
A Performance Study of Clustering Web Application Servers with

Distributed JVM
†

King Tin Lam, Yang Luo, Cho-Li Wang

Department of Computer Science, The University of Hong Kong

{ktlam, yluo, clwang}@cs.hku.hk

† This research is supported by Hong Kong RGC grant HKU7176/06E and China 863 grant 2006AA01A111.

Abstract

A Distributed Java Virtual Machine (DJVM) is a

cluster-wide set of extended JVMs that enables parallel

execution of a multithreaded Java application. It has

proven effectiveness for scaling scientific applications.

However, leveraging DJVMs to cluster real-life web

applications with commercial server workloads has not

been well studied. This paper presents a new generic

clustering approach based on DJVMs that promote

user transparency and global object sharing for web

application servers. We port Apache Tomcat to our

JESSICA2 DJVM and study the performance of a wide

range of web applications running on the server. Our

experimental results show that this approach can scale

better than the traditional clustering approach, par-

ticularly for cache-centric web applications.

1. Introduction

While application servers have become standard in-

frastructure for supporting web-based enterprise appli-

cations, their clustering solutions are generally labori-

ous and error-prone. Distributed Java technology has

contributed a wealth of APIs for application clustering.

Mastering these APIs is however practically daunting.

A holistic solution would be turning to a generic clus-

tering middleware platform that eliminates the need of

application code changes and restrictive design patterns

imposed by the existing clustering technologies.

In this work, we propose a Distributed Java Virtual

Machine (DJVM) approach to web application cluster-

ing. A DJVM is a set of coupled JVM instances span-

ning multiple cluster nodes to enable parallel execution

of a multithreaded Java application as if it was running

on a single powerful machine. As the design of a

DJVM adheres to the standard JVM specification, it

hides the cluster from the application by presenting a

single-system image (SSI), making application design

orthogonal to the low-level clustering decisions. So web

applications that follow the original Java multithreaded

programming model on a single machine can be easily

clustered without rewriting application code. Besides,

DJVMs enable global sharing of cluster-wide resources

among distributed threads. This provides a platform for

cooperative computations and data caching among

server nodes that can be exploited to outperform the

existing clustering approaches in the web community.

DJVM research efforts like [1, 2, 8] have proven suc-

cessful for scientific benchmarks. However, clustering

real-life commercial applications with server workloads

on top of DJVMs is more challenging and has not been

well-studied. This work bridges the gap by presenting

performance results of running Apache Tomcat on the

JESSICA2 DJVM. Tomcat, typifying object-based serv-

ers, has some unique runtime properties including in-

tensive threading, high read/write ratios, extensive ob-

ject sharing via collections framework and fine-grained

irregular object access patterns. We discuss their poten-

tial impacts on the DJVM performance through testing

with a diversity of web applications. We show that for

I/O-centric applications, the DJVM approach can scale

out transparently, yet equally well as traditional cluster-

ing and for cache-centric applications, the throughput

gets much better due to global cache hits given by our

distributed shared heap design. Other contributions of

this work include a taxonomy of existing web applica-

tion clustering solutions with their common drawbacks

identified, characterization of DJVM-level overheads

for server applications, followed by suggestions on the

next-generation DJVM design and optimization.

For the rest of this paper, Section 2 surveys the ex-

isting web application clustering solutions. Section 3

describes the JESSICA2 DJVM. In Section 4, we ex-

plain Tomcat running on JESSICA2. Section 5 evalu-

ates the performance of the DJVM clustering approach.

Section 6 discusses the related work. Our conclusions

and suggested future work are given in Section 7.

Operating System

Virtual Machine

JVM / CLR / ...

Application Server

J2EE / .NET / ...

