Smart Instant Messenger in Pervasive
Computing Environments!

Chun-Fai Law, Xiaolei Zhang, Sung-Ming Chan, Cho-Li Wang

Department of Computer Science,
The University of Hong Kong,
Pokfulam Road, Hong Kong

Abstract. In this paper, we explore the potential of extrapolating the
instant messaging paradigm into pervasive computing environments. Un-
der this vision, an instant messenger is regarded as a unified interface for
all communications among human, software services and various devices.
To meet the demands, we introduce a novel instant messenger system
i.e., Smart Instant Messenger, with original features of context-aware
presence management, dynamic grouping, and resource buddy services.
This system is built atop a context-aware supporting middleware, which
adopts an ontology-based context model and handles the chore of re-
trieving and managing context information. Jabber protocol is exploited
as the underlying message exchange format for extensibility. The system
prototype is implemented and evaluated with respect to the responsive-
ness of queries and memory usage of the middleware.

1 Introduction

Instant messaging (IM) has been booming since its birth and gradually becoming
the most popular communication tool [15]. IM is characteristic of instantaneous
message delivery and presence awareness. In particular, presence awareness dif-
ferentiates IM from other communication paradigms. We believe such features
fit naturally into pervasive computing environments, where communication and
awareness are essential. Under this vision, “chat” would no longer be the priv-
ilege of human; rather, interactions between human-software, software-device
and device-device could freely take place. We envision the potential of extrapo-
lating IM paradigm as a unified interface for all communications. Aiming this,
we have identified several new design concepts including context-aware presence
management, resource buddy services and dynamic grouping.

Presence information shows a user’s responsive status, i.e., availability to
be involved in a conversation. Current IM products predefine a set of options
such as online, busy, and away. This coarse-grained categorization of user status,
however, is incompetent under the pervasive vision. We propose a context-aware
presence management approach and introduce improvements from three aspects:

! This research is supported in part by a CERG grant (HKU 7146/04E) from the
Hong Kong Government.

(1) Context should be used as presence information. Apparently, when a user is
aware of the other’s situation such as her location, activity, security level and
mood, they could communicate more appropriately. An imperative case is the
mobile IM system, where showing “online” is meaningless if the user just keeps
the connected device in pocket. (2) Presence information should be disseminated
in a context-aware manner. Current IM products show the same status of a user
to all her buddies. In reality, however, a user’s availability is affected not only by
her own situation, but also by the relationship with the corresponding buddy.
For example, we ought to be “online” among the discussion members, yet appear
“busy” to the outliers. (3) Presence information should be set automatically by
the system. Nowadays an IM user needs to manually change her status, which
tends to be burdensome and fallible. For a mobile user, things would be even
more intractable, as her status might change frequently and in an arbitrary way.
It is therefore appropriate for the system to handle this task, provided that the
presence information can be automatically induced.

In pervasive computing environments, all smart artifacts can “talk” with you.
Should they each adopt their own “dialects”, a human user would be obliged to
master a multitude and burdened in shifting the “language” to and fro. Also,
it would involve a great deal of human attention to monitor, control and uti-
lize various resources. Reflecting on the success of IM, we borrow the idea of
“buddy” and view human, software and all sorts of devices uniformly as parties
of communication. We also propose to use IM as the unified interface. Via IM, a
user may include all usable resources in her contact list and “talk” with them in
a personalized way. Another advantage of this approach is that, the user and the
resource buddies could mutually stay aware of each other’s status. The user can
quickly tell which resource is near and ready for use, and select a “best” buddy
to serve her purpose. Vice versa, the resource buddies could observe the user’s
situation and decide on the most appropriate way to interact with the user. For
example, a notification service could choose to call the user’s office phone if she
is there, or email a reminder if she is temporarily away.

Grouping mechanism is commonly adopted in IM products to organize the
buddy list for the user. In current situation, strategies for grouping are typically
framed by the producer and remain unchanged after distribution. Groups are
set by the user once for all. In real life scenarios, however, human relationships
might be temporary, impromptu and varying. We devise a novel dynamic group-
ing mechanism so that: (1) Grouping should be adaptive i.e., able to change
automatically according to the real situation; (2) Grouping should pertain to
the user’s requirement. For example, grouping the buddies by their locations
can help a user “bump into” an acquaintance in a crowded hall, and grouping
the relevant members of the same task can speed up the collaboration efficiency.

