
A Grid-enabled Multi-server Network Game Architecture

Tianqi Wang, Cho-Li Wang, Francis Lau
Department of Computer Science and Information Systems

The University of Hong Kong
Email: {tqwang, clwang, fcmlau}@csis.hku.hk

Abstract

Multiplayer network games attract more and more
interest nowadays. In order to make the system
scalable, the multi-server architecture is introduced.
In such systems, as the dynamic behavior of the users
in the virtual world may result in significant workload
imbalance between servers, a dynamic load sharing
and transferring mechanism is crucial to achieve both
quick response time and high throughput. In this
paper, we present a multi-server model based on the
emerging grid technology for supporting multiplayer
network games. The core of this model is based on a
new abstraction “gamelet”, which represents the
execution logic within a partitioned game world and is
featured by its high mobility for supporting dynamic
load sharing. A prototype of a 3D multiplayer game
has been implemented based on gamelet concept.
Preliminary results show that our approach can help
make a more dynamic and cost effective multi-server
network game system.

1. Introduction

The development of high-speed network and
processor has contributed to the fast growth in
multiplayer network games (MNG) in recent years [1].
A MNG system is one kind of distributed interactive
systems, where users located at different places of the
world can interact with each other by sharing a
consistent virtual environment [2]. Such systems
usually aim at providing a sense of realism by
incorporating realistic 3D graphics and providing real-
time interaction for a large number of users.

There are two key parameters to evaluate the
performance of a typical large-scale MNG system: the
capacity (CP), which is the maximum number of
concurrent users that can interact with each other
within the world, and the response time (RT), which is
the amount of time between a user issues a command
and receives the results. An ideal MNG system should

provide lifelike virtual world and real-time interaction
for a large number of users in a consistent manner.
This goal puts intensive requirements on both
computing power and network bandwidth.

In literature, there are two types of architecture
supporting such distributed interactive systems: peer-
to-peer (P2P) and client-multi-server (CMS). In the
P2P architecture, there is no central repository of the
world state. Instead, each user maintains its own copy
of the world based on messages from all the others.
These systems, such as NPSNET [3] and DIVE [4]
usually rely on IP-multicast to reduce the total
bandwidth consumption. However, since IP-multicast
is not widely supported, these systems are limited only
to some special purpose applications. Another
limitation is that a peer that is weak in computing
power or network bandwidth cannot join a world with
complex scene contents and lots of users. The reason is
that it won’t be able to handle network packages,
perform consistency protocol [5], calculate world state,
and render the scene quickly enough to keep a constant
refreshing rate. Therefore such P2P systems usually
either limit the world complexity or restrict the number
of users that can directly interact with each other.
Examples include MiMaze [6] which is a simple
multiplayer game that has very low computation
requirement, and Microsoft’s Age of Empires [7]
which limits the number of active players to eight.

To overcome these limitations, a multi-server
architecture is adopted in many large-scale distributed
interactive systems where a cluster of servers are
responsible to do the computation intensive jobs and
perform various administration control while remote
clients only do the least work such as dead reckoning
and scene rendering [8]. This approach makes the
complex, large-scale virtual world widely accessible by
clients with various configurations such as Tablet PCs
and even mobile phones. However, servers may
potentially become the bottleneck due to the dynamic
behavior of the users in the virtual world. How to
perform dynamic load sharing among the servers
remains challenging.

Several systems adopting multi-server approach
with load sharing support have been developed.
Examples include Ring [9], CyberWalk [10] and
Asheron’s Call [11] etc. Ring supposes a building
model as a virtual environment and the whole world is
easily partitioned into subdivisions. However, each
subdivision is assigned to a fixed server. When a large
number of users converge in the same subdivision, the
assigned server may still be easily overloaded.
CyberWalk is a web-based multi-server distributed
virtual walkthrough environment. The world is
regularly subdivided into a large number of rectangular
cells. Each server manages a region of the whole world
that consists of an integer number of cells. The size of
each region can be adjusted by transferring boundary
cells among neighboring regions. Similar approach is
also used in Asheron’s Call. It divides a wide-open
world into several areas, each of which is managed by
one server and the size of the area can be adjusted
according to the server workload. However, in these
systems if there are several hotspots in the concerned
regions/servers, a cascading effect may occur which
can seriously affect the performance. Therefore, in a
very dynamic environment where the changing of the
workload is difficult to predict, the above load-sharing
scheme based on data partition can hardly be effective.
The reason behind is that these schemes only work
within the pre-allocated resources at the time the
systems are first loaded into the servers.