Application

Hardware

Component /

Library

Web

Server

Database

Server

 Tier

Presentation Business Logic Data

LVS

MySQL

Cluster

Oracle

RACSession

Replication

mod_jkRound-

robin DNS

JMS

JNDI

mod_proxy

C-JDBC

JavaGroups

JavaSpaces

Terracotta

EJB
Replication

Distributed

Caching Libraries

Hardware Load

Balancers

S
e

rv
e

r
L

e
v
e

l
A

p
p

l.
 L

e
v

e
l

V
M

 L
e

v
e
l

O
S

 L
e
v

e
l

H
W

 L
e

v
e
l

S
y

s
te

m
 H

ie
ra

rc
h

y

Key:

- System Category

- Example Solution

Figure 1. Taxonomy of existing server clustering technologies

2. Existing Server Clustering Solutions

In the web community, clustering is broadly viewed

as server load balancing and failover. Figure 1 shows a

comprehensive survey on the existing clustering solu-

tions. Along one dimension of the taxonomy, clustering

solutions vary in scalability, flexibility and mainte-

nance cost when implementing at the level of hardware,

OS, virtual machine, server or application. In the other

dimension, they differ in clustering granularity (re-

quests, sessions, components, objects or connections)

along the tier of processing.

Hardware load balancers are easy to use but expen-

sive and inflexible for growth. OS-level solutions such

as Linux Virtual Server (LVS) [3] provide the appear-

ance of an SSI for all applications at the cost of com-

plicated setups and OS kernel upgrades. Round-robin

DNS, although easy to implement, has no knowledge of

user sessions, thus causing integrity problems. Web

server plug-ins like Apache mod_jk connector [4] are

cost-effective and session-aware, but they may create

load hotspots due to session stickiness.

Advanced clustering technology, spawned chiefly in

the J2EE world, supports state sharing across applica-

tion servers. HTTP sessions, stateful Enterprise Java-

Beans (EJBs) and plain old Java objects (POJOs) em-

bedding business data are commonly shared application

states. Some application server products ship with clus-

tering support for HTTP sessions and stateful session

beans. Conventional approaches to shared-database and

shared-file state persistence scale poorly. In-memory

session or EJB replication is an improved technique

that serializes objects into byte streams for sending to

peer servers over communication services like Java

Messaging Service (JMS) and JavaGroups [5]. But this

involves group-based synchronous replications (gener-

ally all-to-all replications) that are only efficient in very

small-sized clusters. EJB clustering requires complex

setup of a cluster-wide shared JNDI tree for lookup of

clustered objects. Clustering POJOs that conform to no

standard interface needs application code retrofit using

extra APIs such as JavaSpaces [6] or distributed cach-

ing libraries [7] to share objects among the JVMs.

There are also data-tier clustering solutions like My-

SQL Cluster, Oracle Real Application Clusters (RAC)

and C-JDBC which support connection load balancing

and synchronous replication of data updates over the

cluster. Database cluster size is however often limited

due to more expensive hardware and licensing costs.

We note that most existing (Java-based) clustering

solutions have poor user transparency and suboptimal

performance. Some of the common drawbacks can be

summarized as follows:

(1) Imposing burdens and restrictions on application

designs: complex setup, application rework with ex-

tra APIs and restrictive design patterns (e.g. can’t

share non-serializable objects) burden developers.

(2) Breaking referential integrity: object clones made

by Java serialization lose the original object identity

when deserialized and may cause consistency prob-

lems among objects with cross-references.

(3) Imposing costly communication: Java serialization

significantly degrades performance, since it has to

trace and clone many objects even for one field

change on a shared object.

(4) Lacking global signaling or coordination support:

Without cluster-wide synchronization, subtle con-

sistency issues arise when some design patterns or

event-based services (e.g. timers) are migrated from

standalone platforms to clusters.

(5) Lacking global resource sharing: Most clustering

solutions lack global information for wisely manag-

ing the aggregated resources of the whole cluster.

3. The JESSICA2 Distributed JVM

JESSICA2 [8] is a DJVM designed for transparent

parallel execution of multithreaded Java applications in

a cluster environment. It provides the illusion of an SSI

when connecting Java with clusters such that applica-

tions are clustered transparently with no burden of

source code modification and bytecode preprocessing.

It automatically handles thread distribution, data con-

sistency of the shared objects and I/O redirection so

that the program sees only a single system, with the

aggregated computing power, memory and I/O capacity

of the entire cluster.

JESSICA2 has bundled several salient features for

SSI realization. First the class loader of JESSICA2 is

extended with a remote class loading capability. When

a worker JVM cannot find a class file locally, it can

request the class bytecode on demand and fetch the

initialized static data from the master JVM through

network communication. This feature greatly simplifies

cluster-wide deployment of Java applications.

