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Abstract. A Distributed Virtual Environment (DVE) system offers a
computer-generated virtual world in which individuals located at differ-
ent places in the physical world can interact with one another. In order
to achieve real-time response for a large user base, DVE systems need
to have a scalable architecture. In this paper, we present the design of
a grid-enabled service oriented framework for facilitating the construc-
tion of scalable DVE systems on computing grids. A service component
called “gamelet” is proposed, whose distinctive mark is its high mobility
for supporting dynamic load sharing. We propose a gamelet migration
protocol which can ensure the transparency and efficiency of gamelet
migration, and an adaptive gamelet load-balancing (AGLB) algorithm
for making gamelet redistribution decisions at runtime. The algorithm
considers both the synchronization costs of the DVE system and net-
work latencies inherent in the grid nodes. The activities of the users and
the heterogeneity of grid resources are also considered in order to carry
out load sharing more effectively. We evaluate the performance of the
proposed mechanisms through a multiplayer online game prototype im-
plemented using the Globus toolkit. The results show that our approach
can achieve faster response times and higher throughputs than existing
approaches.

1 Introduction

A Distributed Virtual Environment (DVE) system is a software system of which
users located at different places can interact with one another to share a con-
sistent virtual environment [16]. In a DVE system, a user is represented by an
entity called “avatar” whose states are a function of user inputs. Many applica-
tions of DVE systems exist, including military team training [6], virtual shopping
malls [11], interactive e-learning [14], and multiplayer online games [3]. An ideal
DVE system should be able to emulate a realistic world and support real time
interactions for a large number of concurrent users in a consistent fashion. The
calculations and propagations of state changes of the simulated world, however,
would easily translate into intensive requirements on computing power, network
bandwidth, etc., making the design of a large-scale DVE system very challenging.
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Recently, much effort has been put into building DVE systems on compu-
tational grids [1] [2]. A grid is a system that coordinates resources belonging
to different organizations using standard, open, general-purpose protocols and
interfaces to deliver nontrivial qualities of service [9]. In a grid, aggregated re-
sources can potentially offer qualities of services that have only been possible
with supercomputers in the past. A grid could be used to support real-time
interactions in a DVE system having a large number of concurrent users. How-
ever, unlike a cluster, a grid generally consists of heterogeneous and dynamic
resources. Grid nodes vary in computing power and the bandwidth between grid
nodes may change from time to time. Such characteristics of the grid give rise to
several new challenges. One challenge is to re-design the conventional monolithic
model of a DVE system so that it becomes an open service-oriented system that
can fit into the current grid frameworks (e.g., OGSA). Another challenge is to
ensure that certain qualities of service, e.g., real time response, be maintained.
Since the aggregate behaviors of users in a DVE system can easily translate
into significant workload imbalances which could lead to unpredictable delays
in world states computation, dynamic load sharing is very much needed. Tra-
ditional approaches for load sharing and migration that have worked well in a
cluster environment might not be directly applicable to the grid environment.
The load sharing and migration design should be adaptive to the resource het-
erogeneity and dynamic nature of the grid.

In this paper, we propose a flexible and scalable service-oriented framework
that can facilitate the construction of multiserver DVE systems on a grid. The
framework adopts a service-oriented approach that can fit well in an OGSA-
compliant grid environment. A service component called “gamelet” is introduced,
which serves as the basic building block. A gamelet is characterized by its load
awareness, mobility, and embedded synchronization for supporting a DVE sys-
tem with a partitioned virtual environment. Existing multiserver DVE systems
based on spatial partitioning scheme can easily be mapped into our gamelet-
based framework. Our proposal includes a gamelet migration protocol and an
adaptive gamelet load-balancing (AGLB) algorithm. The design principles are
such that they would meet the special requirements, e.g., latency tolerance and
resource adaption, of building a DVE system in a grid environment. We show
that with our design, load balancing and migration can be performed effectively
and efficiently.

The rest of the paper is organized as follows. In Section 2, we present briefly
the background of DVE systems. In Section 3, we discuss the gamelet concept and
the system framework. In Section 4, we present the gamelet migration protocol
and the AGLB algorithm. Section 5 discusses the design of a prototype. Section 6
presents the performance evaluation based on the prototype. Section 7 discusses
some related work. Section 8 concludes the paper.



