connecting PCs or workstations through a high-
speed network, clusters [1] have emerged to be a cost-effective computing platform,
with power comparable to expensive high-end SMP servers or even mainframes.

Clusters differ from mainframes in that the composing units in a cluster are
stand-alone computers, which do not share any physical memory, and they are
built without the intention of co-operating with each other. Therefore, we need to
add to them mechanisms to enable their communication with each other in order
to jointly work on a task. Ideally, users should have the illusion that the cluster is
but a powerful single machine. This leads to the pursuit of a single system image
(SSI) [2] in a cluster.

SSI is a supportive layer above the operating system, which can provide a wide
range of services. These services support each other to create a single-system illu-
sion for the user applications. Machines within an SSI cluster need to be able to
communicate with each other transparently, and cooperate with each other to exe-
cute the user tasks, so that the computing resources are fully utilized. An ideal SSI
cluster therefore would have to provide for dynamic thread/process migration and
load balancing. In addition, the SST support should present a single memory address
space to users’ programs. This requires implementing the capability that a machine
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2 Building a Global Object Space for Supporting Single System Image on a Cluster ~ Chapter 1

can bring in the memory contents it needs to access from the other machines, which
is not easily achievable because of memory consistency issues, as multiple copies of
the same variable can reside in the memory of different computers.

To support an object-based system, the single memory address space is also
known as the global object space (GOS). The GOS is a vital ingredient for achieving
SSI in a cluster, and its design can affect the overall performance of the cluster.
This chapter discusses the design and implementation issues of GOS. We shall use
the JESSICA system [3] as a case in point, and its GOS design will be presented in
detail.

1.2 Overview of JESSICA

A cluster having SSI support is convenient to application users. But SSI needs to
couple with good programmability in order to be effective. It is well known that
parallel or distributed programming is more difficult than sequential programming.
Many special programming languages have been invented. Programmers need to
learn these languages from ground up and existing code can hardly be reused. Other
models introduce additional operations and primitives into existing programming
languages. Programmers need to insert special statements at specific points of the
program to perform explicit data partitioning and movement. A better approach
than all this would be to let the programmer use an existing programming language
as it is, with little or no modifications, and yet the programming language is powerful
enough to allow harnessing the full computing power of the cluster.

Since its introduction in 1994, the Java programming language [4] has been re-
ceiving unprecedented acceptance and support. It has become a major paradigm
in Internet computing for a wide range of users and application developers. It is
also used as the programming language for numerous academic research projects
and studies. Early versions of Java, however, targeted mainly at single machines.
To make Java programs capable of spanning multiple machines to exploit true par-
allelism, programmers have to tackle co-ordination problems between processing
nodes at the Java application level themselves, through some IPC mechanism such
as sockets. Later versions of JDK (Version 1.1 and up) provide supports for par-
allelism such as object serialization [5], remote method invocation (RMI) [6], and
object request broker (ORB) [7]. They deal with co-ordination and co-operation of
processes at the function call level, through some form of remote procedure call
(RPC) mechanism. These supports alleviate the programming burden to some de-
gree, but programming as such is still not as straightforward as programming for a
single machine.

The Java Enabled Single System Image Computing Architecture, abbreviated
JESSICA, is therefore proposed [3]. It is a cluster-computing solution providing SSI
for executing multi-threaded Java applications in a cluster of PCs or workstations.
JESSICA allows applications to exploit the maximum parallelism derivable from the
cluster. In particular, JESSICA allows multiple Java threads in a Java program to
be executed in parallel among multiple cluster nodes, and these threads can freely
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move from one machine to another during runtime to achieve load balancing.

1.2.1 Main Features of JESSICA

JESSICA provides a number of features to support the realization of an SSI in a
cluster:

Single system encapsulation: SSI is supported through the provision of a global
thread space (GTS), as shown in Figure 1.1. When an application is instanti-
ated, the JESSICA system creates a logical thread space that spans the whole
cluster for thread execution. The GTS supports a cluster-wide thread naming
scheme to hide the physical boundaries between machines. Since Java threads
need to access data objects, a global object space (GOS) is built within the
GTS, which creates the illusion that all the machines are sharing a single,
global memory space.

Single-program-parallel-subsystem (SPPS) paradigm: Parallel execution of an
application is achieved by simply creating as many threads as needed, and
these threads can be automatically mapped to different cluster nodes to ex-
ploit real execution parallelism. Application programmers no longer need to
be cognizant of the physical topology of the underlying cluster, such as the
number of processors available.

Preemptive migration of Java threads: A Java thread executing in JESSICA
can be preempted and migrated to another node anytime to achieve dynamic
load balancing and optimal resource utilization. This can be done without
the user’s involvement in deciding which thread to be migrated and when and
where the selected thread is to be migrated.

Migration and location transparency: In JESSICA, any location-dependent
resource is transparently accessible by a migrated thread, hence achieving
migration transparency. Even after thread migration, the location of the
thread is also transparent to the thread itself, as well as to other objects in
the system.

Compatibility: The implementation of JESSICA is at the middleware level,
between the operating system and the Java applications. In addition, confor-
mance to the standard Java Virtual Machine (JVM) Specification [8] implies
that no special programming language features need to be introduced. Thus,
existing Java applications are ready to be executed on JESSICA without any
modification. This enhances code reusability and reduces the programming
effort.

Portability: JESSICA is in essence a distributed version of the JVM, which
runs on top of the standard UNIX operating system as a distributed applica-
tion. The implementation does not require any low-level or platform-specific
supports. Hence, it is portable across different hardware platforms.
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Figure 1.1. (a) A distributed Java application. (b) JESSICA transforms a cluster
into a single multi-processor machine.

1.2.2 JESSICA System Architecture

Figure 1.2 shows the system architecture of JESSICA. JESSICA exists as a mid-
dleware between the operating system and the JAVA applications. It supports the
global thread space (GTS) atop multiple cluster nodes. The GTS is an SSI layer
over the cluster, and it is the programming and execution environment as seen by
application programmers. The layer is supported by three subsystems:
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Figure 1.2. JESSICA system architecture.

o Transparent redirection subsystem, which handles the redirection of system
requests issued by the migrated threads;

e Distributed shared memory (DSM) subsystem, which handles remote data ob-
ject accesses and maintains data consistency so that the GOS can be estab-
lished.

o Thread migration subsystem, which is responsible for thread migration for
dynamic load balancing.

These three subsystems are implemented as system daemons, in the form of
user-level processes running in different nodes of the cluster. They make use of the
underlying operating system services to support the realization of the GTS.

The cluster nodes running JESSICA are referred to as either console nodes or
worker nodes. A console node is where a Java application is started, one for each
application. Other nodes in the cluster, which contain one or more migrated threads
of the application, are worker nodes.