In scientific computing area, Grid concept and
infrastructure [12] has been developed to address the
ever-increasing requirements on the sharing and
collaborations among distributed computing resources.
Several Grid projects, such as TeraGrid [13], European
Data Grid [14] and DOE Science Grid [15] have been
successful to provide the high-performance distributed
infrastructure for supporting large-scale scientific
experiments and analysis. Recently, some efforts have
been done to use Grid technology for building large-
scale multi-player network games. For example,
Butterfly Grid [16] tries to provide an easy to use
commercial computing Grid environment for game
developers and free them from the complex network
issues. They also provide the high-performance
networked servers for the publishers to hold their
games.

We see the idea to dynamically discover resources
and aggregate enough computing power on demand to
deliver the desired qualities of service can potentially
change the way current multi-player network games
are developed and operated. In this paper, we propose a
multi-server architecture based on the emerging grid
technology for supporting multiplayer network games.
We introduce a concept named gamelet, which is an
execution abstraction within the partitioned virtual

world and featured by its high mobility for supporting
dynamic load balancing. Based on gamelet, we can
build a more dynamic and cost-effective MNG system,
which only uses the minimum resources to deliver the
desired qualities of service. We will discuss how we
build our prototype and show the performance gain.

This paper is organized as follows. In Section 2, we
present our proposed multi-server model. In Section 3,
we discuss the gamelet concept. The gamelet-based
multi-server architecture is presented in Section 4. In
Section 5, we discuss the prototype design and
implementation. Performance evaluations are presented
in Section 6 and we conclude in Section 7.

2. Multi-server Model

In order to make a scalable system, we adopt a
layered design approach. As shown in Figure 1, our
multi-server model contains three abstract layers. The
monitor layer, gamelet layer and communicator layer.
The whole virtual world is partitioned logically into
some partitions, each of which will be assigned to one
gamelet for processing. Gamelets are running on the
worker server. One worker server can hold several
gamelets at the same time.

… … …

… … … Communicator Layer

 : Worker Server : Client

LAN 2

 : Monitor : Communicator

Network Connection

LAN 1

 Fig. 1. Multi-server Model

Monitor Layer

Gamelet Layer

The joining and leaving process is like this: when a
user wants to join the game, he first contacts the
monitor server. Then the monitor will assign one
communicator to the client. After this process, a client
will always send messages to this communicator. The
communicator knows the partition logic and will
forward the messages to the corresponding gamelets.
After various processing, the updated world states are

directly sent back to the clients. In case the
communicator becomes the network bottleneck, it can
be fully replicated to share the workload.

A monitor periodically collects the workload
parameters of each worker server and makes decisions
on how to adjust the workload among the worker
servers and when to increase or decrease the worker
server number. The load adjustment strategies are
tunable and executed by the monitor.

Worker servers do all the computation related to the
game logic. In our model, a work server’s job includes:
receive and process command packets from the clients,
buffer the command packets in a timely order, execute
commands according to the synchronization
requirements, keep track of dynamic objects, and
calculate the world states. Area of Interest (AOI)
management is also included, which means server only
sends the necessary updates that are within that
player’s potential field of sight. Similar jobs are done
by Quake [18] servers.

Since the worker servers can be increased and
decreased dynamically, the advantage of the existence
of the communicator is obvious. It will make the
complicated worker server adjustment activities
transparent to the clients. We will discuss how a
monitor and a communicator cooperate to perform the
gamelet migration process later in Section 4.

The client side job will include: encapsulate user
operations into data packets, send out the packets to the
communicator and use its cache of the game states plus
any updates from the server to render the virtual world.
Client also does simple collision detection, deck
reckoning and various self-healings to make the game
more enjoyable and fluent.