2 DVE Systems

A DVE system aims at a sense of realism and an immersive experience by in-
corporating realistic 3D graphics and providing real-time interactions to users.
A DVE system typically has the following features:

– Consistent world. Consistency refers to the similarity of different users’ views
of the virtual environment. A user has an area of influence in the virtual
world, and all the other avatars in the area should be able to view its activ-
ities in real time and the perceived states should be the same.

– Realistic graphics. Fast developments of graphics hardware have made it
possible for a DVE system to operate with high-resolution 3D objects. Ef-
ficient and realistic animations and accurate collision detections are desired
features of new emerging DVE systems.

– Distributed users. Although users share the same virtual environment, they
might be located at different places and access the system through different
devices. The DVE system should create an immersive environment that can
provide a highly responsive performance to mask the physical differences of
the participants.

The virtual environment in a DVE system may consist of static world con-
tent, e.g., buildings and rooms, as well as dynamic world content, e.g., avatars.
State changes of the dynamic world content including positions and velocities
of avatars should be transmitted to clients as quickly as possible in order to
achieve a feeling of reality. Inconsistencies in state changes must be swiftly de-
tected and resolved in real time. Such activities can be very memory and com-
puting power demanding, especially in an unreliable network environment where
messages may get lost [7]. In fact, real-time, accurate collision detection and re-
sponse calculation of complicated 3D objects are known to be computationally
intensive [13] [15]. Hence, it is now common to adopt a multiserver architecture
whereby the workload would be distributed across several servers based on a cer-
tain partitioning scheme. The servers are responsible for generating global world
states as well as performing various administration management tasks while
clients only perform operations such as dead reckoning and scene display [17].
Here are some examples of server task: managing input commands, computing
world states, rollbacks and state synchronizations, server-side optimizations for
area of interest (AOI ) management, packet compression, cheat detection and
denial-of-service attacks prevention [4].

When too many users happen to crowd into a certain area in the virtual
environment, a hot spot will form. Too many hot spots in a DVE system can
easily result in server overloading. Therefore, workload mobility and dynamic
load sharing are highly desirable features in the design of scalable DVE systems.
These features, however, cannot be easily implemented in a grid environment
as traditional DVE systems are not at all grid-ready due to their monolithic
design and non-compatibility with an open and service-oriented grid computing



environment. The dynamics of grid resources complicate the situation even fur-
ther since factors such as network latency and resource heterogeneity need to be
considered if load sharing and migration are to be performed.

3 Gamelet-based System Framework

3.1 Gamelet Definition

The core building block of our system is called a “gamelet”. It is a mobile service
component responsible for processing the workload introduced by a partitioned
virtual environment. The gamelet concept is closely related to that of traditional
problem decomposition for parallel execution: each partition corresponds to a
gamelet running in a grid node. A gamelet is designed with the following features:

– Load Awareness. A gamelet currently residing in a server is able to detect
and monitor its own workload, including the CPU load of the server, the
network load (in terms of bps), the total number of users, etc. The gamelet
is at all times ready to provide the necessary information to be used by a
third party for load migration decisions.

– High Mobility. A gamelet can be controlled by an authorized remote com-
ponent through standard interfaces. Supported methods include initiation,
destruction, processing, and migration.

– Embedded Synchronization. A gamelet is able to communicate with other
gamelets to synchronize their world states whenever necessary. The synchro-
nization protocol is embedded in the gamelet.
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Fig. 1. Gamelet Structure.

A gamelet can be created or destroyed dynamically to support runtime load
sharing for a gamelet-based DVE system. Since a gamelet can be migrated to
any grid node, the result is a scalable DVE system that sits on top aggregated
distributed resources. The system is no longer limited by locally available re-
sources.



Figure 1 shows the structure of a gamelet. The data management section
includes three components. The collision detection component is responsible for
computing when objects collide with one another and how they should respond.
The synchronization component is responsible for ensuring data consistency
among multiple partitions. The world and avatar management component is
responsible for managing objects in the virtual environment and communicat-
ing with clients. The control management section includes two components. The
workload monitor component records the CPU load, network load, number of
users, and any other monitoring variables. The migration control component
implements methods to be used in gamelet migration and remote enquiries of a
gamelet’s workload states.

3.2 Grid-enabled System Framework
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Fig. 2. Three-layer Model.

We propose a three-layer framework for gamelets (Figure 2). The function of
the monitor layer is to periodically check the different workload parameters of
the worker servers, and to make decisions on how to adjust the workload among
the servers. The load sharing strategies are tunable and are embedded in the
monitor component. For example, the user may define a threshold to limit the
CPU workload difference among the servers. A monitor is also responsible for
managing the life cycle of a gamelet, e.g., creation and destruction of a gamelet
instance.