The console node is responsible for handling location-dependent system service
requests from a migrated thread, such as getting the current time in the console
node. A location-dependent request from a migrated thread will be redirected from
the corresponding worker node to the console node. The console node performs
the necessary operations and returns the result to the migrated thread. This is all
transparent to the user. On the other hand, location-independent requests such as
reading a byte stream in the GOS are served at the worker node where the thread
is located.
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Another function of the console node in JESSICA is to co-ordinate the migra-
tion of threads. Load balancing information is collected at the console node and
migration decisions are performed there. To migrate a thread from one remote ma-
chine to another remote machine, the thread “retreats” to the console node before
migrating to the destination node.

More details of the JESSICA system architecture and implementation can be
found in [3]. For the sake of completeness, the transparent redirection subsystem
and the thread migration subsystem are discussed in Sections 1.2.3 and 1.2.4. The
design issues of and our solutions for supporting efficient global object sharing
based on a new page-based DSM model will be discussed in Sections 1.3 and 1.4
respectively.

1.2.3 Preemtpive Thread Migration

In JESSICA, threads can be moved from one node to another transparently through
a preemptive thread migration mechanism known as delta ezecution [9]. With this
mechanism, the execution context of a migrating thread is separated into two sub-
components: the machine-dependent sub-contexts and the machine-independent sub-
contexts. The former contains state information that is part of the internal state of
the JESSICA daemons handling the thread, such as the hardware program counter
which points to the current machine instruction (when a daemon is executing a
native method). The latter contains state information that can be expressed in
terms of the execution state of the distributed virtual machine of JESSICA, such as
data stored in the virtual machine’s registers. The machine-dependent sub-contexts
in a thread are known as delta sets.

When a thread migrates away from the console node, it does not take with it its
entire execution context to the destination node. Instead, the thread is split into two
co-operating threads. One thread, called the master, will run on the console node,
executing all the machine-dependent sub-contexts on behalf of the original thread.
The other one, called the slave, will be created on the worker node. The worker
thread continues the execution of the original thread at the point of migration,
and executes all the machine-independent sub-contexts of the thread. The slave
and worker threads switch control alternatively to execute the thread, advancing
incrementally by a small amount at a time; hence the name delta execution. With
delta execution, a thread being migrated multiple times is possible in order to
achieve dynamic load balancing. Based on collected workload information of the
cluster, a migration manager in the console node can call back a migrated slave
thread running in a worker node, and then migrate it to another worker. This
approach is simpler than directly migrating the slave thread from one worker node
to another, as there will not be any residue dependency resulting in the first worker
node.



Section 1.3. Design Issues of the Global Object Space 7

1.2.4 Transparent Redirection

Another important service provided in JESSICA is the transparent redirection mech-
anism, which is for achieving location transparency of migrated threads. As men-
tioned in the previous sub-section, after a thread has been migrated, the master
thread at the console node is responsible for performing location-dependent oper-
ations for the slave, such as I/0, wait and notify signaling as well as mutex lock
and unlock operations. In JESSICA, these operations are redirected from the slave
thread to the master thread for execution.

For location-transparent I/ O support, the redirection code is implemented within
the java.io and the java.net class libraries for file and I/O redirection respec-
tively. Their interface definitions are kept unchanged so that other classes relying
on them do not need to be modified.

For mutex-lock and unlock operations, JESSICA relies on a decentralized ap-
proach known as co-operative semaphores to implement distributed semaphores.
Semaphore operations in the slave thread are redirected to the console node, and
the slave will block-wait for a reply from the master thread. Upon receiving the
request, the master thread operates on the co-operative semaphore on behalf of
the worker. The master thread will join the waiting queue if the locking opera-
tion is unsuccessful, or continue execution otherwise. Wait and notify signaling is
implemented similarly.

With this transparent redirection service, the GTS can maintain a relationship
between objects in the execution environment, which is the same as the case where
no migration is performed. Location-transparent services and distributed thread
synchronization can be achieved, and a running thread in the JESSICA execution
environment has exactly the same view as one in the standard JVM.

1.3 Design Issues of the Global Object Space

The global object space (GOS) provides for location-independent object accesses. It
creates an SSI illusion of a single and unified shared object space for all distributed
threads, thus easing the implementation of the global thread space. In this section,
we discuss the design of the GOS in detail.

1.3.1 The GOS Architecture

Figure 1.3 shows the layered design of the GOS which is a sub-space of the GTS. The
GOS is supported by JESSICA’s distributed shared memory subsystem for the mem-
ory sharing service which is carried out by the distributed object manager (DOM).
DOMs running on different nodes co-operate to implement a virtual shared mem-
ory layer. The memory sharing service includes initiating communication when one
node accesses an object (a memory location) which is not in the local memory. The
node would initiate a request to the remote node containing the most updated copy
of that object, to obtain the contents of the object. The DOMs are also responsible
for maintaining memory consistency when multiple copies of the same object exist
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in different nodes, so that the clean (most up-to-date) copy can always be identified.
Moreover, the DOMs need to perform garbage collection from time to time, which
gathers unused memory to reclaim space for the GOS.
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Figure 1.3. The Global Object Space architecture in JESSICA.

JESSICA opts to use a page-based software DSM system [10] for providing the
necessary services of the DOM. A page-based DSM system implements a shared
memory space through the use of the virtual memory management mechanism of
the underlying operating system. It consists of three main components: (1) the
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memory management subsystem, which ensures memory consistency in different
nodes; (2) the communication subsystem, which transfers control information and
page updates from one node to the other, and also fetches page copies in serving
remote page requests; and (3) the synchronization subsystem, which provides the
necessary synchronization interfaces for application programmers. Through the
services provided by the underlying DSM, the DOM of a JESSICA daemon is able
to supply most of the functions needed for realizing the GOS. The only exception
is the garbage collection function, which most page-based DSM does not support
and hence must be implemented in the DOM. Also, the DOM is responsible for
transforming the page view of the underlying DSM system to the object view as
seen by Java programmers.

1.3.2 GOS Initialization and Object Allocation

The GOS is initialized at the JESSICA initialization stage as shown in Figure 1.4.
When a Java application is run on JESSICA, the system will call the underlying
DSM support to create a large piece of shared memory. Users can adjust the
size of this shared space at the command prompt when invoking the application.
All the objects declared during the execution of the Java application, shared or
otherwise, are allocated in this piece of shared memory. When an object needs to
be created (due to a static declaration or the new() function in Java), the local
DOM in JESSICA will handle the request and create the object locally in the GOS.
The logical memory address to which the object is mapped will be passed to other
nodes, so that they know which address to refer to when they access the object
later on.

