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Abstract 
 

Multiplayer network games attract more and more 
interest nowadays. In order to make the system 
scalable, the multi-server architecture is introduced.  
In such systems, as the dynamic behavior of the users 
in the virtual world may result in significant workload 
imbalance between servers, a dynamic load sharing 
and transferring mechanism is crucial to achieve both 
quick response time and high throughput. In this 
paper, we present a multi-server model based on the 
emerging grid technology for supporting multiplayer 
network games. The core of this model is based on a 
new abstraction “gamelet”, which represents the 
execution logic within a partitioned game world and is 
featured by its high mobility for supporting dynamic 
load sharing. A prototype of a 3D multiplayer game 
has been implemented based on gamelet concept. 
Preliminary results show that our approach can help 
make a more dynamic and cost effective multi-server 
network game system.  
 
 
1. Introduction 
 

The development of high-speed network and 
processor has contributed to the fast growth in 
multiplayer network games (MNG) in recent years [1]. 
A MNG system is one kind of distributed interactive 
systems, where users located at different places of the 
world can interact with each other by sharing a 
consistent virtual environment [2]. Such systems 
usually aim at providing a sense of realism by 
incorporating realistic 3D graphics and providing real-
time interaction for a large number of users.  

There are two key parameters to evaluate the 
performance of a typical large-scale MNG system: the 
capacity (CP), which is the maximum number of 
concurrent users that can interact with each other 
within the world, and the response time (RT), which is 
the amount of time between a user issues a command 
and receives the results. An ideal MNG system should 

provide lifelike virtual world and real-time interaction 
for a large number of users in a consistent manner. 
This goal puts intensive requirements on both 
computing power and network bandwidth. 

In literature, there are two types of architecture 
supporting such distributed interactive systems: peer-
to-peer (P2P) and client-multi-server (CMS). In the 
P2P architecture, there is no central repository of the 
world state. Instead, each user maintains its own copy 
of the world based on messages from all the others. 
These systems, such as NPSNET [3] and DIVE [4] 
usually rely on IP-multicast to reduce the total 
bandwidth consumption. However, since IP-multicast 
is not widely supported, these systems are limited only 
to some special purpose applications. Another 
limitation is that a peer that is weak in computing 
power or network bandwidth cannot join a world with 
complex scene contents and lots of users. The reason is 
that it won’t be able to handle network packages, 
perform consistency protocol [5], calculate world state, 
and render the scene quickly enough to keep a constant 
refreshing rate. Therefore such P2P systems usually 
either limit the world complexity or restrict the number 
of users that can directly interact with each other. 
Examples include MiMaze [6] which is a simple 
multiplayer game that has very low computation 
requirement, and Microsoft’s Age of Empires [7] 
which limits the number of active players to eight. 

To overcome these limitations, a multi-server 
architecture is adopted in many large-scale distributed 
interactive systems where a cluster of servers are 
responsible to do the computation intensive jobs and 
perform various administration control while remote 
clients only do the least work such as dead reckoning 
and scene rendering [8]. This approach makes the 
complex, large-scale virtual world widely accessible by 
clients with various configurations such as Tablet PCs 
and even mobile phones. However, servers may 
potentially become the bottleneck due to the dynamic 
behavior of the users in the virtual world. How to 
perform dynamic load sharing among the servers 
remains challenging. 



Several systems adopting multi-server approach 
with load sharing support have been developed. 
Examples include Ring [9], CyberWalk [10] and 
Asheron’s Call [11] etc. Ring supposes a building 
model as a virtual environment and the whole world is 
easily partitioned into subdivisions. However, each 
subdivision is assigned to a fixed server. When a large 
number of users converge in the same subdivision, the 
assigned server may still be easily overloaded. 
CyberWalk is a web-based multi-server distributed 
virtual walkthrough environment. The world is 
regularly subdivided into a large number of rectangular 
cells. Each server manages a region of the whole world 
that consists of an integer number of cells. The size of 
each region can be adjusted by transferring boundary 
cells among neighboring regions. Similar approach is 
also used in Asheron’s Call. It divides a wide-open 
world into several areas, each of which is managed by 
one server and the size of the area can be adjusted 
according to the server workload. However, in these 
systems if there are several hotspots in the concerned 
regions/servers, a cascading effect may occur which 
can seriously affect the performance. Therefore, in a 
very dynamic environment where the changing of the 
workload is difficult to predict, the above load-sharing 
scheme based on data partition can hardly be effective. 
The reason behind is that these schemes only work 
within the pre-allocated resources at the time the 
systems are first loaded into the servers. 