The gamelet layer consists of a set of worker servers where gamelets are run.
The whole virtual world is logically divided into a set of partitions, each of which
is assigned to one gamelet. One worker server can support several gamelets at
the same time. A monitor will acquire workload data from the gamelets based
on which migration decisions could be made.

The communicator layer consists of a number of communicators and acts
as the bridge between the gamelets and the clients. To join the world, a client
will first contact a well-known monitor which will assign a communicator to the
client, after which the client will always send messages via this communicator.
Communicators know the predefined partition rules and will route messages in-
telligently in case messages are needed by more than one gamelet simultaneously.
For example, when an avatar’s area of influence is across several gamelets, the
user’s messages will be routed to all the gamelets. In such a case, the gamelets
are responsible for ensuring world consistency. The communicator cooperates
with the monitor to perform gamelet migration and will try to make the mi-
gration process transparent to the clients. In cases where the communicator is
overloaded, the monitor can assign new users with a new communicator so that
the workload can be shared.
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Figure 3. Gamelet-based multi-server architecture. 
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Fig. 3. Gamelet-based System Framework.

Figure 3 shows the detailed architecture of the framework. In order to allow
for a flexible control of multiple gamelets, each gamelet is implemented with



a wrapper in the monitor component. The gamelet wrapper encapsulates the
complicated grid related protocols. This design separates the monitor component
totally from the underlying grid libraries, which can be easily reused in a new
grid environment.

The gamelet service component is designed to fit the OGSA-compliant grid
service architecture. This architecture comprises several layers. At the lowest
layer is the hosting environment such as a J2EE application server. Above the
server container is a core service layer (GT3) which provides the following sup-
ports. The Grid Security Infrastructure (GSI) is used to ensure the secure com-
munication and authentication among the gamelets in an open network. Each
gamelet service instance has a unique Grid Service Handle (GSH) managed by
the Naming Service and is associated with a structured collection of information
called Service Data that can be easily queried by requesters. The Life Cycle
Management service provides methods to control a gamelet throughout its life
cycle from creation to destruction.

GT3 base services are based on the GT3 core services. The Gamelet Factory
service uses the Grid Resource Allocation and Management (GRAM) service to
enable remote creation and management of gamelets. A set of Service Data, e.g.,
those required by the collision detection methods, is associated with a Gamelet
Factory service through the Index Service. The gamelet factory service enables
several stateful gamelet service instances to be created at the same grid node
concurrently. Each gamelet ensures that the dynamic world states are carefully
maintained during the running of the DVE system. A gamelet factory will pe-
riodically register its GSH into a registry, from where a monitor can locate a
set of gamelet factory services and reliably create and manage gamelet service
instances.

4 Gamelet Migration and Load Balancing Algorithm

4.1 Gamelet Migration

Gamelet migration is performed under the cooperation between the monitor and
the communicator. The migration protocol is as follows.

A monitor periodically queries the gamelets for their workloads. When the
monitor figures that a gamelet is in need of migration, it will try to locate a refer-
ence of a new gamelet factory service from the registry, create a new gamelet, and
make it ready for the migration act. The monitor then notifies the communica-
tor to store the incoming packets temporarily in a resizable message queue, and
directs the source gamelet to package and serialize its dynamic world content. It
also transmits the address of the new gamelet to the old gamelet. Afterwards,
the old gamelet transfers the dynamic content to the new gamelet. The monitor
will be notified when the content transmission is finished and the new gamelet is
ready to process the incoming packets. Finally, the monitor notifies the commu-
nicator of the completion of the migration, and the old address of the gamelet is
replaced by the new one. The communicator will then forward the stored packets



according to the updated client-gamelet mapping table. Newly arrived packets
will be routed to the new gamelet for processing.

Since in a grid environment the newly discovered grid node might be located
far away from the server where the old gamelet was running, the latency between
them might be in the order of several hundred milliseconds. To mitigate this
latency problem arising from the gamelet migration process, the communicator
component will manage and buffer the incoming packets during the migration
period, which will be forwarded to the new gamelet for processing when the
new gamelet has completely taken over. This minimizes message losses caused
by gamelet migration.