@ (b) Increasing Time
I creasin

GOS Thread Thread

1 2

* ~ new A;
DOM in JESSICA Daemon @
new B;

Hard- Hard- Hard-
ware ware ware

Interconnection Network V' GOS \ 4

" new C;

Figure 1.4. GOS creation and object allocation in JESSICA. (a) Creating a GOS
in the startup phase. (b) Objects are created during execution on a first-come-first-
serve basis.
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Some time later, if another node tries to access the object, a segmentation fault
will occur, and the local DOM will check the address of the object. If the address is
valid (i.e., within the logical address space of the GOS), it will request a copy of the
object from the DOM of the node holding the most updated copy of the object. If
the access is a write, certain memory consistency policies must be observed (which
vary with different kinds of DSM supports; to be discussed later), so that the system
is able to identify the most up-to-date copy.

A question arises which is whether allocating non-shared objects in the GOS
would be a waste of resources. The answer is yes in some cases. In JESSICA,
however, since Java application threads are able to migrate from one node to another
during execution, objects local to a thread may not be accessed by the same node
throughout the thread’s execution. Placing these objects out of the GOS can create
problems when the thread is migrated. In fact there is no easy way for JESSICA to
know which objects are shared or not given just the Java bytecode, unless additional
information can be supplied via compiler analysis.

1.3.3 Garbage Collection

Garbage collection [11] is the activity to locate all the unused objects and reclaim
their space. The JVM relies on garbage collection to reclaim unused memory ob-
jects. As JESSICA follows the JVM standard, it needs to implement a garbage
collection mechanism for the GOS. The implementation is at the JESSICA middle-
ware level, not at the DSM level. A distributed mark-and-sweep garbage collection
mechanism is installed in the GOS of JESSICA, which will be invoked by the DOM
when the total size of all allocated objects reaches a certain threshold. Distributed
garbage collection is a non-trivial problem still under active research. JESSICA
opts for a simple but fairly efficient solution. Since the GOS is divided into sections
for each thread to allocate their objects created through the DOM, the DOM is the
owner of any given object. During the marking phase of garbage collection, each
DOM will form a list for each of the other DOMs. The list stores all traceable ob-
jects that belong to a specific DOM. After that, the lists of objects are forwarded to
their respective owners. Consequently, a DOM will be able to sweep unreferenced
objects and reclaim their space, as any object that is referenced remotely can be
identified from lists coming from the other nodes.

1.3.4 Criteria for an Efficient GOS

The method for allocating GOS memory to objects in JESSICA described in the
previous section is quite different from traditional memory allocation under DSM
support alone. In applications that directly employ support from the DSM, such
as TreadMarks [12] and JUMP [13], shared memory is allocated by calling an ex-
plicit function call provided by the DSM. This call can be invoked anywhere in the
program. The shared variable (or object) is declared as a pointer, and is made
pointing to the address of the head of the shared memory space claimed by the
explicit function call. Hence, programmers take control on the use and the access
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patterns of the shared memory space, even though they may not have any idea
about the underlying mechanisms used by the DSM. In JESSICA, however, pro-
grammers may not have such a control. This is because a large piece of the GOS is
initialized at the beginning, and it is the responsibility of the DOM in JESSICA to
allocate the memory space in the GOS to the objects declared in the Java applica-
tion. In particular, the following situations could happen, which programmers may
not expect:

e Fulse sharing: Although JESSICA views all the Java classes and variables
as objects, the DSM we use to support the GOS is page-based. The GOS is
therefore nothing more than a shared memory space consisting of logical pages.
False sharing, which refers to the phenomenon that two or more threads ac-
cessing different locations of a shared page simultaneously (and being treated
as conflicting), is therefore unavoidable.

JESSICA targets at executing multi-threaded Java applications. Each thread
can declare new objects during execution. The DOM handles the memory
allocation of newly created objects in a first-come-first-serve manner. Hence,
each page in the shared memory space can contain many small objects, each
of them being accessed by different threads in different nodes. False sharing
therefore could easily result. The underlying DSM support must be able to
handle false sharing carefully (as the example in Figure 1.5 illustrates), so as
to ensure correct memory behavior. In general, the higher the degree of false
sharing (i.e., more processors sharing one page), the less efficient the GOS
would become.

o Unexpected memory alignment: With multiple threads of an application exe-
cuting in different nodes, the memory allocation and access pattern become
difficult to predict and are non-deterministic. This is shown in Figure 1.6. If
thread 1 in node 1 executes much faster than thread 2 in node 2, the objects
A and B will be allocated to the same page. If however thread 2 executes
the new() statement just before thread 1 tries to allocate memory to object
B, object B will span two pages. This misalignment can hinder performance,
since every time object B is accessed, two pages need to be brought in instead
of one. Hence, the memory alignment pattern is affected by the sequence of
events happening in each thread, which can be different in different executions.

To make the GOS more efficient, the following are essential considerations.

e Reducing false sharing: False sharing can significantly hinder the perfor-
mance of DSM applications, even when the underlying DSM support employs
multiple-writer protocols such as the diffing technique used by TreadMarks,
JIAJIA [14], and JUMP. Reducing false sharing can therefore improve per-
formance in general. With the unpredictable memory allocation sequence as
described above, however, it is not easy for JESSICA to find a way to reduce
false sharing. One of the solutions is to divide the underlying page-based DSM
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Figure 1.5. Tllustrating the effect of false sharing. (a) Writing two locations z and
y on a same page P by two processors causes two sets of different updated values
z and y. (b) Using the diffing technique: (1) Making a twin of page P to P’ (2)
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space that forms the GOS into different regions, each spanning a contiguous
logical address space. Each thread is then assigned a unique region, and the
objects created by a particular thread will be put into the corresponding re-
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Figure 1.6. Illustrating the non-deterministic memory misalignment problem: (a)
Object B fits in a page. (b) Object B has to span two pages in a different execution
sequence.

gion, as illustrated in Figure 1.7. With this strategy, objects created by the
same thread will be able to share a page, and with access locality, false sharing
can be reduced.

A more efficient solution is to differentiate objects local to a thread from
shared objects. Local objects are accessed only by one thread and therefore
by one node before migration takes place. After migration, these objects will
still be accessed by a single node, namely the node the migrated thread is now
at. False sharing will not occur if we are able to allocate local objects accessed
by the same thread to the same page. This requires runtime analysis of the
Java application, which current JESSICA implementation is not equipped to
do.

e Reducing data communication: Network communication is the major source
of performance bottleneck in many distributed applications. JESSICA is no
exception. Reducing false sharing is only one of many ways to reduce data
communication through the network. The memory consistency model and the
coherence protocol used by the underlying DSM also affect the volume of data
transmitted between nodes. The mechanisms used in synchronizing different
threads can also have an effect. These factors will be discussed one by one in
the next section.
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o FEfficient implementation: The data structures used and the actual coding of
JESSICA and the underlying DSM support can produce dramatic effects on
the overall efficiency of the GOS, since the code could be called millions of
times during the execution of an application. For example, if there are many
objects of the same category but only a few of them need special treatment,
using a linked list data structure to store the identities of these special objects
can be more efficient, in terms of both memory utilization and execution
performance, than using a bitmap to store the status of each object.

