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Abstract 
 

A Distributed Java Virtual Machine (DJVM) is a 

cluster-wide set of extended JVMs that enables parallel 

execution of a multithreaded Java application. It has 

proven effectiveness for scaling scientific applications. 

However, leveraging DJVMs to cluster real-life web 

applications with commercial server workloads has not 

been well studied. This paper presents a new generic 

clustering approach based on DJVMs that promote 

user transparency and global object sharing for web 

application servers. We port Apache Tomcat to our 

JESSICA2 DJVM and study the performance of a wide 

range of web applications running on the server. Our 

experimental results show that this approach can scale 

better than the traditional clustering approach, par-

ticularly for cache-centric web applications. 

 

1. Introduction 
 

While application servers have become standard in-

frastructure for supporting web-based enterprise appli-

cations, their clustering solutions are generally labori-

ous and error-prone. Distributed Java technology has 

contributed a wealth of APIs for application clustering. 

Mastering these APIs is however practically daunting. 

A holistic solution would be turning to a generic clus-

tering middleware platform that eliminates the need of 

application code changes and restrictive design patterns 

imposed by the existing clustering technologies. 

In this work, we propose a Distributed Java Virtual 

Machine (DJVM) approach to web application cluster-

ing. A DJVM is a set of coupled JVM instances span-

ning multiple cluster nodes to enable parallel execution 

of a multithreaded Java application as if it was running 

on a single powerful machine. As the design of a 

DJVM adheres to the standard JVM specification, it 

hides the cluster from the application by presenting a 

single-system image (SSI), making application design 

orthogonal to the low-level clustering decisions. So web 

applications that follow the original Java multithreaded 

programming model on a single machine can be easily 

clustered without rewriting application code. Besides, 

DJVMs enable global sharing of cluster-wide resources 

among distributed threads. This provides a platform for 

cooperative computations and data caching among 

server nodes that can be exploited to outperform the 

existing clustering approaches in the web community. 

DJVM research efforts like [1, 2, 8] have proven suc-

cessful for scientific benchmarks. However, clustering 

real-life commercial applications with server workloads 

on top of DJVMs is more challenging and has not been 

well-studied. This work bridges the gap by presenting 

performance results of running Apache Tomcat on the 

JESSICA2 DJVM. Tomcat, typifying object-based serv-

ers, has some unique runtime properties including in-

tensive threading, high read/write ratios, extensive ob-

ject sharing via collections framework and fine-grained 

irregular object access patterns. We discuss their poten-

tial impacts on the DJVM performance through testing 

with a diversity of web applications. We show that for 

I/O-centric applications, the DJVM approach can scale 

out transparently, yet equally well as traditional cluster-

ing and for cache-centric applications, the throughput 

gets much better due to global cache hits given by our 

distributed shared heap design. Other contributions of 

this work include a taxonomy of existing web applica-

tion clustering solutions with their common drawbacks 

identified, characterization of DJVM-level overheads 

for server applications, followed by suggestions on the 

next-generation DJVM design and optimization. 

For the rest of this paper, Section 2 surveys the ex-

isting web application clustering solutions. Section 3 

describes the JESSICA2 DJVM. In Section 4, we ex-

plain Tomcat running on JESSICA2. Section 5 evalu-

ates the performance of the DJVM clustering approach. 

Section 6 discusses the related work. Our conclusions 

and suggested future work are given in Section 7. 
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Figure 1. Taxonomy of existing server clustering technologies 

 

2. Existing Server Clustering Solutions 
 

In the web community, clustering is broadly viewed 

as server load balancing and failover. Figure 1 shows a 

comprehensive survey on the existing clustering solu-

tions. Along one dimension of the taxonomy, clustering 

solutions vary in scalability, flexibility and mainte-

nance cost when implementing at the level of hardware, 

OS, virtual machine, server or application. In the other 

dimension, they differ in clustering granularity (re-

quests, sessions, components, objects or connections) 

along the tier of processing. 