Second, JESSICA2 incorporates a cluster-aware JIT

compiler to support lightweight Java thread migration

across node boundaries to assist global thread schedul-

ing. Besides an initial thread placement for striking a

raw load balance, dynamic load balancing is possible at

runtime by migrating Java threads that are running into

computation hotspots to the less loaded nodes.

For seamless object views from migrated threads,

JESSICA2 provides a heap-level service called Global

Object Space (GOS) [10] to support location-transparent

object access. Distributed threads share objects in the

GOS as if they were in a single heap. The GOS imple-

ments packing functions to ship object data to the re-

questing nodes. Received objects are cached locally to

improve data access locality. Cache coherence across

reads/writes on shared objects is guaranteed by a home-

based release-consistent memory model.

JESSICA2 offers a global I/O space via a transpar-

ent I/O redirection mechanism built in the native class

library so that I/O requests (file and socket accesses)

can be served, virtually, by any node without strict reli-

ance on shared file systems or virtual IP. To exploit I/O

parallelism atop transparency, connectionless network

I/O and read-only file accesses, if local replicas exist,

are done locally without redirection.

4. Running Apache Tomcat on JESSICA2

Apache Tomcat is the official reference implemen-

tation of the Java Servlet and JavaServer Page (JSP)

specifications. It is also the world’s most widely used

open-source Java web application server [9].

Tomcat characterizes real-life Java applications that

are usually more complex, data-centric, object-oriented

and extensive in Java library usage than scientific ap-

plications. We now summarize Tomcat’s runtime prop-

erties and their potential impacts on the DJVM per-

formance:

(1) I/O-intensive and highly-threaded: most web server

workloads are I/O-bound and composed of short-

lived requests of small computation-communication

ratios. Application servers usually configure a large

thread count to hide I/O blocking latency. This im-

plies longer wait time if lock contention occurs.

(2) High read/write ratios: reads typically dominate in

web applications owing to user browsing behaviors.

DJVM design can make use of this trait to optimize

the cache coherence protocols.

(3) High utilization of collections framework: Tomcat

makes extensive use of Java collection classes like

Hashtable and Vector to store information (e.g. web

contexts, sessions, MIME types, status codes, etc).

Thread-safe operations over these objects will cause

excessive synchronizations, thus erecting a barrier

to scalability in networked cluster environments.

(4) Fine-grained object access with irregular reference

locality: By Tomcat’s object-oriented design, object

accesses are very frequent; object graphs are com-

plex with ramified connectivity. Frequent hash table

accesses induce irregular reference locality, con-

trasting with consecutive memory access pattern in

most scientific (SPMD) applications. This complex-

ity demands smart object prefetching techniques to

avoid excessive fine-grained communications.

Figure 2 depicts the execution of Tomcat on top of

JESSICA2 in a 4-node cluster. The threads created at

startup will migrate to the worker nodes to balance

workload. The threads then load the classes of the Java

library, Tomcat and the web applications deployed to it

dynamically through JESSICA2’s cluster-aware class

loader. The distributed threads continuously pull work-

loads from the master node by accepting and handling

incoming connections via transparent I/O redirections.

When a client request is accepted, the context man-

ager of Tomcat matches it to the target web context. If

the request carries session state, such as a cookie, the

standard manager will search for the allocated session

object from the session’s hash table. The underlying

GOS allows all Tomcat container objects allocated in

the master JVM (e.g. web contexts, and sessions hash

table) to be transparently shared among the distributed

threads. With object state checks injected by the JIT

compiler, access faults on a non-local object reference

will cause the up-to-date object to be fetched from its

home node. Cluster-wide consistency is then enforced

on the home copy and all cache copies derived from it.

Tomcat Application ServerTomcat Application Server

Thread pool

S

Client

Requests

Listening
Socket

Pooled TCP

Connector

Context Manager

Sessions

Attributes

Standard Manager Master heaps of all

nodes form the GOS

Cache
heap area

Vector

Hashtable

HashMap

Array

(Hash) Entry

String

Session

Attribute

Context

Servlet

Runnable

Socket

I/O redirections (accept, read, etc) GOS protocol messages

Master JVM (node 0)

Communication Network

Worker JVM (node1)

Master
heap area

OS

Hardware

OS

Hardware

Thread migration

Master objects
in (white) solid

border

OS

Hardware

OS

Hardware

OS

Hardware

OS

Hardware

OS

Hardware

OS

Hardware

Object Types (by Shape):

draw

return

Abbreviated Names:

A

C

Sv

S

T

K

= Attributes

= Contexts

= Servlets

= Sessions

= Thread pool

= Hash key

Sv
A

Sv Access causes
caching from

node 0 to 1

Worker JVM (node2) Worker JVM (node3)

S

GOS

Contexts

Servlets

C T

T
T

C

Cached objects

in (red) dashed

border

K K K

A

K

(some K’s omitted
for simplicity)

T1 T2 T3

K

S

K

Figure 2. Execution of Tomcat on JESSICA2 DJVM

JESSICA2 extends the existing Java Memory Model

(JMM) to provide a consistent unified heap over a clus-

ter. We call the portion of heap storing usual unshared

objects and home object copies the master heap area.

Each thread is given a local memory work area, called

the cache heap area, for keeping copies of remote ob-

jects. On entering an object monitor (corresponding to

a lock), the thread invalidates its cache heap area so

that later uses will fault in their up-to-date objects. On

exiting the monitor, updated cache objects are flushed

to their homes so the next acquiring thread can see the

changes. In this way, the GOS creates a helpful cache

effect that we call implicit cooperative caching among

the threads.

 This effect is illustrated by Figure 2. The thread T1

faults in the object graph under S and caches a copy of

S in its local heap. When T1 serves a new client ses-

sion, a new hash entry will be put into S. This corre-

sponds to building a local reference from the cached S

to the new entry. Upon synchronization events, this

update is propagated back to the home of S so that the

thread T2 can see and access it by remote fetching from

node 2. This global cache effect transparently shifts the

duty of managing session data consistency across serv-

ers to the GOS layer and makes every node eligible to

handle requests belonging to any client session.

JESSICA2 strives to address the characteristics of

Tomcat discussed above. We optimize the coherence

protocol (based on property 2) by attaching per-object

timestamp checks to lock-acquire requests, avoiding

invalidation of cache copies that are still valid (particu-

larly those read-only) to minimize access faults and

hence the lengths of critical sections. The GOS also

supports various optimizations such as object pushing

(a prefetching technique that can address property 4).

More details on the GOS design can be found in [10].

5. Performance Analysis

5.1. Experimental Setup

Our experimental platform consists of three tiers:

(1) web tier: a 2-way Xeon SMP server with 4GB

RAM for running the master JVM of JESSICA2 with

Apache Tomcat 3.2.4 started on it; (2) application tier:

a cluster of eight x86-based PCs with 512 MB RAM

acting as the DJVM worker nodes; (3) data tier: a clus-

ter of four x86-based PCs with 2GB RAM supporting

MySQL Database Server 5.0.45. All nodes run under

Fedora Core 1 (kernel 2.4.22). The three tiers are con-

nected up by Gigabit Ethernet, while nodes within the

same tier are linked by Fast Ethernet networks.

The initial and maximum heap sizes of each worker

JVM are set to 128MB and 256MB respectively. Each

database node has the same dataset replica. MySQL

replication is enabled to synchronize the replicas at

nearly real time. Jakarta JMeter 2.2 is used to synthe-

size varying workloads to stress the testing platform.

Table 1 shows the application benchmark suite used

to evaluate our clustering approach using the DJVM.

They are designed to model real-life web applications

of diverse workload characteristics.

Table 1. Application benchmark suite

Application
Object

Sharing
Workload

Nature
I/O

Bible-quote
I/O-

intensive
Text files

Stock-quote

Stock-quote/RSA

No sharing
Compute-
intensive

SOAP-order

Database

TPC-W

HTTP
session

I/O-
intensive Database /

image files

Bulletin-search
Cached query

results
Memory-
intensive

Database

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8

Num ber of Node s

S
p

e
e

d
u

p

Bible-quote

Stock-quote

Stock-quote/RSA

SOAP-order

TPC-W

Bulletin-search

Ideal

0

2

4

6

8

10

12

14

0 2 4 6 8

Num ber of Nodes

A
v

e
ra

g
e

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Bible-quote

Stock-quote

Stock-quote/RSA

SOAP-order

Bulletin-search

Figure 3. Scalability and average response time obtain by Tomcat on JESSICA2

(1) Bible-quote models applications such as text search

engines, news archives and company catalogs. This

servlet is I/O-intensive, serving document retrievals

and search requests over a set of text files of books.