1.4 Factors Contributing to GOS Efficiency

In the previous section, we have mentioned the different factors contributing to
reduced data communication in the network so that the GOS can be more efficient.
We discuss these factors in detail in this section.

1.4.1 Memory Consistency Models

A memory consistency model (or simply memory model) [15] defines the behavior
of memory as viewed by the applications. It is a set of rules, such that application
programs abiding by these rules will guarantee to run correctly (meaning that the
programs will run with the expected behavior, unless the application code itself
contains errors). The most intuitive memory model is called sequential consistency
(SC) [16], which guarantees that an update on a shared object made by any node
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will be known by all the other nodes as soon as the update is completely performed
(Figure 1.8). This is what is most familiar to programmers. Unfortunately, it is
also the model that would lead to least efficiency, since the node performing the
update must somehow send the new content of the object immediately to all other
nodes which in fact may not need to access the object.

(a) Time

tEFL

© PO P1 Time

Figure 1.8. An example illustrating sequential consistency (SC): (a) Instruction
execution sequence specified by SC. (b) A possible execution scenario for the se-
quence in (a) under SC. (¢) Another possible scenario.

Therefore, certain relaxed memory models have been proposed. Instead of prop-
agating the updates right away, the updates are propagated at specific intervals.
Some models even introduce specific synchronization operations, so that data prop-
agation will be performed only when statements involving those operations are
executed.

Through the use of the relaxed memory models, unnecessary data communica-
tion can be eliminated, with some of the burden being shifted to programmers, as
they need to add specific synchronization operations into the application program
code. This way of programming goes against two of the objectives for achieving
SST in JESSICA. First, existing multi-threaded Java applications would need to be
modified before they can be executed. Second, the relaxed memory model does not
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match the JVM standard, as JVM observes sequential consistency.

The solution adopted by JESSICA is to use a middle layer of code (i.e., the
DOM) to hide the relaxed memory model of the underlying DSM support, and to
provide a GOS that follows sequential consistency. Here we shall introduce two of
the relaxed memory models that can be used in the underlying DSM support, and
then discuss how the DOM makes use of the underlying memory model used to
conform to sequential consistency as specified by the JVM standard.

Lazy Release Consistency (LRC)

One of the most popular memory models used in DSM systems is the lazy release
consistency (LRC) model [17], which is a variation of release consistency. In release
consistency, the memory operations can be divided into two types: synchronization
operations and ordinary operations. Synchronization operations are further divided
into acquire and release operations. Though the concept is borrowed from the idea
of locks, they can be implemented using semaphores or barriers. The acquire and
release operations always appear in pairs, and together they guard the entrance and
exit of a critical section in which only one processor at a time can access the resources
guarded. Hence, a DSM system can assume that no other processor can access the
objects within the critical section, and the system can delay the propagation of the
updates of these objects at least until the processor in the critical section leaves the
critical section.

According to the time when the processor propagates the update to the other
processor(s), release consistency can be classified into eager or lazy release consis-
tency. Eager release consistency (ERC) [18] is defined as follows:

When a processor P issues a release, all the memory updates made by P before
the release are made known to all the other processors.

And lazy release consistency (LRC) is defined as:

When a processor Q) acquires a lock, which is most recently released by another
processor P, all the memory updates made by P are made known to processor ().

;From the definitions, it is easy to notice that LRC can reduce some unnecessary
communication, since some of the processors may never need the updates anyway.
This is shown in the example in Figure 1.9. In Figure 1.9(a), ERC is used, and the
updates of values z, y and z by P0 are propagated to both processors PI1 and P2 at
the time when PO releases the lock. Under LRC, on the other hand, the updates
only need to be sent to PI when it acquires the lock, as shown in Figure 1.9(b).
The updates are never propagated to P2, as long as it does not acquire lock L.

Regardless of which form of release consistency is being used, the programs are
guaranteed to behave sequentially consistently if all the shared memory accesses
are guarded properly by the synchronization operations. In a word, LRC is quite
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For eager release consistency,
updates of x, y and z are propagated
to P1 and P2 at the release.
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For lazy release consistency,
when P1 acquires the lock L2
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update of x, y and z to P1 only.
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Figure 1.9. An example illustrating release consistency (RC). (a) Under eager
release consistency (ERC). (b) Under lazy release consistency (LRC). Note the
difference in data propagation under the two models.

efficient and provides a relatively simple programming interface, as in the case of
TreadMarks [12].
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Scope Consistency (ScC)

More recently, research has turned to the pursuit of a new memory model which
can achieve high performance, while retaining good programmability like release
consistency. This objective has been achieved by scope consistency (ScC) [19],
which was proposed by researchers at Princeton in 1996. It features the brand
new concept of scopes, which can reduce the amount of data updates among the
processors, and fit naturally the synchronization provided by the lock mechanism.

A scope is a limited view of memory regarding which memory references are
performed. Updates made within a scope are guaranteed to be visible only within
the same scope. For example, in Figure 1.10, all critical sections guarded by the
same lock comprise a scope. The locks in a program thus determine the scopes
implicitly, making the scope concept easy to understand. In addition, barriers define
a global scope covering the entire program. Thus at a barrier, all the updates on
the shared objects made by every processor will be propagated to the others.

P1 P2 Time

In scope consistency, P1 acquires the lock
L2 from PO, and PO propagates the update
of z to P1 only. The reads of x and y are

not guaranteed to be 1 and 2 respectively.

Figure 1.10. An example illustrating scope consistency (ScC).
A scope is said to be opened at an acquire operation (lock acquire or leaving
a barrier), and is closed at a release (lock release or approaching a barrier). With

these concepts, ScC is defined as follows:

When processor @) opens a scope, which is previously closed by another processor
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P, the updates made within the same scope in P is propagated to Q.

This means that updates made outside the same scope will not be propagated at
the time of the acquire. This is shown by the program example in Figure 1.10, which
is the same example as that in Figure 1.9. The contents of z and y updated by P0 will
not be propagated to PI at the lock acquire. This allows ScC producing less data
communication in the cluster than using LRC, hence improving the performance.
ScC shares the same programming interface with LRC. In a nutshell, if a particular
variable or object is guarded by the same lock every time it is accessed, LRC and
ScC both guarantee that the memory is consistent.

A Sequentially Consistent GOS

In order to abide by sequential consistency as observed by the JVM standard,
the JESSICA middleware is responsible to hide the relaxed memory models used
in the underlying DSM support, so that the applications on top are able to see
a sequentially consistent GOS. As described above, users can see a sequentially
consistent memory space under a relaxed memory model if every object is properly
guarded by suitable locks. Therefore, for every line of code which accesses the
objects in the GOS, a lock acquire is performed before the object access. The
lock is then released afterwards. In ScC, the lock used must be the same one for
every access of the same object, starting from the moment the object is created. A
mapping function from object address to lock ID is hence needed. Here a many-
to-one mapping is used, since theoretically an unlimited number of objects can be
created in a Java application, and therefore it is impossible to assign one lock to
each object for resource consideration. The current version of JESSICA supports
1024 locks.