Hardware load balancers are easy to use but expen-

sive and inflexible for growth. OS-level solutions such 

as Linux Virtual Server (LVS) [3] provide the appear-

ance of an SSI for all applications at the cost of com-

plicated setups and OS kernel upgrades. Round-robin 

DNS, although easy to implement, has no knowledge of 

user sessions, thus causing integrity problems. Web 

server plug-ins like Apache mod_jk connector [4] are 

cost-effective and session-aware, but they may create 

load hotspots due to session stickiness. 

Advanced clustering technology, spawned chiefly in 

the J2EE world, supports state sharing across applica-

tion servers. HTTP sessions, stateful Enterprise Java-

Beans (EJBs) and plain old Java objects (POJOs) em-

bedding business data are commonly shared application 

states. Some application server products ship with clus-

tering support for HTTP sessions and stateful session 

beans. Conventional approaches to shared-database and 

shared-file state persistence scale poorly. In-memory 

session or EJB replication is an improved technique 

that serializes objects into byte streams for sending to 

peer servers over communication services like Java 

Messaging Service (JMS) and JavaGroups [5]. But this 

involves group-based synchronous replications (gener-

ally all-to-all replications) that are only efficient in very 

small-sized clusters. EJB clustering requires complex 

setup of a cluster-wide shared JNDI tree for lookup of 

clustered objects. Clustering POJOs that conform to no 

standard interface needs application code retrofit using 

extra APIs such as JavaSpaces [6] or distributed cach-

ing libraries [7] to share objects among the JVMs. 

There are also data-tier clustering solutions like My-

SQL Cluster, Oracle Real Application Clusters (RAC) 

and C-JDBC which support connection load balancing 

and synchronous replication of data updates over the 

cluster. Database cluster size is however often limited 

due to more expensive hardware and licensing costs. 

We note that most existing (Java-based) clustering 

solutions have poor user transparency and suboptimal 

performance. Some of the common drawbacks can be 

summarized as follows: 

(1) Imposing burdens and restrictions on application 

designs: complex setup, application rework with ex-

tra APIs and restrictive design patterns (e.g. can’t 

share non-serializable objects) burden developers. 

(2) Breaking referential integrity: object clones made 

by Java serialization lose the original object identity 

when deserialized and may cause consistency prob-

lems among objects with cross-references. 

(3) Imposing costly communication: Java serialization 

significantly degrades performance, since it has to 

trace and clone many objects even for one field 

change on a shared object. 

(4) Lacking global signaling or coordination support: 

Without cluster-wide synchronization, subtle con-

sistency issues arise when some design patterns or 

event-based services (e.g. timers) are migrated from 

standalone platforms to clusters. 

(5) Lacking global resource sharing: Most clustering 

solutions lack global information for wisely manag-

ing the aggregated resources of the whole cluster. 



3. The JESSICA2 Distributed JVM 
 

JESSICA2 [8] is a DJVM designed for transparent 

parallel execution of multithreaded Java applications in 

a cluster environment. It provides the illusion of an SSI 

when connecting Java with clusters such that applica-

tions are clustered transparently with no burden of 

source code modification and bytecode preprocessing. 

It automatically handles thread distribution, data con-

sistency of the shared objects and I/O redirection so 

that the program sees only a single system, with the 

aggregated computing power, memory and I/O capacity 

of the entire cluster. 

JESSICA2 has bundled several salient features for 

SSI realization. First the class loader of JESSICA2 is 

extended with a remote class loading capability. When 

a worker JVM cannot find a class file locally, it can 

request the class bytecode on demand and fetch the 

initialized static data from the master JVM through 

network communication. This feature greatly simplifies 

cluster-wide deployment of Java applications. 

Second, JESSICA2 incorporates a cluster-aware JIT 

compiler to support lightweight Java thread migration 

across node boundaries to assist global thread schedul-

ing. Besides an initial thread placement for striking a 

raw load balance, dynamic load balancing is possible at 

runtime by migrating Java threads that are running into 

computation hotspots to the less loaded nodes. 