In scientific computing area, Grid concept and 
infrastructure [12] has been developed to address the 
ever-increasing requirements on the sharing and 
collaborations among distributed computing resources. 
Several Grid projects, such as TeraGrid [13], European 
Data Grid [14] and DOE Science Grid [15] have been 
successful to provide the high-performance distributed 
infrastructure for supporting large-scale scientific 
experiments and analysis. Recently, some efforts have 
been done to use Grid technology for building large-
scale multi-player network games. For example, 
Butterfly Grid [16] tries to provide an easy to use 
commercial computing Grid environment for game 
developers and free them from the complex network 
issues. They also provide the high-performance 
networked servers for the publishers to hold their 
games.  

We see the idea to dynamically discover resources 
and aggregate enough computing power on demand to 
deliver the desired qualities of service can potentially 
change the way current multi-player network games 
are developed and operated. In this paper, we propose a 
multi-server architecture based on the emerging grid 
technology for supporting multiplayer network games. 
We introduce a concept named gamelet, which is an 
execution abstraction within the partitioned virtual 

world and featured by its high mobility for supporting 
dynamic load balancing. Based on gamelet, we can 
build a more dynamic and cost-effective MNG system, 
which only uses the minimum resources to deliver the 
desired qualities of service.  We will discuss how we 
build our prototype and show the performance gain.  

This paper is organized as follows. In Section 2, we 
present our proposed multi-server model. In Section 3, 
we discuss the gamelet concept. The gamelet-based 
multi-server architecture is presented in Section 4. In 
Section 5, we discuss the prototype design and 
implementation. Performance evaluations are presented 
in Section 6 and we conclude in Section 7. 

 
 

2. Multi-server Model   
 

In order to make a scalable system, we adopt a 
layered design approach. As shown in Figure 1, our 
multi-server model contains three abstract layers. The 
monitor layer, gamelet layer and communicator layer. 
The whole virtual world is partitioned logically into 
some partitions, each of which will be assigned to one 
gamelet for processing. Gamelets are running on the 
worker server. One worker server can hold several 
gamelets at the same time.  

… … …

… … … Communicator Layer

   : Worker Server             : Client 

LAN 2 

            : Monitor   : Communicator       

Network Connection 

LAN 1 

     Fig. 1. Multi-server Model 

Monitor Layer 

Gamelet Layer 

The joining and leaving process is like this: when a 
user wants to join the game, he first contacts the 
monitor server. Then the monitor will assign one 
communicator to the client. After this process, a client 
will always send messages to this communicator. The 
communicator knows the partition logic and will 
forward the messages to the corresponding gamelets. 
After various processing, the updated world states are 



directly sent back to the clients. In case the 
communicator becomes the network bottleneck, it can 
be fully replicated to share the workload. 

A monitor periodically collects the workload 
parameters of each worker server and makes decisions 
on how to adjust the workload among the worker 
servers and when to increase or decrease the worker 
server number. The load adjustment strategies are 
tunable and executed by the monitor. 

Worker servers do all the computation related to the 
game logic. In our model, a work server’s job includes:  
receive and process command packets from the clients, 
buffer the command packets in a timely order, execute 
commands according to the synchronization 
requirements, keep track of dynamic objects, and 
calculate the world states. Area of Interest (AOI) 
management is also included, which means server only 
sends the necessary updates that are within that 
player’s potential field of sight. Similar jobs are done 
by Quake [18] servers. 

Since the worker servers can be increased and 
decreased dynamically, the advantage of the existence 
of the communicator is obvious. It will make the 
complicated worker server adjustment activities 
transparent to the clients. We will discuss how a 
monitor and a communicator cooperate to perform the 
gamelet migration process later in Section 4. 

The client side job will include: encapsulate user 
operations into data packets, send out the packets to the 
communicator and use its cache of the game states plus 
any updates from the server to render the virtual world. 
Client also does simple collision detection, deck 
reckoning and various self-healings to make the game 
more enjoyable and fluent. 