Of course, there is a slight performance penalty for multiple objects to share a
lock. First, when two threads try to access two different objects, which are mapped
to the same lock, one of them must wait until the other exits the critical section.
Second, since multiple objects share the same lock, at synchronization points, the
data propagation will contain the updated contents of multiple objects, of which
some may not be needed and are thus wasted.

Another issue raised by this mechanism trying to hide the underlying memory
models is that the number of DSM lock acquire and release operations called by
the JESSICA middleware may be excessive. A simple application program can
indirectly invoke these DSM calls millions of times. Hence, a light-weight locking
and unlocking mechanism is very much called for for an efficient GOS.

1.4.2 Coherence Protocols

Apart from memory consistency models, coherence protocols [20] can greatly affect
the performance of the DSM. They are, however, often being overlooked, since
unlike memory models, which affect the programming of DSM applications, users
may not directly see the difference even when the coherence protocol is changed.
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It is difficult to judge whether a coherence protocol is better than the others
without considering the memory model. A protocol that adapts well to the memory
model will result in an efficient DSM support. In addition, the efficiency of the
protocol can be application dependent. The special features of memory allocation
in the GOS of JESSICA introduce specific requirements, which make one protocol
better than the other. But in other stand-alone DSM applications, the situation
can be completely different.

Next, we compare three different types of coherence protocols. The features of
each protocol are studied and their impact on JESSICA will be discussed.

Home-Based Protocol

The home-based protocol [21] is used in the JIAJIA DSM system V1.1 [14]. In this
protocol, each page in the shared memory is assigned a node known as the home
of the page. The assignment is done in a round-robin fashion. Once assigned, the
home is made known to all others and stays unchanged throughout the program
execution.

The home node is responsible for storing the most up-to-date copy of the page,
and responding to page requests from the other nodes. At the appropriate synchro-
nization point (for JTAJIA, it is the lock release operation), the updates made on the
specified page are propagated to the home node of the page in the form of diffs (i.e.,
the difference between the old and the new page contents). This means that the
master copy of the page is guaranteed to be clean (i.e., containing the most updated
contents) following synchronization. So, when a page fault later occurs, the whole
page will be obtained from that particular processor only, without the participation
of other processors. An illustration of this solution is shown in Figure 1.11.

For ordinary DSM applications, the home-based protocol performs satisfactorily,
outperforming the homeless protocol (discussed later) in some of the applications
[22]. The home-based protocol, however, does not adapt well to the memory access
patterns of JESSICA due to two main reasons. First, with the home-based pro-
tocol, a remote node propagates the updates of a page to the home node at every
synchronization point. Since the home node of a page is assigned arbitrarily, with
no knowledge about which node is going to access the page, if the page is assigned
to a node that never accesses it, the updates propagated to the home node will be
redundant. In addition, for pages containing objects that are local to a thread, the
home-based protocol tends to produce excessive network traffic when the accessing
node is not the home node. The situation is worse when the protocol uses an eager
approach to propagate the updates, as is the case for JTAJTA.

Second, using the home-based protocol, the lock acquire and release operations
tend to be non-trivial. Acquiring a lock in JIAJIA involves the sending of the page
invalidation information, while releasing a lock triggers the sending of the page
updates to the home node. For both operations, a routine will be called in which
each page in the shared memory space will be checked and all the updates will
be saved (although the sending of these updates is only performed at the release).
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PO (Home) P1 P2 P3 Time
1 1
Acq(L1) Acq(L2)
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{ Diff: x1=1
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Page Fault
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Clean copy of @
page X
Rel(L1)
Rel(LO)

Figure 1.11. Illustrating the home-based protocol. Variables z1 and 22 are in the
same page, X.

The execution time for this routine is directly proportional to the number of shared
memory pages initialized, which can be very long. The situation is particularly
unpleasant when JIAJIA is used to support the GOS in JESSICA. This is because
a large number of shared memory pages are initialized to form the GOS at the start
of the application execution. These pages will be checked for updates by JTAJTA
at each lock operation, regardless of whether they have been assigned any objects.
Moreover, many lock acquire and release operations have to be called in JESSICA,
generating an unbearable amount of overhead.

Homeless Protocol

Instead of assigning a fixed node to store the master copy of a page in the shared
memory, an alternative is to allow nodes to store their own page updates. When
a node needs to access a page, it tries to contact the previous writers of the page.
Each of these writers sends the updates on the part of the page it has written (in
the form of diffs) to the requesting node for generating a clean copy of the page.
This protocol is known as the homeless protocol [23], which is used in DSM systems
like TreadMarks.
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At first glance, homeless protocols seem inefficient due to the fact that a page
request is served by communicating with multiple nodes that have written on the
page. In reality, the situation is not as bad, since the page requester can contact
only the latest writers of the page to derive the clean page copy (Figure 1.12).
This reduces the amount of network traffic, although the algorithm used is a bit
complicated as in the case of TreadMarks.

PO P1 P2 P3 Time

1 1
Acq(L1) Acq(L2)

i W(xl)D i W(XZ)D

Rel(L1) Twin | Rel(L2) Twin

Acq(L1)
Acq(L2) |
R(x1)1
Page Fault
Diff: x1=1 _
Diff: x2=2
R(x2)2

Rel(L1) |

Rel(LO)

Figure 1.12. Illustrating the homeless protocol. Variables z1 and 22 are in the
same page, X.

The performance of the homeless protocol can be further enhanced by the lazy-
send feature. The updates made on a page by a node are not extracted and sent
until the node receives a request for the page. This feature is particularly efficient
for pages containing solely objects local to a thread. As such pages will not be
requested by other nodes, data will not be propagated under the homeless protocol.
This “lazy diff creation” feature also helps the lock operations to become more light-
weight. At a lock release, the releaser only needs to check for any existing pending
acquirers, and sends the lock together with the set of page numbers that have been
updated to the first pending acquirer (if it exists). For a lock acquire operation, the
acquirer only needs to invalidate the pages that have been updated by other nodes
when it receives the lock grant message. There is no need to check each page in
the shared memory region for the update contents, as it is delayed until the specific
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page request is received. This light-weight locking mechanism adapts particularly
well to the locks and unlocks performed by JESSICA.

Migrating-Home Protocol (MHP)

A new protocol known as the migrating-home protocol (MHP) [24] has been proposed
in the JUMP DSM system [13]. In this protocol, each page is assigned a home node
in which the master copy is stored, just like the home-based protocol. The home
location in the MHP, however, can be migrated from one node to another during
execution, in order to adapt to the memory access pattern of the DSM applications.