For seamless object views from migrated threads, 

JESSICA2 provides a heap-level service called Global 

Object Space (GOS) [10] to support location-transparent 

object access. Distributed threads share objects in the 

GOS as if they were in a single heap. The GOS imple-

ments packing functions to ship object data to the re-

questing nodes. Received objects are cached locally to 

improve data access locality. Cache coherence across 

reads/writes on shared objects is guaranteed by a home-

based release-consistent memory model. 

JESSICA2 offers a global I/O space via a transpar-

ent I/O redirection mechanism built in the native class 

library so that I/O requests (file and socket accesses) 

can be served, virtually, by any node without strict reli-

ance on shared file systems or virtual IP. To exploit I/O 

parallelism atop transparency, connectionless network 

I/O and read-only file accesses, if local replicas exist, 

are done locally without redirection. 

 

4. Running Apache Tomcat on JESSICA2 
 

Apache Tomcat is the official reference implemen-

tation of the Java Servlet and JavaServer Page (JSP) 

specifications. It is also the world’s most widely used 

open-source Java web application server [9]. 

Tomcat characterizes real-life Java applications that 

are usually more complex, data-centric, object-oriented 

and extensive in Java library usage than scientific ap-

plications. We now summarize Tomcat’s runtime prop-

erties and their potential impacts on the DJVM per-

formance: 

(1) I/O-intensive and highly-threaded: most web server 

workloads are I/O-bound and composed of short-

lived requests of small computation-communication 

ratios. Application servers usually configure a large 

thread count to hide I/O blocking latency. This im-

plies longer wait time if lock contention occurs. 

(2) High read/write ratios: reads typically dominate in 

web applications owing to user browsing behaviors. 

DJVM design can make use of this trait to optimize 

the cache coherence protocols.  

(3) High utilization of collections framework: Tomcat 

makes extensive use of Java collection classes like 

Hashtable and Vector to store information (e.g. web 

contexts, sessions, MIME types, status codes, etc). 

Thread-safe operations over these objects will cause 

excessive synchronizations, thus erecting a barrier 

to scalability in networked cluster environments. 

(4) Fine-grained object access with irregular reference 

locality: By Tomcat’s object-oriented design, object 

accesses are very frequent; object graphs are com-

plex with ramified connectivity. Frequent hash table 

accesses induce irregular reference locality, con-

trasting with consecutive memory access pattern in 

most scientific (SPMD) applications. This complex-

ity demands smart object prefetching techniques to 

avoid excessive fine-grained communications. 

Figure 2 depicts the execution of Tomcat on top of 

JESSICA2 in a 4-node cluster. The threads created at 

startup will migrate to the worker nodes to balance 

workload. The threads then load the classes of the Java 

library, Tomcat and the web applications deployed to it 

dynamically through JESSICA2’s cluster-aware class 

loader. The distributed threads continuously pull work-

loads from the master node by accepting and handling 

incoming connections via transparent I/O redirections. 

When a client request is accepted, the context man-

ager of Tomcat matches it to the target web context. If 

the request carries session state, such as a cookie, the 

standard manager will search for the allocated session 

object from the session’s hash table. The underlying 

GOS allows all Tomcat container objects allocated in 

the master JVM (e.g. web contexts, and sessions hash 

table) to be transparently shared among the distributed 

threads. With object state checks injected by the JIT 

compiler, access faults on a non-local object reference 

will cause the up-to-date object to be fetched from its 

home node. Cluster-wide consistency is then enforced 

on the home copy and all cache copies derived from it. 
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Figure 2. Execution of Tomcat on JESSICA2 DJVM 

 

JESSICA2 extends the existing Java Memory Model 

(JMM) to provide a consistent unified heap over a clus-

ter. We call the portion of heap storing usual unshared 

objects and home object copies the master heap area. 