In this paper, we present our Smart Instant Messenger (SIM) system which
fulfills the new concepts listed above. Section 2 overviews the SIM system design,
elaborates on how the new features are realized and then introduces the context-
aware supporting middleware, which underlies the SIM framework. Details of
system implementation and experimental results are given in Section 3, followed

by a comparison with related work in Section 4. The paper is concluded with a
discussion and outlook on future work.

2 System Design

2.1 System Overview

We have designed and prototyped the Smart Instant Messenger (SIM) system to
extrapolate the IM paradigm into pervasive computing environments. This is ap-
proached from two layers. The IM Framework layer extends the existing Jabber
[8] Instant Messaging platform and prepares for incorporating the new features.
The context-aware supporting middleware (CASM) underlies the IM framework
and handles the chore of context provision, including retrieving context infor-
mation from various context providers, interpreting and reasoning over context,
and monitoring the context changes on behalf of applications. The main compo-

4 SIM Client \ SIM Server =
23
S8
M > 55
E b handler EE
7} 33
- Roster S
| s handler
. <}
grouping 3
5 S || Presence
- presence o handler
°
resource
1 .| Resource
————————— manager
0 W, g
- Change
x handler
< @ Y s,
o provi der Application specific
) ; [User preference handler
i [A
A v [
[Context updater]—»‘ Reasoning }—»[Change Iistener]
A
Context-aware supporting middleware

Other context providers

Fig. 1. Interactions between the SIM components

nents of SIM system and their interactions are shown in Figure 1. Inside the SIM
client, the Instant Message module provides the basic message exchange func-
tions. The roster module is extended to include the presence, dynamic grouping
and resource buddy features. The context interface module interacts with the

context-aware supporting middleware either by direct query or by subscription
to interested events. It also monitors the user’s conversational behavior, collects
the IM context (i.e., context inferred from chatting and typing) and supplies this
information to CASM.

The Jabber message protocols are extended. Three types of messages are
defined including chat message, presence update message and context message.
The SIM server adds three message handlers to handle them respectively, i.e., the
instant message handler module, the presence handler module and the context
handler module. A resource manager module is also included for resource buddy
registration.

2.2 Realizing the Features

SIM supports two types of presence information. The first follows conventional
status options i.e., “online, away, busy”. However, the status is distributed adap-
tively. A user’s availability displayed to a specific buddy is inferred from both
her situation and their relationship. Different buddies might, therefore, observe
different status of the same user. This inherently considers the user’s preferences
and enables fine control over how a user’s availability is distributed. Figure 2
shows the adaptive presence notification process. Upon initialization, the SIM
client first registers user preference rules to the CASM describing the condition
under which the presence should be updated. It also prescribes the different sta-
tus that should be displayed to different groups of buddies. When the relevant
events happen, the change handler in SIM client is notified and dispatches the
updated presence to the SIM server, which in turn broadcasts the presence to
the buddies.

| SIM Client 1 | | SIM Client 2

| SIM Server

| CASM | | Context |

Provider

getRoster()
roster()

subscribe() & update()

-y
&

associateRules() & reg| sterListener(presenceL User 2 updates

presence
automatically

update() when context
-« 3 changes.
o
updatePresgnce(status) . §
] User 2 informs
changePresence() User 1 through
changePresence| buddyID, status) o IM Server.

A

getPrgsence(buddylD_1, buddyID_2)

Y

User 1 replies
her presence to
User 2.

<!

Buuosea.s

A

changePresence() o

I

Fig. 2. Sequence diagram showing adaptive presence notification process

The second type of presence information embodies the subset of a user’s
context which she is willing to disclose, including for example her current activity,
location and the people nearby. This is enabled by CASM, which actively collects
user context on behalf of applications. When a user’s context is inquired by a
buddy as presence information, her context is encapsulated in an XML-formatted
message, routed to the buddy’s client, parsed and displayed on the roster.

In SIM, human users and resource buddies are conceptually identical. One
slight difference is that, upon initialization, the resource client uses its resource
module to register to the local SIM server, while the user client performs service
discovery on whenever necessary. There are two ways to communicate with the
resource buddy. One is to use the original chat window and type the user-defined
commands; the other is to download a Ul from the resource, which is described
in an XML DataForm format. According to devices’ configurations and users’
preferences, the Ul may be rendered in different customized ways.