3. Gamelet

We define “gamelet” as an execution abstraction to

process the workload introduced by certain related
objects within the virtual world. Figure 2 shows the
structure of a gamelet, which consists of data

component and processing component. In the data
component, world contents store the current world
states and performance parameters record the CPU
load, network load, total user number and any other
monitoring variables. In the processing component,
computation part includes all the processing that a
game server is supposed to do as described in the
previous section. Control part contains methods that
manage gamelet migration and perform performance
calculation. Objects in the whole world, including both
static objects and avatars, are grouped according to
their logical relationships. The relationships are
application specific and can be in terms of space or
time. For example, all users participating in a football
match or a virtual meeting session can form a group
and be effectively assigned to the same gamelet to
process. A gamelet has the following characteristics:

• Load Awareness. A gamelet is able to detect and

monitor its performance parameters by itself and
these values can be retrieved to support load-
balancing strategy.

• Remote Control. A gamelet has standard methods

that enable an authorized monitor to control
remotely. For example, a gamelet in our current
prototype has the initiation, starting, exit methods
as well as various methods supporting remote
retrieval of performance parameters.

• Embedded Synchronization. A gamelet should

support world content synchronization to prevent
two gamelets that share some overlapping work
from going out of synchronization. Whenever
necessary, two gamelets are able to communicate
reliably to exchange their the world contents.









Fig. 2. Gamelet Structure.

Gamelet {
 Data:

 Processing:

}

Computation Part

Control Part

World Contents

Performance Parameters

Based on our gamelet concept, the whole system

will consist of a number of gamelets, each of which
can be created and destroyed at run-time. Gamelets
will run on the suitable worker servers to corporately
deliver the desired qualities of service to the clients.

4. Gamelet-based Multi-server
Architecture

Our grid-enabled multi-server architecture is based
on Globus Toolkit 3.0 [17], which has become the de
facto standard for the Grid technology [12]. For the
simplicity of the discussion, we only depict the service
components that are most important to our gamelet-
based architecture in Figure 3.

Monitor

 SOAP SOAP Network SOAP SOAP

Gamelet Services
TCP
 Gamelet Service Gamelet Service

Gamelet Factory Service Gamelet Factory Service

GT3 Base Services GRAM Index Service GRAM Index Service

Naming / Service Data
Life Cycle Management

Naming / Service Data
Life Cycle Management

GSIGSI GT3 Core Services

Hosting Environments Grid Service Container Grid Service Container

Fig 3. Gamelet-based Multi-server Architecture.

At the lowest level is the hosting environment,
which might be a J2EE web container on Windows or
Linux operating systems. Running in the service
container, GT3 provides two layers of services. The
lower level is the GT3 core services. Grid Security
Infrastructure (GSI) provides methods to ensure the
Grid resources are only accessible to authorized
requestors. Each grid service instance will have a
unique Grid Service Handle (GSH) managed by the
Naming service and be associated with a structured
collection of information named Service Data that can
be easily queried by the requestors. Life Cycle
Management provides functionalities to control a
service instance throughout its life cycle starting from
the creation till the destruction. The upper level is the
GT3 base services. The Grid Resource Allocation and
Management (GRAM) service provides a way to
submit and monitor jobs remotely, while Index Service
(IS) can be used to aggregate and query the Service
Data of various service instances.

In our gamelet-based architecture, through IS the
monitor can dynamically discover the desired Gamelet
Factory services that can provide certain qualities of
service in terms of speed, availability, cost as well as
other natures. The monitor utilizes GRAM to create
and manage a gamelet. The communication between a
monitor and a gamelet is through standard Simple
Object Access Protocol (SOAP) and is based on the
well-defined interfaces that are described using Web
Service Description Language. The Gamelet Factory
services will periodically register their GSHs into a
registry. From the registry, a monitor can locate a set
of Gamelet Factory services, query their Service Data,
and reliably create and manage a service instance with
the help of IS and GRAM.