Each thread is given a local memory work area, called 

the cache heap area, for keeping copies of remote ob-

jects. On entering an object monitor (corresponding to 

a lock), the thread invalidates its cache heap area so 

that later uses will fault in their up-to-date objects. On 

exiting the monitor, updated cache objects are flushed 

to their homes so the next acquiring thread can see the 

changes. In this way, the GOS creates a helpful cache 

effect that we call implicit cooperative caching among 

the threads. 

 This effect is illustrated by Figure 2. The thread T1 

faults in the object graph under S and caches a copy of 

S in its local heap. When T1 serves a new client ses-

sion, a new hash entry will be put into S. This corre-

sponds to building a local reference from the cached S 

to the new entry. Upon synchronization events, this 

update is propagated back to the home of S so that the 

thread T2 can see and access it by remote fetching from 

node 2. This global cache effect transparently shifts the 

duty of managing session data consistency across serv-

ers to the GOS layer and makes every node eligible to 

handle requests belonging to any client session. 

JESSICA2 strives to address the characteristics of 

Tomcat discussed above. We optimize the coherence 

protocol (based on property 2) by attaching per-object 

timestamp checks to lock-acquire requests, avoiding 

invalidation of cache copies that are still valid (particu-

larly those read-only) to minimize access faults and 

hence the lengths of critical sections. The GOS also 

supports various optimizations such as object pushing 

(a prefetching technique that can address property 4). 

More details on the GOS design can be found in [10]. 

5. Performance Analysis 
 

5.1. Experimental Setup 
 

Our experimental platform consists of three tiers: 

(1) web tier: a 2-way Xeon SMP server with 4GB 

RAM for running the master JVM of JESSICA2 with 

Apache Tomcat 3.2.4 started on it; (2) application tier: 

a cluster of eight x86-based PCs with 512 MB RAM 

acting as the DJVM worker nodes; (3) data tier: a clus-

ter of four x86-based PCs with 2GB RAM supporting 

MySQL Database Server 5.0.45. All nodes run under 

Fedora Core 1 (kernel 2.4.22). The three tiers are con-

nected up by Gigabit Ethernet, while nodes within the 

same tier are linked by Fast Ethernet networks. 

The initial and maximum heap sizes of each worker 

JVM are set to 128MB and 256MB respectively. Each 

database node has the same dataset replica. MySQL 

replication is enabled to synchronize the replicas at 

nearly real time. Jakarta JMeter 2.2 is used to synthe-

size varying workloads to stress the testing platform.  

Table 1 shows the application benchmark suite used 

to evaluate our clustering approach using the DJVM. 

They are designed to model real-life web applications 

of diverse workload characteristics. 
 

Table 1. Application benchmark suite 

Application 
Object 

Sharing 
Workload 

Nature 
I/O 

Bible-quote 
I/O-

intensive 
Text files 

Stock-quote 

Stock-quote/RSA 

No sharing 
Compute-
intensive 

SOAP-order 

Database 

TPC-W 

HTTP 
session 

I/O-
intensive Database / 

image files 

Bulletin-search 
Cached query 

results 
Memory-
intensive 

Database 
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Figure 3. Scalability and average response time obtain by Tomcat on JESSICA2 

 

(1) Bible-quote models applications such as text search 

engines, news archives and company catalogs. This 

servlet is I/O-intensive, serving document retrievals 

and search requests over a set of text files of books. 

(2) Stock-quote simulates stock market data providers. 

The application reads stock price data matching the 

input date range from the database and formats the 

query result into an XML response. 

(3) Stock-quote/RSA is secure version of Stock-quote 

involving compute-intensive operations of 1024-bit 

RSA encryption on the price data. 

(4) SOAP-order characterizes a B2B e-commerce web 

service. The application parses SOAP messages (by 

Apache SOAP 2.3.1) of securities order placements, 

checks the user accounts and order details and then 

puts the successful transactions into the database.  

(5) TPC-W is a standard transactional web benchmark 

specification. It models an online bookstore with 

session-based workloads and a mix of static and dy-

namic web interactions. We use the Java servlet im-

plementation from [11], but with pooled database 

connections cached in thread-local storage [12]. 