To cut down on the gamelet migration time, grid libraries are preloaded and
the procedure to pack the world content is executed concurrently with gamelet
creation. Therefore, if the new gamelet is ready to work, the old gamelet can
start transferring the world content to it immediately. This design can save much
of the gamelet migration time. More on the gamelet creation and migration
time will be discussed later. Besides, the client-gamelet mapping table in the
communicator component, which is initially defined based on the partition logic
of the DVE systems, can be automatically updated when migration takes place.
A client always contacts the same communicator without having to know which
gamelet is actually working behind the scene. The server side’s gamelet migration
activities are completely transparent to the client.

4.2 Adaptive Gamelet Load Balancing Algorithm

We use an adaptive gamelet load balancing (AGLB) algorithm for load balancing
of the DVE system in a grid environment. The word adaptive has two meanings.
Firstly, the algorithm adapts to network latencies in making gamelet migration
decisions. This is achieved through a cost model which takes into account both
gamelet synchronization costs and inter-server latencies. Secondly, the algorithm
evaluates each gamelet based on the activities of the clients being managed and
adapts to the resource heterogeneity of the grid nodes.

In the AGLB algorithm, the threshold δm is used to judge whether a new
load balancing process is necessary for server m. Server m will be regarded as
overloaded if its CPU usage exceeds δm. The value of the threshold can be
set beforehand. As a grid server may become unavailable due to management
or other reasons, δm can be set to zero so that server m will be considered
overloaded until all its gamelets have been migrated away. After that the server
m can be removed from the system.

Let N be the total number of gamelets and Q the total number of servers.
Then, we have the following notations.

– Graph(V,E): the gamelet partition graph. The i-th vertex, Vi, corresponds
to the i-th gamelet, Gi. Ei,j represents the edge between Vi and Vj . i, j =
1, 2, 3, . . . , N .

– BWm,n: the bandwidth between server m and server n, where m, n = 1, 2, 3, . . . , Q.
BWm,m is the bandwidth of server m’s memory bus.



– Latency(m,n, t): the network latency between server m and server n at time
t, where m,n = 1, 2, 3, . . . , Q.

– Ci,j : the communication traffic between gamelet Gi and Gj . i, j = 1, 2, 3, . . . , N .
– Wi,j : the weight of edge Ei,j . Wi,j is the number of avatars whose states need

to be synchronized between gamelet Gi and gamelet Gj . Wi,j = Ci,j/sunit,
where sunit is the size of one avatar’s state. i, j = 1, 2, 3, . . . , N . Ci,i ≈ 0.

– Syn(Gi,m): the estimated synchronization cost of gamelet Gi running in
server m.

Syn(Gi,m) =
∑

Gj∈φ

Wi,j × (Latencym,n,t + Ci,j/BWm,n)

where φ is the set of neighboring gamelets of Gi and Gj runs in server n.
i = 1, 2, 3, . . . , N , and m,n = 1, 2, 3, . . . , Q.

– Cost(Gi,m, n): the cost of migrating gamelet Gi from server m to server n.

Cost(Gi,m, n) = Syn(Gi, n)− Syn(Gi,m)

Syn(Gi,m) is the pre-migration synchronization cost and Syn(Gi, n) is the
post-migration synchronization cost; the calculation assumes that Gi has
been migrated to server n. i = 1, 2, 3, . . . , N and m,n = 1, 2, 3, . . . , Q.

– δm: the threshold used to judge if server m is overloaded. δm ∈ [0, 1]. m =
1, 2, 3, . . . , Q.

– CPowerm: the computing power of server m in terms of floating-point op-
erations per second. m = 1, 2, 3, . . . , Q.

– V al(Gi, m, t): a weighted packet sending rate used to evaluate how much
workload Gi introduces to server m at time t.

V al(Gi,m, t) =
∑

Pk∈Υ

(Rate(Pk, m)×Weight(Pk)),

where Υ is a set of command packets used in the DVE system. Rate(Pk, m)
is the receiving rate of command packet Pk in server m. Weight(Pk) is a
relative value indicating how much workload packet Pk will introduce to the
server. Weight(Pk) ∈ (0, 1]. i = 1, 2, 3, . . . , N and m = 1, 2, 3, . . . , Q.

– Percentage(Gi,m): the percentage of CPU load that gamelet Gi introduces
to server m.

Percentage(Gi,m) = V al(Gi, m, t)/
∑

Gj∈ψ

V al(Gj ,m, t),

where ψ is a set of gamelets currently running in server m. i = 1, 2, 3, . . . , N
and m = 1, 2, 3, . . . , Q.