The SIM system provides an extensible set of grouping mechanisms, including
location, activity, hobby and relationship. In the current stage, we specifically
investigate the location-based grouping and activity-based grouping. Location-
based grouping retrieves from CASM the most updated user locations and groups
the buddies of the same location. This is especially useful to help a mobile user,
when entering a place, to “bump into” an acquaintance and to initiate a serendip-
itous interaction. It will also keep the user informed of the surrounding resources.
Activity-based grouping reflects on the ”distraction-free” tenet, aiming at facil-
itating the user’s activity (or task) by grouping the relevant people, materials
and resources together. For example, suppose a user is involved in preparing a
project presentation, SIM will dynamically group the project memebers, docu-
ments, applications, printer and projector in her buddy list, forming a virtual
collaboration environment, so that she could easily reach what she needs to
contact or utilize. Current implementation assumes the user’s activity can be
inferred and the relevant information are stored in the context knowledge base.
Upon request, CASM will retrieve the information of all possible buddies (hu-
man as well as resources) and return the result to the roster module in the SIM
client, which in turn updates the grouping.

2.3 The Context-aware Supporting Middleware

The SIM system explicitly separates the context processing routines from appli-
cation logic. A generic context-aware supporting middleware (CASM) handles
the chore of processing, interpreting and reasoning over context information re-
trieved from various context providers. This separation principle not only relieves
the burden of context-aware application programmers, but also fosters the reuse
of context and context reasoning processes.

CASM centers an ontology-based context model for a formal context repre-
sentation, which facilitates knowledge sharing in the open, heterogeneous per-
vasive environments, and enables various logic-based context reasoning mech-
anisms. Contexts are classified into five categories: Device, Person, Location,
Time, and Activity. There are also relationship properties among these main

Change CASM
Handler Interface

CASM
Stub

CASM
Skeleton

Change CASM
Monitor Interface
Rule File
[

” Context Updater ” Context
knowledge
I bass

Context Interpreter

Context Reasoner

Fig. 3. Detailed design of context-aware middleware

classes. For example, an instance of class “Person” can have a relationship called
“hasLocation” which links to an instance in the “Location” class. All classes and
relationships can be added or removed as needed.

Figure 3 shows the detailed design of CASM. The Context Interpreter trans-
lates the context from heterogeneous sources to form an OWL instance data,
which stores all the dynamic context information (e.g. location, time, current
activity) in OWL files. The Context Updater directly manipulates the context
model. When the context model is first created, the schema file will be parsed
and data type of the domain and range for each property are specified. The
Context Updater validates the data type for that particular context statement
each time an add/remove request is received. Upon a context query, it inquires
the context model and formulates the answer in a regular format that can be
used by the client side easily. The Context Reasoner provides two kinds of rea-
soning over the context ontology, i.e. the transitive reasoning and the rule-based
reasoning. The former is used to store and traverse class and property lattices.
The latter supports user-defined rule set. Depends on the schema and domain
of the ontology bound to the context model, rules can be written to derive the
existence of some implicit information or map information to a standard format
for applications.

CASM also provides a set of standard methods for application developers
to update, query and register context event listeners to the middleware. An
application registers interested context events to CASM, and relies on the latter
to monitor the environment on its behalf. Notifications will be fired when the
events happen, and the Change handler module in the application will invoke
the corresponding event handling methods.

3 Implementation and Experiments

We have implemented SIM server and two versions (PC and PDA) of SIM clients.
The SIM server uses and extends the Jabber open source server. We extends Jab-
ber’s Extensible Messaging and Presence Protocol (XMPP), which is currently
an Internet Engineering TAsk Force draft, to report the state of buddies and to
handle the interaction among human, software and devices through XML mes-
sages. SIM clients modify the open source Jabber client program “JBother” [9]
to introduce context-aware presence management, resource buddy and dynamic
grouping. Figure 4 shows the client-side GUIs running on the PDA (HP iPAQ
H5500). Figure 4 (a) shows the message dialog, Figure 4 (b) illustrates the SIM’s
roster, which groups the buddies relating to the SIM project, including 6 mem-
bers and a printer. Figure 4 (c) shows the location-based grouping, where the
buddies are organized under the groups of canteen, lab and office.

peterho@fyp-pc16.cs.hk...