(2) Stock-quote simulates stock market data providers.

The application reads stock price data matching the

input date range from the database and formats the

query result into an XML response.

(3) Stock-quote/RSA is secure version of Stock-quote

involving compute-intensive operations of 1024-bit

RSA encryption on the price data.

(4) SOAP-order characterizes a B2B e-commerce web

service. The application parses SOAP messages (by

Apache SOAP 2.3.1) of securities order placements,

checks the user accounts and order details and then

puts the successful transactions into the database.

(5) TPC-W is a standard transactional web benchmark

specification. It models an online bookstore with

session-based workloads and a mix of static and dy-

namic web interactions. We use the Java servlet im-

plementation from [11], but with pooled database

connections cached in thread-local storage [12].

(6) Bulletin-search emulates a search engine in a bulle-

tin board or web forum system. We take the data

dump from the RUBBoS benchmark [11] to popu-

late the database. The application maintains a hash-

based LRU-cache map of the results of the costly

database searches, and is thus memory-intensive.

The original Tomcat is ported to JESSICA2 with a

few customizations: (1) We replace the original thread

pool by a simpler implementation that spawns a static

count of non-pooled threads based on the server con-

figuration file; (2) several shared object pools (e.g.

static mapping tables for MIME types and status codes)

are disintegrated into thread-local caches. The modifi-

cations are non-intrusive (only about 370 lines of codes

including the new class, corresponding to 0.76% of the

Tomcat source base).

5.2. Scalability Study

In this experiment, we measure the peak throughputs

and average response times obtained by scaling worker

nodes from two to eight. The speedup is calculated by

dividing the baseline runtime of Tomcat on Kaffe JVM

1.0.7 by the parallel runtime of Tomcat on JESSICA2.

Figure 3 shows the results obtained for each bench-

mark. We see that most applications scale well, achiev-

ing efficiencies ranging from 66% (SOAP-order) to

96.7% (Stock-quote). Bible-quote, Stock-quote and

Stock-quote/RSA show almost linear speedup because

they belong to the class of stateless applications, yield-

ing true parallelism without any GOS communications

between the JVMs. In particular, Stock-quote and

Stock-quote/RSA involve operations of coarser work

granularity, such as string manipulations and RSA en-

cryptions, and are hence more able to attain nearly per-

fect scalability. Smaller speedups are obtained for

stateful applications like SOAP-order and TPC-W,

since they involve GOS overheads when synchronizing

HTTP session and some other objects across the JVM

heaps. Bulletin-search shows a nonlinear but steepen-

ing curve in speedup when the number of worker nodes

scales out due to the implicit cooperative cache effect

given by the GOS.

Table 2 shows the cluster-wide thread count used in

each application and the overall protocol messaging

overheads of JESSICA2 in the 8-node configuration.

The count of I/O redirections is proportional to the

request throughput and generally does not impact scal-

ability. The higher number of GOS protocol messages

explains the poorer scalability obtained by the applica-

tion as shown in Figure 3. Bulletin-search is an excep-

tion because its performance is more determined by its

cooperative caching benefits which could supersede the

cost of GOS communications.

Table 2. JESSICA2 messaging overheads

Application # Threads

GOS

messages

/ sec

I/O

redirections

/ sec

Bible-quote 80 0 2006

Stock-quote 80 0 1791

Stock-quote/RSA 80 0 275

SOAP-order 16 979 146

TPC-W 40 351 1413

Bulletin-search 16 483 297

5.3. Comparison with Existing Solutions

We compare the DJVM approach with a common

clustering method for Tomcat using web load balancing

plug-ins. We run an instance of Apache web server

2.0.53 on the web tier and eight standalone Tomcat

servers on the application tier of our platform. The web

server is connected to the Tomcat servers via the

mod_jk connector 1.2.18 with sticky-session enabled
1
.

The cluster-wide thread count and heap size setting in

this experiment are the same as in the DJVM approach.