  

 
3. Gamelet 

 
We define “gamelet” as an execution abstraction to 

process the workload introduced by certain related 
objects within the virtual world. Figure 2 shows the 
structure of a gamelet, which consists of data 

component and processing component. In the data 
component, world contents store the current world 
states and performance parameters record the CPU 
load, network load, total user number and any other 
monitoring variables. In the processing component, 
computation part includes all the processing that a 
game server is supposed to do as described in the 
previous section. Control part contains methods that 
manage gamelet migration and perform performance 
calculation. Objects in the whole world, including both 
static objects and avatars, are grouped according to 
their logical relationships. The relationships are 
application specific and can be in terms of space or 
time. For example, all users participating in a football 
match or a virtual meeting session can form a group 
and be effectively assigned to the same gamelet to 
process. A gamelet has the following characteristics: 

 
• Load Awareness. A gamelet is able to detect and 

monitor its performance parameters by itself and 
these values can be retrieved to support load-
balancing strategy.  

 
• Remote Control. A gamelet has standard methods 

that enable an authorized monitor to control 
remotely. For example, a gamelet in our current 
prototype has the initiation, starting, exit methods 
as well as various methods supporting remote 
retrieval of performance parameters. 

 
• Embedded Synchronization. A gamelet should 

support world content synchronization to prevent 
two gamelets that share some overlapping work 
from going out of synchronization. Whenever 
necessary, two gamelets are able to communicate 
reliably to exchange their the world contents.  









Fig. 2. Gamelet Structure. 

Gamelet { 
    Data:  

  

    Processing:  

      

} 

Computation Part 
 
Control Part

World Contents 
 
Performance Parameters

 
Based on our gamelet concept, the whole system 

will consist of a number of gamelets, each of which 
can be created and destroyed at run-time. Gamelets 
will run on the suitable worker servers to corporately 
deliver the desired qualities of service to the clients. 
 
 
4. Gamelet-based Multi-server 
Architecture 
 

Our grid-enabled multi-server architecture is based 
on Globus Toolkit 3.0 [17], which has become the de 
facto standard for the Grid technology [12]. For the 
simplicity of the discussion, we only depict the service 
components that are most important to our gamelet-
based architecture in Figure 3. 
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Fig 3. Gamelet-based Multi-server Architecture. 

At the lowest level is the hosting environment, 
which might be a J2EE web container on Windows or 
Linux operating systems. Running in the service 
container, GT3 provides two layers of services. The 
lower level is the GT3 core services. Grid Security 
Infrastructure (GSI) provides methods to ensure the 
Grid resources are only accessible to authorized 
requestors. Each grid service instance will have a 
unique Grid Service Handle (GSH) managed by the 
Naming service and be associated with a structured 
collection of information named Service Data that can 
be easily queried by the requestors.  Life Cycle 
Management provides functionalities to control a 
service instance throughout its life cycle starting from 
the creation till the destruction. The upper level is the 
GT3 base services. The Grid Resource Allocation and 
Management (GRAM) service provides a way to 
submit and monitor jobs remotely, while Index Service 
(IS) can be used to aggregate and query the Service 
Data of various service instances.  

In our gamelet-based architecture, through IS the 
monitor can dynamically discover the desired Gamelet 
Factory services that can provide certain qualities of 
service in terms of speed, availability, cost as well as 
other natures. The monitor utilizes GRAM to create 
and manage a gamelet. The communication between a 
monitor and a gamelet is through standard Simple 
Object Access Protocol (SOAP) and is based on the 
well-defined interfaces that are described using Web 
Service Description Language. The Gamelet Factory 
services will periodically register their GSHs into a 
registry. From the registry, a monitor can locate a set 
of Gamelet Factory services, query their Service Data, 
and reliably create and manage a service instance with 
the help of IS and GRAM.  

After the monitor creates a gamelet, it will 
periodically observe its performance. In case the 
monitor makes a decision that a gamelet need to be 
migrated, it will try to locate a new reference to 

another Gamelet Factory service and create a new 
gamelet. Just before the migration begins, it also 
notifies the communicator to store the incoming 
packets temporarily. Once the new gamelet is up, 
monitor will control the old gamelet to transfer the 
world content to the newly created one through TCP 
connection. Finally, the monitor will notice the 
communicator to update gamelet information and the 
following incoming client packets will be forwarded to 
the new gamelet for processing. 