Time: Fri May 02 10:03:59 CST - Canteen
2003

Dr. Wang <offine> Jackey Ng <online: Avalables
HWS 13 Printer <online: Availables Tao <onlne: Available>

Jackey Ng <offines -cs Lab : :

Michael Chan <offine> Michael Chan <online: Available>
Nadia Zhang <away: Away (Idle)> | Terry Law <dnd: Dont Touch Mel>

i i orTie 3 cgvc?/\];:ng <dnd: In Meeting>
Terry Law <offine> 3 -

| o Nadia Zhang <dnd: In Meeting>

I |

Inewbie says: Hello I want to
discuss the project with you.
says: Ok, which part shall we

Mylocaton: [mytocaton: [|

== = ey -
:« peterho@fy B - & 4 10:02 4 _&i'pege.—hn@n B - & dx10:28

:; Nadia zhan: B8] - &F x 10:00

iPAQ Pocket PC
_— . A —

(a) Message Dialog (b) Group by activity (¢) Group by location

q
|

B -\ N

Fig. 4. Client-side GUI

We built up several ontologies for pervasive computing environments. Fig-
ure 5 shows one ontology used for modeling the basic concepts of campus life.
The Web Ontology Language (OWL) has been selected as the ontology lan-
guage for its expressivity and standardization. Reasoning and inference over the
context models are based on the Jena [10] framework. A set of rules has been
developed to infer high-level context from low-level facts.

We notice the major time-consuming part of the system (wireless delay ex-
cluded) is related to operations on CASM middleware. As more context instances
are added into the context knowledge base, the overhead of the middleware grows
accordingly. To test the performance, we evaluate the responsiveness and mem-
ory consumption with the increase of the number of instances. The experiment
proceeds as follows. A PC (Intel Pentium4 2.26GHz, 512MB memory, Linux FC
3.0) which runs Jena version 2.2. A typical sequence of operations is compiled

— isSubClassof

=g relationship

CurrentActivity

Speaker
MediaPlayer
Computer

ComputerLab
Meeting Room
LectureRoom

CurrentTime
Timelnterval

Fig. 5. Diagrammatic view of the campus ontology model

Lecturer
Student
Tutor

@ hasLocation i

hasTimeIntewél__

hasBuddy-.__.

as a sample test, including 2 add (adding instance data into the ontology), 1
remove (removal of instance data), 1 class query and 1 instance query. We in-
crease the instance at the number of 300, 700, 1000 and 1800. At each stage, the
sampling sequence is performed and the total processing time and memory us-
age are measured. The result reports an approximately linear growth of memory
usage varying from 17MB to 22MB and an average processing time of 3.4s with
variations within 0.2s. The performance of the system is tolerable for non-crisis
scenarios and the increase of instance will not cause much degradation.

4 Related Work

The idea of combining awareness with communication originates in computer
supported cooperative work (CSCW) and human-computer interaction (HCT).
Researchers in media space research [1][18] and awareness systems [3][6] have
identified the importance of shared context to facilitate conversation. For ex-
ample, social awareness has been explored in [7] and [14]. However, this stream
of research mainly targets an efficient group collaboration among human users.
Our work, on the other hand, considers all types of interactions including human,
software and hardware resources.

The distinctive features of IM have been gaining more attention in recent
years. Nardi [12] suggested that, beyond information exchange, IM could implic-
itly be used to negotiate availability, maintaining the sense of social connection
and switching media. There’ve also been several research projects on extend-
ing IM with context-aware features. They could be broadly categorized into two
groups. The first exploits context for conditional message delivery. For example,
CybreMinder [2] allows users to associate the contextual information with to-do
items and delivers them upon pre-defined condition. This can be viewed as a
special type of context-aware one-way message delivery. Similarly, a handheld
IM system descibed in [11] also empowers users to specify a set of situations that
must be met before the system delivers the message. The second group explic-
itly uses context information to broaden the communication spectrum. ConChat

[16], for example, supports two conversational parties to exchange or query each
other’s context. The AwareNex [17] system from Sun Laboratories displays lo-
cation and activity information of the users on the contact list. Similar to SIM,
these projects emphasize more on the “outeraction” [12] functionality of IM.
However, the issues of contextual presence and context-aware presence distribu-
tion are not sufficiently explored. Meanwhile, there tends to be little discussion
on grouping mechanism, which we believe is also a tool of potential yet has been
underused.

5 Discussion and Future Work

In this research, we have explored the vision of extrapolating instant messaging
paradigm into the pervasive computing environments. We have designed and
implemented the Smart Instant Messenger system, which transcends current
IM products with new features including context-aware presence management,
resource buddy services and dynamic grouping support. The system is built
on top of a context-aware supporting middleware, which centers an ontology-
based context modeling approach. Though at the prototype stage, it has already
demonstrated the advantages for being used in pervasive computing environ-
ments. Experiments on performance evaluation also suggest its feasibility.

Our design fulfilled the following principles: Separation of context provision
from context consumption. The chore of retrieving and managing context should
not be directly integrated in an application; rather, a separate middleware layer
or the systems infrastructure should be responsible for providing context infor-
mation. SIM adopts a context-aware supporting middleware approach. It not
only relieves the burdens of programmers and the small devices; the generic
middleware could potentially support more applications.