0

5

10

15

20

25

Bible-quote Stock-

quote

Stock-

quote/RSA

SOAP-

order

TPC-W Bulletin-

search

T
h

ro
u

g
h

p
u

t
(1

,0
0

0
 r

e
q

/m
in

)

 Tomcat on DJVM

 Existing Tomcat Clustering

Figure 4. Comparison of Tomcat on DJVM and

existing Tomcat clustering

Figure 4 shows the throughputs obtained by the two

clustering approaches on eight nodes. We can see that

both solutions achieve similar performance (within

±8%) for those stateless web applications (Bible-quote,

Stock-quote and Stock-quote/RSA). These applications

exhibit embarrassing parallelism and do not gain much

advantage from the GOS. Both solutions perform more

or less the same because our transparent I/O redirection

and mod_jk’s socket forwarding are functionally alike

for dispatching requests and collecting responses.

TPC-W performs about 11% better on JESSICA2

than with mod_jk. One reason is that servers sharing

sessions over the GOS are no longer restricted to han-

dle requests bounded to their sticky sessions while load

hotspots can happen intermittently when using mod_jk.

1 In-memory session replication is not supported in the comparison.

On the other hand, SOAP-order performs 26% poorer

on JESSICA2 than with mod_jk. The main factor that

pulls down the throughput is that the SOAP library has

some code performing fairly intensive synchronizations

when processing every request. Bulletin-search per-

forms 8.5 times better on the DJVM due to secondary

application cache hits contributed by the GOS.

5.4. Effect of Implicit Cooperative Caching

Bulletin-search exemplifies the class of applications

that can exploit the cache effect of GOS to virtualize a

large heap for sharing application data. Table 3 shows

the application cache hits obtained by Bulletin-search

when the number of nodes scales from one to eight.

With the GOS, the capacity setting of the cache map

can be increased proportional to the node count beyond

the single-node limit for different portions of the map

that are stored under different heaps. A newly created

cache entry will have its object reference written to the

shared hash map. Threads can exploit indirect (global)

cache hits in case the desired object is not in the local

heap, easing the database bottleneck.

0%

20%

40%

60%

80%

100%

0 2 4 6 8
Num ber of nodes

C
a

c
h

e
 h

it
 r

a
te

Direct (Local) %

Indirect (Global) %

Total Hit Rate

Figure 5. Bulletin-search’s cache hit analysis

We can see from Figure 5 that the overall hit rate

keeps rising along with the scaling of worker nodes of

the DJVM and that most of the cache hits are caused by

indirect hits when the single-node capacity has been

exceeded. Here we define a term called relative cache

size (RCS) to refer to the percentage of the aggregated

cache size (combining all nodes) relative to the total

size of the data set. In the 4-node case, when the RCS

is below 50%, the achievable cache hit rate is only

around 60%. Since the other 40% gets no improve-

ment, the speedup is merely a factor of two. But when

the RCS exceeds a certain level (e.g. 90% in the 8-node

case), most of the requests are fulfilled by the global

cache instead of going through the database tier. This

explains the non-uniform scalability curve of this ap-

plication in Figure 3.

Table 3. Bulletin-search’s cache size setting and hit rates augmented by GOS
No. of
Nodes

Cache Size
(#Cache Entries)

Relative
Cache Size

Total
Hit Rate

Indirect Hit
Latency (ms)

Cost Ratio of
Miss : Indirect Hit

Throughput
Speedup

1 512 12.5% 18.6% N/A N/A N/A

2 931 22.7% 33.9% 9.07 40.79 1.26

4 1862 45.5% 59.3% 8.18 45.23 2.02

8 3724 90.9% 90.7% 11.74 31.52 7.96

0%

20%

40%

60%

80%

100%

SOA P -

o rder

TP C-W B ulletin-

search

%
 B

re
a

k
d

o
w

n
 o

f
M

e
s

s
a

g
e

 C
o

u
n

t

0%

20%

40%

60%

80%

100%

SOA P -

o rder

TP C-W B ulletin-

search

%
 B

re
a

k
d

o
w

n
 o

f
M

e
s

s
a

g
e

 L
a

te
n

c
y

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

 Array fault-in

 Object fault-in

 Static data fetch

 Flush

 Lock release

 Lock acquire

Table 4. GOS overhead breakdown
Messages / Sec

GOS Message Type
SOAP-order TPC-W Bulletin-search

Lock acquire 198 48 61

Lock release 198 48 61

Flush 217 70 92

Static data fetch 18 10 0

Object fault-in 197 99 160

Array fault-in 79 50 105

Table 5. Cluster-wide locking overheads

Application

#Local

locks /
sec

#Remote

locks /
sec

%Contended

remote
locks

Local :