– ELoad(Gi,m, n): the estimated load that gamelet Gi running in server m
will introduce to server n.

ELoad(Gi,m, n) = Percentage(Gi, m)× CPowerm/CPowern

where i = 1, 2, 3, . . . , N and m,n = 1, 2, 3, . . . , Q.



Whenever there emerge some overloaded servers, the monitor will build a
gamelet graph and then execute the AGLB algorithm.

Gamelet Graph Building Algorithm:
1. For each gamelet Gi in the DVE system, create a vertex Vi in the gamelet

partition graph.
2. For any two vertices Vi and Vj in the gamelet partition graph, create an edge

Ei,j with weight Wi,j

Adaptive Gamelet Load Balancing (AGLB) Algorithm:
1. Find server s which has the highest CPU load among the overloaded servers
2. For each gamelet Gi running in server s
4. For each of the other servers, g
5. Calculate Cost(Gi, s, g)
6. Starting from the smallest one, for each Cost(Gi, s, g) {
7. Calculate ELoad(Gi, s, g)
8. If server g will not be overloaded after receiving gamelet Gi {
9. Decide to migrate gamelet Gi to server g; break }}
10. If no migration decision is made, add a new grid server to the system

The strength of the algorithm is that the workload model is more accurate
than the other approaches that only take into account the number of clients or
density. The reason to use a weighted packet rate is that different participants
might have different packet sending rates and different commands might lead
to different workloads. Besides, the AGLB algorithm is designed to combine the
synchronization costs, the network latencies among the grid nodes, and the het-
erogeneity of grid resources in making the gamelet redistribution decisions. The
algorithm can also dynamically integrate a new grid node into the system when
the runtime situation calls for it. All these features make the AGLB algorithm
highly effective in a grid environment.

5 Prototype Design and Implementation

A prototype of a 3D multiplayer game has been developed. It is designed to
simulate a realistic large-scale DVE system, and yet sufficiently generic and
flexible to support various kinds of experiments. The virtual environment is
an open 3D world of size 100 × 100 × 20, which is divided into 16 equal-sized
cubes, and the overlapping length of the neighboring partitions is 5. Each client
packet is 32 bytes long, including an avatar ID, a command ID, a position and
a timestamp.

The client simulator is a multithreaded program, which simulates a number
of randomly distributed clients. Each client sends out a packet every 100 ms with
a randomly selected command. The simulator can also specify certain hotspot
areas where clients will quadruple their packet sending rate. Figure 4(a) shows
the workload distribution of a virtual environment where all the avatars are
equally active, and Figure 4(b) shows a virtual environment with three hotspots.
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Fig. 4. Workload Distributions.

The communicator uses a data structure called mapping decision table for
routing client packets to the corresponding gamelets for processing. Gamelets
receive packets from the communicator and execute them in time order. After
the states of any avatar have been updated, the system calculates the distance
between this avatar and all the others. Suppose DISi,j is the distance between
avatar i and avatar j and the area of interest (AOI ) of each user is a circle
with radius RAOI . For each avatar i, the updated states are only sent to client
(avatar) j if DISi,j < RAOI . In the experiment, we set RAOI to 5. The gamelet
performs collision detection after each command is executed. Each avatar is rep-
resented as a simple 3D object and a bounding box collision detection algorithm
is used. To simulate collision detection among complex 3D objects, a certain
amount of floating point calculations proportional to 1/DISi,j is added. This is
to ensure that the closer two 3D objects are, the more computation is needed to
arrive at more accurate states. If an avatar is in an overlapping area managed
by several gamelets, each gamelet will calculate its state separately, and then
synchronize the state with the other gamelets every 100 ms. Gamelet migra-
tion is implemented using object serialization. Only the dynamic states, e.g., an
avatar’s position and velocity, are packed and transmitted. The communication
between a gamelet wrapper and a gamelet instance is through the Simple Object
Access Protocol (SOAP) and is based on well-defined interfaces expressed in the
Web Service Description Language (WSDL).

There are two performance parameters used in the performance evaluation:
response time (RT ) and system capacity (SC ). Response time is the average
measured interval between the time a client sends out a packet and the time it
receives the confirmation from a server that the command has been executed. Be-
ing executed means that the command, possibly together with other commands,
has resulted in the world being updated accordingly, and the results have been
sent to all the clients that share the same AOI. Each command is sent to the
server in two consecutive packets to minimize the chance of client packet losses.
System capacity is defined as the maximum number of participants that the



system can support so that the interactions in the world will have a reasonable
average RT (≤ 200 ms) and packet loss rate (≤ 50%).