  
 

5. Prototype Design and Implementation 
  

The multi-server prototype used to evaluate our 
proposed architecture and load transfer scheme follows 
the multi-server model discussed in Section 2. It is 
designed to simulate a real large-scale MNG system, 
but is generic and flexible enough to support various 
experiments. 

We use UDP communication between the client, 
communicator and gamelet, since UDP can give much 
shorter response time than TCP. To counteract the 
unreliable delivery characteristic, each client packet 
will include two consecutive commands: the current 
command and previous command. In such a way, each 
command has two chances to reach the server. So the 
client can tolerate a lost rate up to 50% provided the 
lost packets are evenly distributed. Between two 
gamelets or a gamelet and a communicator, TCP 
communication is used since the world content need to 
be reliably delivered. 

We define the performance metrics as follows. The 
average RT is the average time between each client 
sending out a packet and receiving the confirmation 
from the server that the command has been executed. 
Being executed means the command, possibly with 
other clients’ commands together, is considered by the 
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In our preliminary experiments, we only consider 
the spatial relationship and simply divide the world 
evenly into three equal-sized areas (each is a 
33*100*20 area). Each area will be assigned to one 
gamelet to process. Two consecutive gamelet will have 
an overlapping area of length 2*AOI, since one 
avatar’s AOI might go across two gamelets. The 
partition information is stored by the communicator 
and will be used to route the client packets to the 
corresponding gamelets for processing. The avatar is 
evenly distributed within the world and each of them 
performs a random movement every each 100 ms. AOI 
is set to 10. The gamelet, monitor are implemented on 
top of GT3.0.1 and runs on Linux kernel 2.4.2 with P3 
733 MHz CPU, 256MB RAM and 100Mbps Ethernet. 
The client simulator and communicator run on 
Windows 2000 Professional with P4 2.2 GHz CPU, 
512MB RAM and 100Mbps Ethernet. All components 
are implemented using J2SE 1.4.2.  

server, the world is updated accordingly, and the 
results have been sent to all the clients that share the 
same AOI.  Since the command will have an additional 
delay if it reaches the server through the second 
packets, the RT is calculated by this formula:   

 
RT = RT*(1-LostRate) + (RT+TI)* LostRate 
 
TI is the time interval between two consecutive 

packets. We define system CP as the maximum 
number of concurrent users that can interact with each 
other within the world with reasonable average RT 
(<200 ms) and lost rate (<50%). 

The world in our prototype is a 100*100*20 size 3D 
environment. Each user (avatar) is represented as a 3D 
object. We have developed a client simulator in Java 
that can simulate a certain number of clients, each of 
which will send out packets at a constant rate.  The 
packet used is 32 bytes, which consists of avatar 
positions, commands and timestamps. Packet is first 
serialized into a byte stream before sending out and 
will be deserialized at the receiver side. The serialized 
packet size is 151 bytes. 

  
 
6. Performance Evaluation 
 The server will receive the packets from the outside, 

deserialize and execute them in a timely order. After 
we update any client state, we calculate the distance 
between this client and all the others. Suppose we use 
DIS(I, J) to represent the distance between client I and 
client J. For a client I, we need only send its updated 
state to client J if DIS(I, J) < AOI. In current 
implementation, our avatar uses simple 3D object and 
we want to simulate the collision detection among 
complex 3D objects. Our method is to add a certain 
amount of floating point calculation which is 
proportional to 1/DIS(I, J) to ensure that the closer two 
3D objects are, the more computation is needed to 
calculate their states. 

We will study the performance of our proposed 
architecture through various experiments, using from 
one to three worker servers. The gamelet creation and 
migration performance is also studied.   
 
6.1. Evaluation One 
 

We first compare the performance of the following 
two schemes. Scheme one:  there is no partition. All 
the client packets are forwarded to one worker server 
to process. Scheme two: the world is partitioned into 
three areas as described in Section 5, and each of them 
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  Fig 6.  Performance Evaluation Three 
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is assigned to one gamelet to process. All the three 
gamelets are running on the same worker server. 