remote
lock ratio

SOAP-order 232631 198 35% 1175:1

TPC-W 240470 48 45% 5010:1

Bulletin-search 27380 61 6.5% 449:1
Figure 6. GOS percentage overhead

5.5. GOS Overhead Breakdowns

Table 4 shows the GOS overhead breakdowns in

terms of messaging rates for the three stateful applica-

tions. Figure 6 supplements this with a percentage

breakdown of message count and latency. Lock acquire

and release messages are issued upon locking a remote

object. Flush messages are sent at lock releases (there

are slightly more flush messages than lock releases

since updates may flush to more than one home). Other

overheads are related to access faults. SOAP-order

clearly has higher remote lock rate than other applica-

tions. On closer investigation, we found that one utility

class of the SOAP library would induce, for each re-

quest, 5-6 remote locks on a hash table in the web con-

text and four remote locks on ServletContextFacade

due to Tomcat’s facade design pattern. Such heavy

remote locking explains the relatively poorer scalability

of SOAP-order.

Table 5 presents the local and remote locking rates

for each application. We can see local locks are much

more than remote. The reason is that Java-based serv-

ers perform thread-safe reads/writes on I/O stream ob-

jects, issuing enormous local locks. While local lock

latency is very short (about 0.2us in our study), remote

lock latency is however several thousands times longer

in commodity clusters; remote locks are yet practically

much fewer in most web applications. Table 5 also tells

us that SOAP-order and TPC-W have about 35% to

45% remote locks under cluster-wide contention, thus

prolonging the wait time before locks are granted. This

is why lock acquire has been the dominant part in the

message latency for these two applications in Figure 6.

6. Related Work

Shasta [14] is a fine-grained software DSM system

using binary code instrumentation to transparently give

cluster-wide semantics to memory accesses. Oracle 7.3

database server is ported on Shasta running on SMP

clusters. Running TPC-B (OLTP) and TPC-D (decision

support) on the system showed only a slight speedup of

1.1 on three servers even with a low-latency Memory

Channel Network. Their experience reveals severe re-

strictions of OS-level SSI solutions, compared to our

JVM-level approach, since correctness of binary appli-

cations relies on the much stricter consistency model

imposed by hardware. Being able to adopt a relaxed

memory model as in our case is essential to server ap-

plications that may need frequent synchronization.

One of the earliest DJVM designed to transparently

run multithreaded server applications, such as Jigsaw,

on a cluster is cJVM [1]. cJVM operates in interpreter-

mode and uses method shipping to realize a master-

proxy model enforcing sequential consistency on dis-

tributed shared objects. In contrast, JESSICA2 runs in

JIT-compilation mode and conforms to release consis-

tency. In [15], cJVM is evaluated with pBOB (Portable

Business Object Benchmark), a business benchmark

inspired by TPC-C, on a 4-node cluster with non-

commodity Myrinet. They obtained an efficiency of

around 80%. However such a high efficiency may not

be achievable if their protocol runs with JIT enabled

and commodity Ethernet as in our case.

Terracotta [16] is a recent JVM-level clustering

product. It uses bytecode instrumentation techniques

similar to JavaSplit [2] except that it works within an

aspect-oriented programming (AOP) framework and

has to instrument product-specific classes. Users need

to manually specify shared classes as distributed

shared objects (DSOs) and their cluster-aware concur-

rency semantics. This configuration-driven approach is

“translucent” (less transparent than our SSI-oriented

approach) and liable to subtle semantic violations. Ter-

racotta relies on a central server to store all DSOs and

to coordinate shared updates across JVMs, which will

likely create hotspots as the cluster size increases. In

contrast, our home-based coherence protocol is decen-

tralized and immune to such bottlenecks.

7. Conclusion and Future Work

We have presented a new transparent clustering ap-

proach using distributed JVMs (DJVMs) for web ap-

plication servers. DJVMs enhance the ease of applica-

tion clustering and global resource integration – both of

which have been problems for existing web-domain

clustering solutions. Our performance study of running

Apache Tomcat on JESSICA2 demonstrates scalable

speedups for a variety of web applications, particularly

those session-based and cache-centric ones. Our over-

head analysis shows that scalability hinges on the num-

ber of remote locks (under contention) due to fine-

grained object sharing.