The gamelet and the monitor are implemented using GT3.0. All components
are implemented using J2SE 1.4.2 and run on Linux kernel 2.4.18 with a system
configuration of P4 2.0 GHz CPU, 512 MB RAM, and 100 Mbps Ethernet [18].
The network latencies among the grid nodes are within several milliseconds if
not specified explicitly.

6 Performance Results

6.1 Gamelet Creation and Migration

We first study the time of gamelet creation and migration when a monitor se-
quentially creates gamelets in several servers. We find that when a monitor
creates the first gamelet in the first server, it usually takes about 7–8 seconds.
This is because various GT3 runtime libraries need to be loaded and initialized
at both the monitor and the gamelet server. The creation of the first gamelet
in the second server takes less than 3 seconds. This is because the monitor has
already loaded and created the necessary libraries. The creation of the second
gamelet in the same server will only take about 100 ms. However, 100 ms are still
substantial for a time-sensitive DVE system. Our proposed gamelet migration
protocol is designed to mask the gamelet creation time, whereby the monitor
will notify the communicator to stop forwarding client packets for processing
only after the new gamelet has been created.

We observe that the gamelet migration time changes from 61 ms to 113 ms
when increasing the number of clients from 8 to 256. So a gamelet migration
process will introduce a short delay. Three factors account for the delay: inter-
actions between the monitor and the communicator, partition management, and
content transmission. The delay time increases with the size of the gamelet, e.g.,
an increased number of avatars that need to be transferred. The migration pro-
cess nevertheless will not add to the packet loss rate, since the communicator
will store the incoming packets temporarily and forward them later.

6.2 Multi-server with Dynamic Gamelet Migration

We compare the performance of the AGLB algorithm with the popular even-
avatar load balancing (EALB) algorithm which tries to balance the number of
avatars that each server holds. Two to eight servers are used and the client
simulator is configured to generate a virtual environment with three hotspots,
as shown in Figure 4. The hotspots span gamelets 1 and 2, gamelets 7 and 8,
gamelets 9 and 10, respectively. Table 1 shows the network latency configurations
among the servers in the experiments. The network latency is simulated by
adding some delay in the gamelet component. In the AGLB algorithm, a server
is regarded as overloaded when its CPU usage is larger than 90%.



Latency(ms) S1 S2 S3 S4 S5 S6 S7 S8

S1 1 100 20 20 20 20 20 20

S2 100 1 200 150 100 100 100 50

S3 20 200 1 20 20 20 20 20

S4 20 150 20 1 20 20 20 20

S5 20 100 20 20 1 20 20 20

S6 20 100 20 20 20 1 20 20

S7 20 100 20 20 20 20 1 20

S8 20 50 20 20 20 20 20 1
Table 1. Network Latencies Among the Servers.

Evaluation 1 Initially, the 16 gamelets are all in server 1. As the number
of clients increases, gamelets are migrated to server 2 according to the AGLB
algorithm. We examine two partitioning approaches of the EALB algorithm,
called EALB-1 and EALB-2, which are as shown in Figure 5. Note that in
the partition graph, a thick edge linking two gamelets indicates that there is a
hotspot spanning the gamelets.

52 Clients CPU Load Inter-server RT (ms) Average RT
2 Servers S1 S2 Traffic S1 S2 (ms)

AGLB 91% 82% 43.8 Kbps 245 193 219.0

EALB-1 100% 73% 35.1 Kbps 699 182 440.5

EALB-2 88% 89% 149.1 Kbps 261 252 256.5
Table 2. Performance Comparison with Two Servers.

Table 2 shows the performance comparison of the three approaches when 52
clients are used. We see that the EALB-1 approach generates the least amount of
inter-server traffic; it however has the worst average response time. The reason
is that it groups most of the hotspot areas in one server, which results in very
long response time. Since the EALB algorithm does not consider the activity of
each client, the workload of the two servers are not balanced, even though the
number of clients that each server contains is the same. We observe that server
1 is more overloaded. Its response time is nearly 700 ms, representing the worst
average response time of the three approaches. The EALB-2 approach balances
the CPU load of the two servers. Since it separates the hotspots into different
servers, however, the inter-server traffic is nearly four times that of the AGLB
algorithm. For each avatar whose states need to be synchronized, additional
delay will be added to its normal response time. Therefore, although the CPU
loads of the two servers are more balanced, the response time of the server under
the EALB-2 approach is still worse than that under the AGLB approach.