With the MHP, a processor requesting a page from its current home processor
can become the new home if the contents of the page is totally clean. This is
illustrated in Figure 1.13. When P0 tries to access the page X and triggers a page
fault, the page request will be directed to the original home of the page, P2. In
return, P2 will send a copy of page X to P0, and also grant P(0 to become the new
home node. In this way, when P0 writes on page X and later releases the lock L0,
it does not need to send out updates or diffs of page X, since its copy of page X is
the master copy.

To notify the other nodes about the home change, P0 will send a message to
each of the other nodes in the cluster at the release operation to declare that PO
is the new home node of page X. Notice that before this message is received, the
request of page X from other nodes such as P! will still be directed to P2. P2
will still send a copy of X to this late requester, but home will not be granted.
The page obtained by PI is still clean as long as the variables updated by P0 are
not taken into account. Therefore, this mechanism guarantees that the contents of
the variables accessed by later requesters are up-to-date, since by LRC or ScC, no
processor is supposed to access the memory variables updated by other processors
before any synchronization takes place. (If such a case really happens, the behavior
is undefined according to the definition of the memory models.)

By the definition of the MHP, at the time the migration decision is made, the
home node should have collected all the updates from all the nodes having previously
requested the page. For example, using Figure 1.13 above, if there is a node P3,
which tries to request for page X from PO before P1 releases the lock L1, P0 will
not grant P3 to be the new home when serving the page request from P3.

The movable feature of the MHP reduces the redundant data propagation at
the time of a release that would otherwise occur if using the home-based protocol,
because one of the nodes recently accessing the page must be granted the home
under the MHP. This allows the MHP to adapt to applications with thread migra-
tion better than the fixed home approach. In particular, in JESSICA, if the whole
page contains objects local to one thread, the MHP, like the homeless protocol,
will introduce no data communication among nodes when the thread calls a lock
synchronization operation.

The MHP and the homeless protocol each has its pros and cons in adapting to
the GOS in JESSICA. First, the notion of home in the MHP allows only one node
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Figure 1.13. Tllustrating the migrating-home protocol (MHP). Variables z0 and
zl are in the same page, X.

to be contacted in order to serve a page fault, while in the homeless protocol, the
page requester may have to ask multiple nodes in order to put together the page.
The tradeoff is that in the MHP, all the nodes other than the home which have
updated the page have to send the updates eagerly when release a lock, whereas
the updates are sent on demand in the homeless protocol.

Secondly, in the MHP, each page request is served at the home node by sending
the entire page. In the homeless protocol, diffs (parts of a page) are sent from
recent writers to the faulting node, unless the faulting node does not have a copy of
the page, which is not likely to happen at the later stages of application execution.
The diff size depends greatly on how much of a page is modified, as well as the
access pattern. It is possible for diffs to be larger or smaller than the size of a page
(though they tend to be smaller). The comparison is even more complex as it takes
time under the homeless protocol for a node to calculate the diffs on demand, and
for the page requester to apply the diffs in order to serve the page fault.
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Finally, the locking and unlocking overhead in the MHP is greater than that
in the homeless approach. The eager diff propagation of the MHP can take a long
time to complete in the release operation. As the number of lock acquire and release
operations can be very large in JESSICA, the overhead due to the MHP has serious
implication on the overall performance. Thus, some implementation optimizations
have to be introduced, as described next.

1.4.3 Implementation Optimizations

As the DSM lock acquire and release overhead has a direct bearing on JESSICA’s
performance, the implementation of these lock and unlock routines, including the
data structures used, needs to be very carefully done.

Locking Mechanisms

The performance of various locking mechanisms is often overlooked as they may
differ only by milliseconds or even microseconds. This small difference, however,
can be amplified into a serious performance impact on JESSICA due to the great
number of lock operations performed. One of the simplest locking mechanisms is
based on a centralized approach, as shown in Figure 1.14. In such an approach,
each lock is assigned a fixed manager at the start of the distributed application.
The manager holds the lock, and handles all incoming requests for the lock using
a queue. All the acquires of that lock by any node in the cluster will be forwarded
to the manager. The manager grants the lock to the requester at the head of the
queue. When a node releases a lock, the lock’s control is eagerly sent back to the
manager, together with control information such as the pages updated within the
lock’s critical section.

The centralized locking mechanism works well for most of the DSM applications.
Not so, however, for JESSICA. In JESSICA, all the Java objects are allocated in the
GOS, and every access of this object has to be guarded by the same lock (recall that
this lock’s acquire and release are performed in the DOM in JESSICA, not explicitly
by the Java application). Access to objects local to a thread is no exception (since
the present JESSICA has no knowledge of whether objects are local or not). Hence
for a local object, the associated lock is accessed always by the same thread. In such
a situation, eagerly releasing the lock back to the manager is really not necessary.

An alternative is to delay the release of the lock until the next acquiring request
is in. Instead of sending the lock back to the manager, the lock is directly sent to
the next acquirer of the lock. With this approach, the manager is still fixed at the
start of the distributed application. The manager, however, does not serve as the
middleman for collecting the lock from the remote node that issues a release. Neither
is it responsible for granting the lock to other nodes (except at the beginning, when
the lock has not been acquired by anyone). Instead, when the manager receives a
lock request from a remote node, it will forward this request to the previous acquirer
of the lock, which may or may not have the lock. When a node holding the lock
issues a release, it will check if there is any pending acquirer. If there is, it will send
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Figure 1.14. The mechanism of a lock using the centralized manager algorithm.
P0 is the manager. (a) PI acquires the lock L. (b) PI obtains the lock. (c) P2
acquires the lock L. (d) P2 has to wait since the lock is acquired by PI. (e) PI
releases L. (f) Manager PO gives the lock to P2.

the lock and the control information to the pending acquirer; otherwise, it will just
store the lock and wait until a request is forwarded from the lock manager. The
mechanism is illustrated in Figure 1.15. One important feature of this mechanism
is that, if there is no request that has come in for a lock L from the moment L is
released by a node to the time it is acquired by the same node again, no messages
need to be sent. In effect, the lock release and the next acquire operation cancel
out each other.

The implementation of the GOS and the underlying DSM support should take
advantage of the alternative locking mechanism described above, which is a kind of
a lazy strategy.

Data Structures Used

As mentioned earlier, the data structures used in the implementation can affect the
performance of the GOS and hence the entire system. It takes about 1 us for a
300-MHz Pentium IT machine to loop 8 times within an empty for () statement in
C. Thus, if we have a large array of elements, in which only a few of them pass a
certain condition, it is better to record these elements in a separate array or linked
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Figure 1.15. The mechanism of a lock using the alternative approach. P0 is the
manager. (a) P1 acquires the lock L. (b) P1 obtains the lock. (c) P2 acquires the
lock L. (d) PO forwards the lock request to P1, and P2 waits for the lock. (e) PI1
releases L and directly sends to P2, while PO remembers that the last requester of
lock L is P2.

list, rather than to use a for () loop to check each of the elements in the large array.
Such a case is found in the MHP, as the original implementation of the lock acquire
and release operations uses a for () loop to check for “non-home” pages which have
been updated recently, so as to compute and save the updates for those pages.
Because of the per-object granularity of JESSICA, however, only a few pages (one
in most situations) will be updated in each critical section. Using a for () loop is
clearly inefficient, and the execution time becomes linearly proportional to the size
of the GOS. A better implementation is to use an extra linked list to hold the logical
page numbers of all the pages that have their contents updated. When a node tries
to write on a “non-home” page, a signal is triggered and an entry recording the page
number is added to the linked list. Such an implementation has helped improve the
performance of the GOS in JESSICA.