(6) Bulletin-search emulates a search engine in a bulle-

tin board or web forum system. We take the data 

dump from the RUBBoS benchmark [11] to popu-

late the database. The application maintains a hash-

based LRU-cache map of the results of the costly 

database searches, and is thus memory-intensive. 

The original Tomcat is ported to JESSICA2 with a 

few customizations: (1) We replace the original thread 

pool by a simpler implementation that spawns a static 

count of non-pooled threads based on the server con-

figuration file; (2) several shared object pools (e.g. 

static mapping tables for MIME types and status codes) 

are disintegrated into thread-local caches. The modifi-

cations are non-intrusive (only about 370 lines of codes 

including the new class, corresponding to 0.76% of the 

Tomcat source base). 

5.2. Scalability Study 
 

In this experiment, we measure the peak throughputs 

and average response times obtained by scaling worker 

nodes from two to eight. The speedup is calculated by 

dividing the baseline runtime of Tomcat on Kaffe JVM 

1.0.7 by the parallel runtime of Tomcat on JESSICA2. 

Figure 3 shows the results obtained for each bench-

mark. We see that most applications scale well, achiev-

ing efficiencies ranging from 66% (SOAP-order) to 

96.7% (Stock-quote). Bible-quote, Stock-quote and 

Stock-quote/RSA show almost linear speedup because 

they belong to the class of stateless applications, yield-

ing true parallelism without any GOS communications 

between the JVMs. In particular, Stock-quote and 

Stock-quote/RSA involve operations of coarser work 

granularity, such as string manipulations and RSA en-

cryptions, and are hence more able to attain nearly per-

fect scalability. Smaller speedups are obtained for 

stateful applications like SOAP-order and TPC-W, 

since they involve GOS overheads when synchronizing 

HTTP session and some other objects across the JVM 

heaps. Bulletin-search shows a nonlinear but steepen-

ing curve in speedup when the number of worker nodes 

scales out due to the implicit cooperative cache effect 

given by the GOS. 

Table 2 shows the cluster-wide thread count used in 

each application and the overall protocol messaging 

overheads of JESSICA2 in the 8-node configuration. 

The count of I/O redirections is proportional to the 

request throughput and generally does not impact scal-

ability. The higher number of GOS protocol messages 

explains the poorer scalability obtained by the applica-

tion as shown in Figure 3. Bulletin-search is an excep-

tion because its performance is more determined by its 

cooperative caching benefits which could supersede the 

cost of GOS communications. 
 



Table 2. JESSICA2 messaging overheads 

Application # Threads 

# GOS  

messages 

/ sec 

# I/O 

redirections 

/ sec 

Bible-quote 80 0 2006 

Stock-quote 80 0 1791 

Stock-quote/RSA 80 0 275 

SOAP-order 16 979 146 

TPC-W 40 351 1413 

Bulletin-search 16 483 297 

 

5.3. Comparison with Existing Solutions 
 

We compare the DJVM approach with a common 

clustering method for Tomcat using web load balancing 

plug-ins. We run an instance of Apache web server 

2.0.53 on the web tier and eight standalone Tomcat 

servers on the application tier of our platform. The web 

server is connected to the Tomcat servers via the 

mod_jk connector 1.2.18 with sticky-session enabled
1
. 

The cluster-wide thread count and heap size setting in 

this experiment are the same as in the DJVM approach. 
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Figure 4. Comparison of Tomcat on DJVM and 

existing Tomcat clustering 
 

Figure 4 shows the throughputs obtained by the two 

clustering approaches on eight nodes. We can see that 

both solutions achieve similar performance (within 

±8%) for those stateless web applications (Bible-quote, 

Stock-quote and Stock-quote/RSA). These applications 

exhibit embarrassing parallelism and do not gain much 

advantage from the GOS. Both solutions perform more 

or less the same because our transparent I/O redirection 

and mod_jk’s socket forwarding are functionally alike 

for dispatching requests and collecting responses. 