The AGLB algorithm can generate a well balanced CPU load distribution
among the servers while keeping the inter-server traffic at a minimum. This is
because it uses a more accurate workload model and at the same time adapts
to the network latencies among the servers in making the migration decisions.
Table 2 shows that the user-perceived response time of the AGLB approach is
the best among the three approaches.

Evaluation 2 We also study the performance of the three different approaches
with 4 and 8 servers respectively. The partition results are shown in Figure 6
and Figure 7.

91 Clients CPU Load Inter-server RT (ms) Average RT
4 Servers S1 S2 S3 S4 Traffic S1 S2 S3 S4 (ms)

AGLB 90% 89% 79% 81% 276.8 Kbps 223 321 210 241 248.7

EALB-1 100% 100% 99% 42% 184.1 Kbps 503 572 512 101 422.0

EALB-2 100% 100% 68% 70% 322.9 Kbps 539 654 242 172 401.7
Table 3. Performance Comparisons with Four Servers.

176 Clients CPU Load Inter-server
8 Servers S1 S2 S3 S4 S5 S6 S7 S8 Traffic

AGLB 90% 72% 69% 71% 71% 90% 69% 68% 891.1 Kbps

EALB-1 100% 36% 35% 100% 100% 33% 36% 37% 475.3 Kbps

EALB-2 90% 88% 89% 91% 89% 90% 35% 36% 742.6 Kbps

Table 4. Performance Comparisons with Eight Servers (1).

176 Clients RT (ms) Average RT
8 Servers S1 S2 S3 S4 S5 S6 S7 S8 (ms)

AGLB 270 323 180 180 184 247 175 158 214.6

EALB-1 1402 230 104 1434 1334 116 202 111 616.6

EALB-2 235 402 309 278 214 235 137 110 240.0

Table 5. Performance Comparisons with Eight Servers (2).

Table 3 shows the performance result with four servers. We observe that the
EALB-1 approach has the least inter-server traffic. However, server 1, server
2 and server 3 are all overloaded, which is the worst performance among the
three approaches. Similarly, with the EALB-2 approach, there are two overloaded
servers; so the average response time is as unsatisfactory as that of the EALB-
1 approach. The influence of the inter-server latency is worth mentioning. For
example, under the AGLB approach, server 2 has similar load to server 1, but
the response time of server 2 is about 100 ms longer than that of server 1. This
is because the network connection of server 2 is worse than that of server 1.
For the partition result of the AGLB approach (Figure 6), the average network



latency is about 30 ms between server 1 and other servers while it is about 180
ms for server 2. This also explains why the response time of server 3 is much
longer than that of server 4 under the EALB-2 approach even though server 3
is less loaded.

Table 4 and Table 5 show the CPU load and the response time of eight servers
under the three different approaches, respectively. It is easy to explain why the
EALB-1 approach has the worst performance. The reason is that the server
load is not well balanced: three servers are overloaded. The AGLB approach
generates the most amount of network traffic but can still provide the fastest
response time. Comparing the load distribution of the servers under the AGLB
and the EALB-2 approaches, we cannot see any obvious differences. In fact, a
large amount of network traffic does not necessarily lead to a longer response
time. The determining factor is how much of the traffic is transferred through the
slow network link. Under the AGLB approach, only server 7 and server 8 need
to synchronize with server 2 which has relatively better network connections;
but under the EALB-2 approach, there are four servers that need to synchronize
with server 2, which leads to a worse performance on average.

By decreasing the total number of clients in the virtual world, we can get
the maximum number of clients the servers can support while providing a sat-
isfactory response time. Figure 8 gives the system capacity comparisons of the
three approaches. The system with our proposed AGLB algorithm has much
larger capacity than the EALB approaches. The reason is two-fold. Firstly, the
AGLB algorithm can estimate the CPU load that each gamelet brings to the
server more accurately than the EALB approaches. The fact that a client in a
hotspot is more active than others is taken into account, which helps produce a
better balanced load distribution; otherwise, the server holding several hotspots
can be easily overloaded, which will greatly influence the average performance
of the DVE system. Secondly, the AGLB algorithm tries to minimize the inter-
communications among the servers that have bad network connections. This is
achieved by incorporating the network performance in the gamelet migration
cost model. With these reasons, we can easily explain the system capacity differ-
ences shown in Figure 8 for a fixed number of servers under the three different
approaches. We can see that our proposed AGLB algorithm can improve the
system capacity by 80%, 72% and 62% when compared with the EALB-1 ap-
proach, and by 17%, 62% and 13% when compared with the EALB-2 approach
using 2, 4, 8 servers respectively. The AGLB algorithm therefore contributes to
a more scalable and cost-effective system.