1.5 Performance Evaluation

To understand the effects of using different memory consistency models and coher-
ence protocols have on the efficiency of the GOS, which in turn affect the perfor-
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mance of the applications, a number of experiments are carried out on a cluster of
four 300-MHz Pentium IT PCs connected by a Fast Ethernet. We considered four
machines to be enough to illustrate the essential performance features, and we ex-
pect seeing similar behavior for larger-size clusters. The JESSICA system is tested
with two flavors of DSM support: the TreadMarks DSM, which employs a homeless
protocol for implementing LRC, and the JUMP DSM system, which uses the MHP
to implement ScC. We choose TreadMarks because it is by far the most popular
DSM system to date, and it has reasonably good performance. The JUMP DSM
system is our own development which is an improved version of the JIAJTA DSM,
beating the original implementation in most applications tested [24]. The source
code for both systems is available, and so that we can analyze and fine tune the
code to achieve optimal results.

A set of seven multi-threaded Java applications are executed in each of these
two environments. For each application, four threads are started at the console
node. Each of them is then migrated to a different node immediately after system
initialization. The performance results are summarized in Table 1.1. For compari-
son, the sequential execution timings, from all the threads running on a single node,
are included. JESSICA appears clearly to be able to achieve a good speed-up with
multiple nodes running. Note that two of the applications failed to run well on
JESSICA under TreadMarks, the timings for which we omit.

Application TreadMarks JUMP Sequential
Producers-Consumers 10.03 11.41 57.82
Dining Philosophers 10.46 10.79 58.83
Readers-Writers 10.83 12.11 58.17
Pi Calculation 33.55 34.92 97.93
Parallel Sieve 0.55 5.40 49.15
Radix Sort N/A 5.85 48.05
Matrix Multiply N/A 8.24 49.91

Table 1.1. Execution times of various applications on JESSICA with TreadMarks
or JUMP DSM support (all the numbers are in seconds).

;From the table, we find that for most of the applications, JESSICA under
TreadMarks runs slightly better than under JUMP, despite the fact that Tread-
Marks employs a less relaxed memory model. There are two reasons. First, the
lazy diff creation and the lazy-send techniques of the homeless protocol are very
effective for JESSICA applications. No redundant data are sent, whereas the home-
based protocol would sometimes send data redundantly. Second, page updates are
not performed at lock acquire and release operations, making the locks very light-
weight.

In comparison, although the MHP also avoids the sending of unnecessary up-
dates to the home node (as one of the nodes accessing the page must be the home),
page updates are still triggered by locking operations. This turns out to be a perfor-
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mance bottleneck as JESSICA tends to issue many lock and unlock calls. Table 1.2
summarizes the average cost in calling a lock acquire and release operation with
each of the DSM systems, including JTAJIA. Tt shows that delaying the data prop-
agation of a page request makes the locking and unlocking overhead much smaller.
JTAJTA uses the centralized locking mechanism, with little or no implementation
optimizations. The locking overhead is extremely large and proportional to the

size of shared memory initialized. Thus it is unsuitable for supporting the GOS in
JESSICA.

DSM System Pr(?ducers—Consumers Pi Calculation
Acquire Release Acquire Release
TreadMarks 4.02 us 3.73 us 3.93 us 3.74 us
JUMP 52.4 us 52.8 us 42.6 ps 45.7 ps
JIAJIA V1.1 ~T750 us ~750 ps ~750 ps ~750 ps

Table 1.2. The cost of performing a lock operation with each of the DSM systems.
(For each system, 32MB of shared memory is initialized.)

The large difference in the locking overhead between JUMP and TreadMarks, as
well as the large number of lock acquires and releases called contrast sharply with
the small difference in the actual execution time (Table 1.1). This suggests that
the more relaxed ScC model and the MHP are rather efficient; they actually help
to narrow the large performance gap due to locking overheads. The lesson learned
is that the locking mechanism has a pivotal effect on the overall efficiency of the
GOS.

Next, we look at the effect of dynamic thread migration facility of JESSICA
under different DSM supports. We use the Pi Calculation application since it has
the longest execution time, allowing more migrations to be performed. Four threads
are initialized at the console node at the start of the program. Then we perform
arbitrary thread migrations and retreats for m times, following a fixed pseudo-
random pattern which can be regenerated for fair comparison. The destination
worker node chosen each time is by round-robin. The timing results are shown in
Table 1.3. From the data, we observe that with either DSM support, the execution
time of the application increases with the number of migrations, m, which is slower
than the load-balanced cases in Table 1.1. This is because thread migration and
retreat take time, and also the random thread migrations may not result in a better
balance in workload. In a production system, a policy module will dictate how
migrations should take place in order to achieve satisfactory balancing of workload
among the nodes.

From the table, we can see that with dynamic thread migration, JESSICA under
JUMP performs better than under TreadMarks. This suggests that the MHP adapts
better to the memory access pattern where there is dynamic thread migration than
the homeless protocol. In particular, the feature that the home migration of a
page would follow the migration of the thread closely has a positive effect. The
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No. of Migrations (m) TreadMarks JUMP Percentage Improvement

) 50.00s 49.38s 1.24%
10 51.65s 49.87s 3.45%
15 52.59s 50.66s 3.67%
20 53.62s 51.57s 3.82%

Table 1.3. Timings of the Pi Calculation application with arbitrary thread migra-
tion.

seemingly minor improvements of JUMP over TreadMarks should not be taken
lightly because TreadMarks is a very mature system with optimized performance.
We believe if JESSICA’s locking mechanism can be simplified in the future, the
improvement figures will definitely be much more substantial.

1.6 Related Work

Java/DSM [25] is one of the earliest research studies on the execution of Java appli-
cations in a distributed environment. It uses the TreadMarks DSM system for the
underlying DSM support. Like JESSICA, all the Java objects are allocated in the
shared memory region (i.e., a GOS). The primary goal of Java/DSM, however, is to
support distributed Java computing in a heterogeneous cluster environment, rather
than to provide dynamic thread migration and load balancing. Therefore much of
the emphasis is on data type conversion. Threads cannot be migrated dynamically,
and location transparency of threads is not achieved. Moreover, the JVM speci-
fication has been changed slightly, and programmers need to add synchronization
operations explicitly in the application code, impacting code reusability.