Design for extensibility. Extensibility is essential in pervasive environments
as users, applications, devices and sensors might all come and go dynamically.
Also, the users’ requirements might change over time. SIM chooses the Jabber
protocol for its extensibility consideration, adopts a distributed architecture, and
exploits an ontology-based context modeling solution to facilitate the re-use and
integration of knowledge.

Prototype for real life usage. Pervasive computing is still in the germinal
stage. We believe live applications will stimulate and inspire the research. There-
fore this version of SIM is designed for using on campus, with resources, users
and use cases rich enough for a real system.

We believe such an attempt is of great potential, both in practical usage
and in research. Future work includes supporting user-level mobility of instant
messenger among different devices, improving the performance of context-aware
supporting middleware and exploring the SIM usage in hospital scenarios.

References

1. S. Bly, S. Harrison and S. Irwin. Media spaces: Bring people together in a video,
audio and computing environment. Communications of the ACM, 36 (1), 28-46, 1993.

2. A. K. Dey and G. D. Abowd. CybreMinder: a context-aware system for supporting
reminders. In 2nd International Symposium on Handheld and Ubiquitous Computing,
volume 1927 of Lecture Notes in Computer Science, 172-186. Springer, 2000.

3. P. Dourish, S. Bly. Portholes: supporting awareness in a distributed work group.
Proceedings of CHI’93 Human Factors in Computing Systems, 541-547, New York:
ACM Press.

4. J. Fogarty, J. Lai and J. Christensen. Presence versus availability: the design and
evaluation of a context-aware communication client. International Journal of Human-
Computer Studies (IJHCS), Vol. 61, No. 3, September 2004, pp. 299-317.

5. D. Greene and D. O’Mahony. Instant messaging and presence management in mobile
ad-hoc networks. Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops. March 14-17, Orlando, Florida, pp.
55-59, 2004.

6. C. Gutwin, S. Greenberg. Design for individuals, design for groups: Trade-offs be-
twwn power and workspace awareness. In Proceedings of CSCW96 Conference on
Computer Supported Cooperative Work, 207-216, New York: ACM Press.

7. S. E. Hudson and I. Smith. Techniques for addressing fundamental privacy and dis-
ruption tradeoffs in awareness support systems. Proc. Comp. Supported Cooperative
Work, 1996, pp. 248-257.

8. Jabber Instant Messaging. Online resource. http://www.jabber.org/

9. JBother Homepage. Online resource. http://www.jbother.org/

10. Jena: a semantic ~Web framework for Java. Online resource.
http://jena.sourceforge.net/

11. Miguel A. Munoz, Marcela Rodriguez, Jesus Favela, Ana I. Martinez-Garcia, Victor
M. Gonzalez. Context-aware mobile communication in hospitals. IEEE Computer,
vol. 36, no. 9, pp. 38-46, Sept 2003.

12. B. Nardi, S. Whittaker, E. Bradner. Interaction and outeraction: instant messaging
in action. In Proceedings of ACM 2000 Conference on Computer Supported Cooper-
ative Work, 2000.

13. A.J.H. Peddemors, M.M. Lankhorst, J. de Heer. Presence, location and instant
messaging in a context-aware application framework. 4th International Conference
on Mobile Data Management (MDM2003), Melbourne, Australia, Jan 2003.

14. E. R. Pedersen and T. Sokoler. AROMA: abstract representation of presence sup-
porting mutual awareness. Proc. SIGCHI Conf. Human Factors in Comp. Sys. , At-
lanta, GA, Mar. 22-27, 1997, pp. 51-58.

15. Pew Internet & American Life Project. How americans use instant messaging, Sept
2004. Online resource.
http://www.pewinternet.org/pdfs/PIP Instantmessage_Report.pdf

16. A.Ranganathan, Roy H. Campbell, A. Ravi, and A. Mahajan. ConChat: a context-
aware chat program. Pervasive Computing, 1(3):51-57, July-September 2002.

17. J.Tang, N. Yankelovich et al. ConNexus to AwareNex: extending awareness to
mobile users. Proc. SIGCHI Conf. Human Factors in Comp. Sys., Apr. 1998, pp.
566-73.

18. S. Whittaker, G. Swanson, J. Kucan and C. Sidner. Telenotes: managing
lightweight interactions in the desktop. Transactions on Computer Human Inter-
action, 4(2):137-168, 1997.