We accordingly suggest some design guidelines for

next-generation DJVMs. First, one should maintain

high execution concurrency so that the helpful cache

effect of global object sharing will not be offset by the

cluster-wide locking overheads. We find that thread-

safe Java collection classes, being the usual containers

for shared objects, are the major source of remote

locks. In fact, more scalable containers have been re-

cently developed under the latest Java concurrent util-

ity package [13]. However, these concurrent data struc-

tures are not immediately portable to cluster environ-

ments, in terms of performance. For example, they

make heavy use of volatile fields for lightweight syn-

chronization, but these are treated as locks and handled

inefficiently by most DJVMs. Advanced coherence pro-

tocol designs such as concurrent-read-exclusive-write

support for volatile fields will be vital for continued

success in using the DJVM technology to scale the

latest Java applications.

The importance of optimizations that save or aggre-

gate fine-grained remote operations in DJVMs is next

to concurrency. Some solutions like method shipping,

thread migration, object home migration and prefetch-

ing have been proposed [1, 8, 10]. But these items of

work focus on mechanisms, rather than how to best use

these mechanisms for a balanced effect of data locality,

message aggregation and load distribution. An adaptive

hybrid use of these runtime techniques, guided by

lightweight profiling, is a challenging research problem

for future study.

References

[1] Y. Aridor, M. Factor, and A. Teperman. cJVM: A single

system image of a JVM on a cluster. In International

Conference on Parallel Processing, pages 4–11, 1999.

[2] M. Factor, A. Schuster, and K. Shagin. JavaSplit: a run-

time for execution of monolithic Java programs on het-

erogeneous collections of commodity workstations. In

Int. Conf. on Cluster Comput., pages 110-117, 2003.

[3] W. Zhang. The Linux Virtual Server Project.

http://www.linuxvirtualserver.org/.

[4] The Apache Software Foundation. The Apache Tomcat

Connector. http://tomcat.apache.org/connectors-doc/.

[5] B. Ban. JavaGroups multicast communication toolkit.

http://www.sourceforge.net/projects/javagroups.

[6] Q. H. Mamoud. Getting started with JavaSpaces tech-

nology: Beyond conventional distributed programming

paradigms. http://java.sun.com/developer/technical Ar-

ticles/tools/JavaSpaces/.

[7] C. E. Perez. Open source distributed cache solutions

written in Java. http://www.manageability.org/blog/

stuff/distributed-cache-java.

[8] W. Zhu, C. L. Wang, and F. C. M. Lau. JESSICA2: A

distributed Java virtual machine with transparent thread

migration support. In Proc. IEEE 4th Int. Conf. Cluster

Comput., Chicago, Sep. 2002, pp. 381–388.

[9] A. Zeichick. Tomcat, Eclipse named the most popular in

SDTimes study. http://www.sdtimes.com/content/

article.aspx?ArticleID=31882.

[10] W. Fang, C. L. Wang, and F. C. M. Lau. Efficient global

object space support for distributed JVM on cluster. In

Proc. Int. Conf. on Parallel Processing, pages 371–378,

British Columbia, Canada 2002.

[11] ObjectWeb. JMOB: Java Middleware Open Benchmark-

ing. http://jmob.objectweb.org/.

[12] B. Goetz. Threading lightly, Part 3: Sometimes it's best

not to share - exploiting ThreadLocal to enhance scal-

ability. http://www.ibm.com/developerworks/java/

library/j-threads3.html.

[13] D. Lea. Java concurrent utility package.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurr

ent/package-summary.html.

[14] D. J. Scales, and K. Gharachorloo. Towards transparent

and efficient software distributed shared memory. In

Proceedings of the sixteenth ACM symposium on Oper-

ating systems principles, Saint Malo, France, 1997.

[15] Y. Aridor, M. Factor, A. Teperman et al. Transparently

obtaining scalability for Java applications on a cluster.

Journal of Parallel and Distributed Computing, v.60

n.10, p.1159-1193, Oct 2000

[16] A. Zilka. Terracotta - JVM clustering, scalability and

reliability for Java. http://www.terracotta.org.