After the monitor creates a gamelet, it will
periodically observe its performance. In case the
monitor makes a decision that a gamelet need to be
migrated, it will try to locate a new reference to

another Gamelet Factory service and create a new
gamelet. Just before the migration begins, it also
notifies the communicator to store the incoming
packets temporarily. Once the new gamelet is up,
monitor will control the old gamelet to transfer the
world content to the newly created one through TCP
connection. Finally, the monitor will notice the
communicator to update gamelet information and the
following incoming client packets will be forwarded to
the new gamelet for processing.

5. Prototype Design and Implementation

The multi-server prototype used to evaluate our
proposed architecture and load transfer scheme follows
the multi-server model discussed in Section 2. It is
designed to simulate a real large-scale MNG system,
but is generic and flexible enough to support various
experiments.

We use UDP communication between the client,
communicator and gamelet, since UDP can give much
shorter response time than TCP. To counteract the
unreliable delivery characteristic, each client packet
will include two consecutive commands: the current
command and previous command. In such a way, each
command has two chances to reach the server. So the
client can tolerate a lost rate up to 50% provided the
lost packets are evenly distributed. Between two
gamelets or a gamelet and a communicator, TCP
communication is used since the world content need to
be reliably delivered.

We define the performance metrics as follows. The
average RT is the average time between each client
sending out a packet and receiving the confirmation
from the server that the command has been executed.
Being executed means the command, possibly with
other clients’ commands together, is considered by the

Clients Number Clients Number Clients Number

 : Scheme Two : Scheme One

 Fig 4. Performance Evaluation One

100

CPU (%)

50

25

75

9664 48 16 32 0

100

Lost Rate (%)

50

25

75

966432 480 16

400

RT (ms)

200

100

300

0 32 16 64 96 48

In our preliminary experiments, we only consider
the spatial relationship and simply divide the world
evenly into three equal-sized areas (each is a
33*100*20 area). Each area will be assigned to one
gamelet to process. Two consecutive gamelet will have
an overlapping area of length 2*AOI, since one
avatar’s AOI might go across two gamelets. The
partition information is stored by the communicator
and will be used to route the client packets to the
corresponding gamelets for processing. The avatar is
evenly distributed within the world and each of them
performs a random movement every each 100 ms. AOI
is set to 10. The gamelet, monitor are implemented on
top of GT3.0.1 and runs on Linux kernel 2.4.2 with P3
733 MHz CPU, 256MB RAM and 100Mbps Ethernet.
The client simulator and communicator run on
Windows 2000 Professional with P4 2.2 GHz CPU,
512MB RAM and 100Mbps Ethernet. All components
are implemented using J2SE 1.4.2.

server, the world is updated accordingly, and the
results have been sent to all the clients that share the
same AOI. Since the command will have an additional
delay if it reaches the server through the second
packets, the RT is calculated by this formula:

RT = RT*(1-LostRate) + (RT+TI)* LostRate

TI is the time interval between two consecutive

packets. We define system CP as the maximum
number of concurrent users that can interact with each
other within the world with reasonable average RT
(<200 ms) and lost rate (<50%).

The world in our prototype is a 100*100*20 size 3D
environment. Each user (avatar) is represented as a 3D
object. We have developed a client simulator in Java
that can simulate a certain number of clients, each of
which will send out packets at a constant rate. The
packet used is 32 bytes, which consists of avatar
positions, commands and timestamps. Packet is first
serialized into a byte stream before sending out and
will be deserialized at the receiver side. The serialized
packet size is 151 bytes.

6. Performance Evaluation
 The server will receive the packets from the outside,

deserialize and execute them in a timely order. After
we update any client state, we calculate the distance
between this client and all the others. Suppose we use
DIS(I, J) to represent the distance between client I and
client J. For a client I, we need only send its updated
state to client J if DIS(I, J) < AOI. In current
implementation, our avatar uses simple 3D object and
we want to simulate the collision detection among
complex 3D objects. Our method is to add a certain
amount of floating point calculation which is
proportional to 1/DIS(I, J) to ensure that the closer two
3D objects are, the more computation is needed to
calculate their states.

We will study the performance of our proposed
architecture through various experiments, using from
one to three worker servers. The gamelet creation and
migration performance is also studied.