7 Related Work

Several DVE projects have dealt with load balancing in their design. Citta-
Tron [12] is a multiserver networked game for a wide area network with load
balancing and reduction mechanisms. It partitions the virtual world into several
regions, each of which is assigned to a server. Although CittaTron provides dy-
namic load balancing support, its algorithm does not consider the activities of
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Fig. 5. Partitioned States Under Different Approaches Using Two Servers.
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Fig. 6. Partitioned States Under Different Approaches Using Four Servers.
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Fig. 7. Partitioned States Under Different Approaches Using Eight Servers.

the clients. Therefore, its mechanism may not be effective in a highly dynamic
virtual environment where different users may introduce different workloads in
different regions. NetEffect [8] is an architecture for supporting large-scale 3D
virtual environments. The whole virtual world is separated into several com-
munities that are managed by multiple servers. A user can can only interact
with users in the same community, which limits the interactivity of the system.
Whenever the load of a peer server exceeds a certain threshold, one or more
communities may be transferred from the heavy loaded server to a less loaded
server dynamically. However, this load migration process is not transparent to
clients, and a user has to sign in the system again following each migration.
CyberWalk [5] is a web-based multiserver distributed virtual walkthrough envi-
ronment which adopts a standard client-server architecture. The virtual world is
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Fig. 8. System Capacity Comparisons.

partitioned into many equal-sized cells. Each server manages a region of the vir-
tual world consisting of a number of cells. An adaptive load balancing algorithm
is used to decrease the workload of an overloaded server by adjusting the number
of cells managed by the server. The load balancing strategy works well if objects
and clients are evenly distributed in the virtual environment. However, if there
exist hotspots in neighboring regions, the load balancing strategy may suffer
from a cascading effect which could seriously affect the system performance.

There are also projects that implement DVE systems on a grid. Cal-(IT)2
Game Grid [2] provides the first ever grid infrastructure for game research, fo-
cusing on the areas of communication and game service protocols. Butterfly
grid [1] is an infrastructure for supporting massive multiplayer games (MMG)
via on-demand computing. It tries to provide an easy to use commercial grid-
computing environment for both game developers and game publishers. The
current implementation of the Butterfly grid is based on Globus Toolkit 2 [10].
As the OGSA becomes available, it is expected that Butterfly will migrate to
an OGSA compliant service platform. Using the Butterfly Grid’s computing re-
sources and framework, game developers can develop, test and deploy games
more easily. There are problems, however, remaining to be addressed, one of
which is about scalability. Although dynamic user redirection can be performed
by the gateway server, no dynamic load migration is supported. Besides, as the
new OGSA protocols become better defined and more widely available, how to
cast the existing Butterfly model in an OGSA compliant model needs to be
further explored.

8 Conclusions

In this paper, we address the challenges of building DVE systems on a grid. We
present the design of a grid-enabled service oriented framework for the build-
ing of DVE systems. A foundation service component called “gamelet” is pro-



posed. Using gamelets, existing client-server DVE systems with a partitioned
virtual world can be readily mapped into a grid environment. We also propose a
gamelet migration protocol which is designed to be latency-tolerant. Our adap-
tive gamelet load-balancing (AGLB) algorithm uses an accurate workload model
and can adapt to network latencies when making migration decisions. We have
evaluated the feasibility and performance of our approach through various exper-
iments with a generic DVE system prototype. Results show that our approach
can achieve reasonably fast response times and high throughputs.

The current system assumes a simple two-way synchronization scheme. More
complicated synchronization protocols might be needed for applications that
have more stringent consistency and response time requirements. For future
work, such synchronization protocols and their influences on the gamelet-based
DVE system could be studied. Another possible direction is to study how the
communicator component can be improved to help gamelets synchronize more
efficiently. For instance, the communicator can try to predict the processing time
of the incoming client packets and proactively discard any packets that will be
deemed too late to the clients.
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