From the CPU utilization graph in Figure 4, we find 
that the CPU load increases as the client number 
increases. The CPU load of scheme two is slightly 
larger than that of scheme one. The reason is that in 
scheme two, each gamelet will do some work that is 
overlapping with its neighboring gamelets. Therefore, 
the total work in scheme two will be larger than that in 
scheme one. However, this difference is not great. Both 
of them approach 100% when the total client number is 
between 48 and 64. We observe that just at the point 
when the client number reaches this threshold, that is 
when the CPU load approaches 100%, both the RT and 
lost rate in scheme one and scheme two become 
unsatisfied. After this point, we can clearly see that the 
performance of the first scheme is better than the 
second scheme. However, before this point, we cannot 

see much difference in both RT and lost rate. So our 
conclusion is that not until the CPU utilization of the 
machine hits some threshold, our proposed approach 
can almost achieve the same performance with scheme 
one, which is the traditional used approach. The 
network load of the communicator is no more than 
1.9Mbps when there are 96 clients. So network is not 
the bottleneck and there is no need to replicate the 
communicator. 
 
6.2. Evaluation Two 
 

Now we consider scheme three: the gamelet can be 
migrated dynamically and we will use 2 servers at 
most. The monitor will periodically retrieve the 
gamelet workload information. Once it finds the CPU 
load of the worker server that a gamelet runs on is 



approaching 100%, the monitor will initiate a gamelet 
migration process. Since the client is evenly distributed 
in our experiment, load-balancing strategy is also 
simple. The monitor will simply choose any one of the 
three gamelets to migration to the new place.  

From the CPU utilization graph in Figure 5, we find 
that the gamelet migration is initiated when the client 
number is about 56, at which point the CPU load of 
server 1 is approaching 100%. After the migration is 
completed, CPU load of server 2 rises from 0 to 65% 
and CPU load of server 1 decreases to 87%. In the RT 
graph, we see the RT is relatively higher at the point 
when the client number is 56 than that shown in Figure 
4, however the lost rate is quite similar to that shown in 
Figure 4. The reason is that when a gamelet migration 
is initiated, the world content needs to be reliably 
transferred to the new gamelet. In our experiment, the 
migration process takes about 40 ms. Since the 
communicator will store the incoming clients’ packets 
during the gamelet migration process and forward them 
later, the migration process has little effect on the lost 
rate. After the migration completes, the client could 
again enjoy a shorter RT and lower lost rate until the 
client number is about 96 and the CPU load of server 1 
approaches 100% again. The gamelet creation time 
ranges from about 430 ms to several seconds, however, 
this process won’t count to the gamelet migration time 
since it can be done before the migration process.  
 
6.3. Evaluation Three 
 

In this experiment, we also consider scheme one 
and scheme three. However, the gamelet can be 
migrated to 3 servers at most this time. The results are 
shown in Figure 6. 

In the CPU utilization graph, we can see that as the 
client number increases, the third worker server is 
added when the total client number is slightly larger 
than 96. Accordingly, in the RT graph there is a short 
delay during the migration process. Since the clients 
have already experienced a long RT, this short delay 
won’t lead to obvious user distraction. After the 
migration completed, the RT and the lost rate are both 
within the tolerable range until the client number is 
about 128 and all the worker servers become saturated. 
So we conclude that our proposed approach will 
increase the system CP from the original 64 to about 
128. Similarly, as the client number decreases, the 
gamelets will then converge to two and finally one 
worker server again, but still can provide the 
reasonable performance. Therefore, our approach is 
more dynamic and cost-effective, since gamelet can be 
created and destroyed dynamically and the system only 

uses necessary resources to provide the desired 
qualities of services.  

 
  
7. Conclusions                  
 

In this paper, we present a new concept named 
gamelet, which is an execution abstraction within the 
world. Based on the gamelet concept and the cutting-
edged Grid technology, we propose a multi-server 
architecture to build more dynamic and cost-effective 
MNG systems. 

We have evaluated the performance of our proposed 
scheme through our prototype. The results show that 
our approach enables the system scale dynamically 
according to the system workload and only uses the 
minimum resources to provide reasonable performance 
to the clients. Near future work includes porting the 
gamelet-based architecture into the HKU Gideon 
Cluster, which consists of 300 PC nodes, and 
evaluating the maximum potential power of the 
gamelet in a more complex environment.  
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