Solaris MC [26] is a prototype of a distributed operating system for running in a
cluster of computers. It extends the existing Solaris operating system to provide a
single system view. It supports a global process space that spans the whole cluster,
analogous to the GTS in JESSICA. Location transparency is achieved for processes
in Solaris MC, but dynamic migration of processes is not supported. To achieve a
global view of objects, instead of using DSM support, Solaris MC uses a prozy file
system (PXFS) to cache remote object accesses. The PXFS is also responsible for
maintaining memory consistency.

JavaParty [27] is a compiler support tool for executing Java programs in a
distributed environment. Rather than using a DSM, it modifies the existing RMI
support in JDK, and apart from the RMI semantics of classifying objects as local or
remote, JavaParty also allows explicit declaration of remote classes. In JavaParty,
objects created with the new() statement are accessible from the entire JavaParty
environment at once, without explicitly exporting or binding them to a name in
a registry as with traditional RMI. Local objects in JavaParty behave like those
in distributed RMI applications, while methods of remote objects will invoke the
RMI. JavaParty aims to improve the programmability of traditional RMI, but the
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introduction of the remote class hinders code reusability because the JVM interface
is altered.

Jalapefio [28] is a virtual machine for Java servers written from scratch in Java.
Runtime services, conventionally supported by native methods, are implemented in
Java code. It makes use of its own compiler to convert Java bytecode to machine
instructions during runtime. Jalapefio supports a global object space in which all
the Java objects are allocated. One main feature of this GOS is that it is divided
into two subspaces, one for allocating large objects and one for small objects. This
allows different object allocation mechanisms and garbage collection strategies to be
implemented in each of the subspaces to achieve a more efficient memory subsystem.

c¢JVM [29] is a cluster-aware JVM implementation, which creates an SSI illusion
over a cluster of computers. Instead of using a DSM, ¢JVM maintains a distributed
heap by using the master-proxy model for object creation. It also uses the method
shipping technique for transparent remote object accesses. For a Java object that is
passed as reference to a remote node, a proxy of that object will be responsible for
forwarding the execution flow back to the original node in which the master object
resides, where operations on the object would be performed. Multiple ways to
handle a remote object access request are implemented, and it is the responsibility
of the object proxy to choose the most efficient handling method.

The proxy approach used in ¢JVM saves the use of explicit synchronization
primitives for object access. The cJVM implementation, however, still needs to
send out remote access requests when a bytecode instruction tries to access heap
data that is located in a remote node. Moreover, although the proxy approach in
c¢JVM eliminates false sharing, which is a problem in systems employing a page-
based DSM, it does not allow multiple threads to write to different parts of a single
object simultaneously. Hence, the effectiveness of ¢cJVM depends on the pattern
and frequency of remote object accesses, whereas JESSICA relies on the memory
consistency model and coherence protocol employed.

Jackal [30] is a software DSM system for running Java applications. Like JES-
SICA, it hides the underlying memory consistency model, implicitly performing
synchronization on every object access, so that application users see a shared mem-
ory space implementing sequential consistency as required by the JVM standard.
Jackal relies on the compiler to analyze and optimize the Java application code to re-
duce unnecessary synchronizations. The shared memory space supported by Jackal
is neither page-based nor object-based, but uses a granularity of 256-byte segments
in the shared regions to reduce false sharing. Dynamic migration of threads is not
supported.

1.7 Future Work

We have learned from our JESSICA implementation experience that the provision
of an efficient GOS is vital to the performance of the entire system. To achieve
an efficient GOS, many factors need to be considered. Some of these factors are
closely tied to the specific characteristics of the system, such as memory allocation
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policies, access patterns, as well as the frqeuency in which each routine in the system
executes. We plan to consider the following in the future in our pursuit for a more
efficient GOS.

e Locking Mechanism: It has been shown in the performance evaluation section
that the locking mechanism in JUMP somewhat lags behind that used in
TreadMarks. Although the modified JUMP’s locking mechanism has deviated
from the centralized approach (Figure 1.14) and now resembles the approach
used in TreadMarks (Figure 1.15), page update information is still propagated
among processors during lock operations. This makes lock operations more
heavy-weight than in TreadMarks where page updates are propagated lazily
upon page requests. An implementation of a light-weight locking mechanism
in JUMP will require delicate changes in the memory coherence protocol.
We expect a success along this line will lead to more marked performance
improvements over TreadMarks.

e Memory Coherence Protocol: Although the MHP in JUMP has the potential
to beat the homeless protocol in TreadMarks, there is room for improvement
in the current implementation. For example, performing lazy page updates
can definitely benefit applications with high access locality. In addition, the
broadcasting of the migration notices in JUMP has the tendency to turn
into a performance bottleneck, despite the fact that they are short and can
be piggybacked on diffing messages. We will find methods to reduce the
overhead of migration notices, such as by limiting the scope of the broadcast
(i.e., multicast). Other implementation optimizations that can also be tried.
For instance, supplying partially updated pages, rather than whole pages,
when serving a page request can reduce data communication, particularlly for
applications with sparse data updates.

e An Object-based DSM: In this chapter, we discuss the use of two page-based
DSM systems to support the GOS. Page-based DSM systems, intuitively, are
not necessarily a good match for the GOS which is object-based. Analyses
have shown that most objects in Java programs are small, with sizes far smaller
than that of a page. Using a page-based system to support these small objects,
therefore, can suffer from serious problems such as false-sharing, which can
lead to much redundant data communication. The advantage of page-based
systems, on the other hand, is the benefit derivable from the pre-fetching
of pages. We will carefully study the pros and cons, in order to determine
whether an object-based DSM will serve the GOS better.

All these future work items now come into the scope of the project “JESSICA
27, of which the top priority is to improve the GOS design and implementation that
will contribute to much higher performance for the execution of multi-threaded Java
code in a cluster environment featuring SSI.
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1.8 Conclusion

The use of distributed shared memory is one way to support a global object space
to achieve a single system image in a cluster of PCs or workstations. Although
performance is not necessarily the only most important consideration in a design
for SSI, a reasonable level of performance needs to be achieved for the resulting
system to be practical. We have discussed in this article the various design and
implementation issues and problems related to the GOS, and solutions that have
a non-trivial effect on the overall performance. We identified two key issues con-
cerning respectively the memory consistency model and the coherence protocol to
use. Because the current JESSICA version relies extensively on the use of lock
acquire and release operations, the locking mechanism built into JESSICA needs
to be sufficiently light-weight. This requirement is often overlooked in the design
of a GOS or DSM. Our experiments show that in static thread migration mode,
light-weight locking becomes a key contributor to high performance in JESSICA,
while in dynamic thread migration mode, a migrating-home protocol, which adapts
well to the object access pattern of the migrating threads, can lead to more efficient
operation of the GOS.
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