TPC-W performs about 11% better on JESSICA2 

than with mod_jk. One reason is that servers sharing 

sessions over the GOS are no longer restricted to han-

dle requests bounded to their sticky sessions while load 

hotspots can happen intermittently when using mod_jk. 

                                                           
1 In-memory session replication is not supported in the comparison. 

On the other hand, SOAP-order performs 26% poorer 

on JESSICA2 than with mod_jk. The main factor that 

pulls down the throughput is that the SOAP library has 

some code performing fairly intensive synchronizations 

when processing every request. Bulletin-search per-

forms 8.5 times better on the DJVM due to secondary 

application cache hits contributed by the GOS. 
 

5.4. Effect of Implicit Cooperative Caching 
 

Bulletin-search exemplifies the class of applications 

that can exploit the cache effect of GOS to virtualize a 

large heap for sharing application data. Table 3 shows 

the application cache hits obtained by Bulletin-search 

when the number of nodes scales from one to eight. 

With the GOS, the capacity setting of the cache map 

can be increased proportional to the node count beyond 

the single-node limit for different portions of the map 

that are stored under different heaps. A newly created 

cache entry will have its object reference written to the 

shared hash map. Threads can exploit indirect (global) 

cache hits in case the desired object is not in the local 

heap, easing the database bottleneck. 
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Figure 5. Bulletin-search’s cache hit analysis 

 

We can see from Figure 5 that the overall hit rate 

keeps rising along with the scaling of worker nodes of 

the DJVM and that most of the cache hits are caused by 

indirect hits when the single-node capacity has been 

exceeded. Here we define a term called relative cache 

size (RCS) to refer to the percentage of the aggregated 

cache size (combining all nodes) relative to the total 

size of the data set. In the 4-node case, when the RCS 

is below 50%, the achievable cache hit rate is only 

around 60%. Since the other 40% gets no improve-

ment, the speedup is merely a factor of two. But when 

the RCS exceeds a certain level (e.g. 90% in the 8-node 

case), most of the requests are fulfilled by the global 

cache instead of going through the database tier. This 

explains the non-uniform scalability curve of this ap-

plication in Figure 3. 



Table 3. Bulletin-search’s cache size setting and hit rates augmented by GOS 
No. of  
Nodes 

Cache Size 
(#Cache Entries) 

Relative 
Cache Size 

Total 
Hit Rate 

Indirect Hit  
Latency (ms) 

Cost Ratio of  
Miss : Indirect Hit 

Throughput 
Speedup 

1 512 12.5% 18.6% N/A N/A N/A 

2 931 22.7% 33.9% 9.07 40.79 1.26 

4 1862 45.5% 59.3% 8.18 45.23 2.02 

8 3724 90.9% 90.7% 11.74 31.52 7.96  
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Table 4. GOS overhead breakdown 
# Messages / Sec 

GOS Message Type 
SOAP-order TPC-W Bulletin-search 

Lock acquire 198 48 61 

Lock release 198 48 61 

Flush 217 70 92 

Static data fetch 18 10 0 

Object fault-in 197 99 160 

Array fault-in 79 50 105 
 

Table 5. Cluster-wide locking overheads 

Application 

#Local 

locks / 
sec 

#Remote 

locks / 
sec 

%Contended 

remote 
locks 

Local : 

remote 
lock ratio 

SOAP-order 232631 198 35% 1175:1 

TPC-W 240470 48 45% 5010:1 

Bulletin-search 27380 61 6.5% 449:1  
Figure 6. GOS percentage overhead 

5.5. GOS Overhead Breakdowns 
 

Table 4 shows the GOS overhead breakdowns in 

terms of messaging rates for the three stateful applica-

tions. Figure 6 supplements this with a percentage 

breakdown of message count and latency. Lock acquire 

and release messages are issued upon locking a remote 

object. Flush messages are sent at lock releases (there 

are slightly more flush messages than lock releases 

since updates may flush to more than one home). Other 

overheads are related to access faults. SOAP-order 

clearly has higher remote lock rate than other applica-

tions. On closer investigation, we found that one utility 

class of the SOAP library would induce, for each re-

quest, 5-6 remote locks on a hash table in the web con-

text and four remote locks on ServletContextFacade 

due to Tomcat’s facade design pattern. Such heavy 

remote locking explains the relatively poorer scalability 

of SOAP-order. 