6.1. Evaluation One

We first compare the performance of the following
two schemes. Scheme one: there is no partition. All
the client packets are forwarded to one worker server
to process. Scheme two: the world is partitioned into
three areas as described in Section 5, and each of them

 : Server 1 of Scheme Three : Scheme One : Scheme Three

400

RT (ms)

200

100

300

16 3 0
Clients Number

64 48 96 0 3216 6448 96

75

25

50

Lost Rate (%)

100

0 3216 64 48 96

75

25

50

CPU (%)

Clients Number
128

 : Server 2 of Scheme Three

100

 Fig 5. Performance Evaluation Two

128
Clients Number

128

70

 : Server 3 of Scheme Three : Server 2 of Scheme Three : Server 1 of Scheme Three
 : Scheme Three : Scheme One

 Fig 6. Performance Evaluation Three

100

CPU (%)

80

90

48 16128 064 96
Clients Number

320

100

Lost Rate (%)

50

25

75

9648 64 160 128
Clients Number

32

400

RT (ms)

200

100

300

32 64 48 0
Clients Number

0 96 160 128

is assigned to one gamelet to process. All the three
gamelets are running on the same worker server.

From the CPU utilization graph in Figure 4, we find
that the CPU load increases as the client number
increases. The CPU load of scheme two is slightly
larger than that of scheme one. The reason is that in
scheme two, each gamelet will do some work that is
overlapping with its neighboring gamelets. Therefore,
the total work in scheme two will be larger than that in
scheme one. However, this difference is not great. Both
of them approach 100% when the total client number is
between 48 and 64. We observe that just at the point
when the client number reaches this threshold, that is
when the CPU load approaches 100%, both the RT and
lost rate in scheme one and scheme two become
unsatisfied. After this point, we can clearly see that the
performance of the first scheme is better than the
second scheme. However, before this point, we cannot

see much difference in both RT and lost rate. So our
conclusion is that not until the CPU utilization of the
machine hits some threshold, our proposed approach
can almost achieve the same performance with scheme
one, which is the traditional used approach. The
network load of the communicator is no more than
1.9Mbps when there are 96 clients. So network is not
the bottleneck and there is no need to replicate the
communicator.

6.2. Evaluation Two

Now we consider scheme three: the gamelet can be
migrated dynamically and we will use 2 servers at
most. The monitor will periodically retrieve the
gamelet workload information. Once it finds the CPU
load of the worker server that a gamelet runs on is

approaching 100%, the monitor will initiate a gamelet
migration process. Since the client is evenly distributed
in our experiment, load-balancing strategy is also
simple. The monitor will simply choose any one of the
three gamelets to migration to the new place.

From the CPU utilization graph in Figure 5, we find
that the gamelet migration is initiated when the client
number is about 56, at which point the CPU load of
server 1 is approaching 100%. After the migration is
completed, CPU load of server 2 rises from 0 to 65%
and CPU load of server 1 decreases to 87%. In the RT
graph, we see the RT is relatively higher at the point
when the client number is 56 than that shown in Figure
4, however the lost rate is quite similar to that shown in
Figure 4. The reason is that when a gamelet migration
is initiated, the world content needs to be reliably
transferred to the new gamelet. In our experiment, the
migration process takes about 40 ms. Since the
communicator will store the incoming clients’ packets
during the gamelet migration process and forward them
later, the migration process has little effect on the lost
rate. After the migration completes, the client could
again enjoy a shorter RT and lower lost rate until the
client number is about 96 and the CPU load of server 1
approaches 100% again. The gamelet creation time
ranges from about 430 ms to several seconds, however,
this process won’t count to the gamelet migration time
since it can be done before the migration process.

6.3. Evaluation Three

In this experiment, we also consider scheme one
and scheme three. However, the gamelet can be
migrated to 3 servers at most this time. The results are
shown in Figure 6.

In the CPU utilization graph, we can see that as the
client number increases, the third worker server is
added when the total client number is slightly larger
than 96. Accordingly, in the RT graph there is a short
delay during the migration process. Since the clients
have already experienced a long RT, this short delay
won’t lead to obvious user distraction. After the
migration completed, the RT and the lost rate are both
within the tolerable range until the client number is
about 128 and all the worker servers become saturated.
So we conclude that our proposed approach will
increase the system CP from the original 64 to about
128. Similarly, as the client number decreases, the
gamelets will then converge to two and finally one
worker server again, but still can provide the
reasonable performance. Therefore, our approach is
more dynamic and cost-effective, since gamelet can be
created and destroyed dynamically and the system only

uses necessary resources to provide the desired
qualities of services.

7. Conclusions

In this paper, we present a new concept named
gamelet, which is an execution abstraction within the
world. Based on the gamelet concept and the cutting-
edged Grid technology, we propose a multi-server
architecture to build more dynamic and cost-effective
MNG systems.

We have evaluated the performance of our proposed
scheme through our prototype. The results show that
our approach enables the system scale dynamically
according to the system workload and only uses the
minimum resources to provide reasonable performance
to the clients. Near future work includes porting the
gamelet-based architecture into the HKU Gideon
Cluster, which consists of 300 PC nodes, and
evaluating the maximum potential power of the
gamelet in a more complex environment.

References

[1] A. Jarett, J. Estanislao, E. Dunin, J. MacLean, B.

Robbins, D. Rohrl, J. Welch, J. Valadares, IGDA Online
Games White Paper. 2nd Edition, 2003.

[2] S. Singhal and M. Zyda, Networked Virtual
Environments: Design and Implementation, Addison
Wesley, 1999.

[3] M. Capps, D. McGregor, D. Brutzman, M. Zyda,
“NPSNET-V: A New Beginning for Dynamically
Extensible Virtual Environments”, IEEE Computer
Graphics and Applications, 2000, pp. 12-15.

[4] O. Hagsand, “Interactive Multi-user VEs in the DIVE
system”, IEEE Multimedia, Vol: 3, No.: 1, 1996, pp.30–
39.

[5] E. Cronin, B. Filstrup, Anthony R. Kurc, Sugih Jamin,
“An Efficient Synchronization Mechanism for Mirrored
Game Architectures”, ACM. NetGames, 2002, pp. 67-
73.

[6] C. Diot and L. Gautier, “A Distributed Architecture for
Multiplayer Interactive Applications on the Internet”,
IEEE Networks Magazine, vol. 13, 1999, pp. 6–15.

[7] Age of Empires.
http://www.microsoft.com/games/empires/.

[8] J. Smed, T. Kaukoranta, H. Hakonen, “A Review on
Networking and Multiplayer Computer Games”,
Technical Report 454, Turku Centre for Computer
Science, 2002.

[9] Thomas A. Funkhouser, “RING: a Client-server System
for Multi-user Virtual Environments”, Proceedings of
the 1995 symposium on Interactive 3D graphics,
Monterey, California, United States, 1995, pp.85-92.

[10] N. Beatrice, S. Antonio, L. Rynson, L. Frederick, “A
Multiserver Architecture for Distributed Virtual
Walkthrough”, Proceedings of ACM Symposium on
Virtual Reality, Software and Technology 2002, Hong-
Kong, 2002.

[11] Asheron’s Call.
http://www.microsoft.com/games/zone/asheronscall/.

[12] Kesselman, J. Nick, I. Foster, C., and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration”, Open
Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002.

[13] C. Catlett, “The Philosophy of TeraGrid: Building an
Open, Extensible, Distributed TeraScale Facility”,
Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2002,
page: 8.

[14] D.Bosio, J.Casey, A.Frohner, L.Guy et al, “Next
Generation EU DataGrid Data Management Services”,
Computing in High Energy Physics, 2003.

[15] W. Johnston, “Issues for Using Computing and Data
Grids for Large-Scale Science and Engineering”,
Workshop on Clusters and Computational Grids for
Scientific Computing, 2000.

[16] Butterfly Grid. http://www.butterfly.net/.
[17] Globus Toolkit 3.0. http://www.globus.org/.
[18] Quake . http://www.idsoftware.com/.

	1. Introduction
	2. Multi-server Model

	3. Gamelet
	4. Gamelet-based Multi-server Architecture
	5. Prototype Design and Implementation
	6. Performance Evaluation
	6.1. Evaluation One
	6.2. Evaluation Two
	6.3. Evaluation Three

	7. Conclusions
	References