Table 5 presents the local and remote locking rates 

for each application. We can see local locks are much 

more than remote. The reason is that Java-based serv-

ers perform thread-safe reads/writes on I/O stream ob-

jects, issuing enormous local locks. While local lock 

latency is very short (about 0.2us in our study), remote 

lock latency is however several thousands times longer 

in commodity clusters; remote locks are yet practically 

much fewer in most web applications. Table 5 also tells 

us that SOAP-order and TPC-W have about 35% to 

45% remote locks under cluster-wide contention, thus 

prolonging the wait time before locks are granted. This 

is why lock acquire has been the dominant part in the 

message latency for these two applications in Figure 6. 

6. Related Work 
 

Shasta [14] is a fine-grained software DSM system 

using binary code instrumentation to transparently give 

cluster-wide semantics to memory accesses. Oracle 7.3 

database server is ported on Shasta running on SMP 

clusters. Running TPC-B (OLTP) and TPC-D (decision 

support) on the system showed only a slight speedup of 

1.1 on three servers even with a low-latency Memory 

Channel Network. Their experience reveals severe re-

strictions of OS-level SSI solutions, compared to our 

JVM-level approach, since correctness of binary appli-

cations relies on the much stricter consistency model 

imposed by hardware. Being able to adopt a relaxed 

memory model as in our case is essential to server ap-

plications that may need frequent synchronization. 

One of the earliest DJVM designed to transparently 

run multithreaded server applications, such as Jigsaw, 

on a cluster is cJVM [1]. cJVM operates in interpreter-

mode and uses method shipping to realize a master-

proxy model enforcing sequential consistency on dis-

tributed shared objects. In contrast, JESSICA2 runs in 

JIT-compilation mode and conforms to release consis-

tency. In [15], cJVM is evaluated with pBOB (Portable 

Business Object Benchmark), a business benchmark 

inspired by TPC-C, on a 4-node cluster with non-

commodity Myrinet. They obtained an efficiency of 

around 80%. However such a high efficiency may not 

be achievable if their protocol runs with JIT enabled 

and commodity Ethernet as in our case. 

Terracotta [16] is a recent JVM-level clustering 

product. It uses bytecode instrumentation techniques 



similar to JavaSplit [2] except that it works within an 

aspect-oriented programming (AOP) framework and 

has to instrument product-specific classes. Users need 

to manually specify shared classes as distributed 

shared objects (DSOs) and their cluster-aware concur-

rency semantics. This configuration-driven approach is 

“translucent” (less transparent than our SSI-oriented 

approach) and liable to subtle semantic violations. Ter-

racotta relies on a central server to store all DSOs and 

to coordinate shared updates across JVMs, which will 

likely create hotspots as the cluster size increases. In 

contrast, our home-based coherence protocol is decen-

tralized and immune to such bottlenecks. 

 

7. Conclusion and Future Work 
 

We have presented a new transparent clustering ap-

proach using distributed JVMs (DJVMs) for web ap-

plication servers. DJVMs enhance the ease of applica-

tion clustering and global resource integration – both of 

which have been problems for existing web-domain 

clustering solutions. Our performance study of running 

Apache Tomcat on JESSICA2 demonstrates scalable 

speedups for a variety of web applications, particularly 

those session-based and cache-centric ones. Our over-

head analysis shows that scalability hinges on the num-

ber of remote locks (under contention) due to fine-

grained object sharing. 

We accordingly suggest some design guidelines for 

next-generation DJVMs. First, one should maintain 

high execution concurrency so that the helpful cache 

effect of global object sharing will not be offset by the 

cluster-wide locking overheads. We find that thread-

safe Java collection classes, being the usual containers 

for shared objects, are the major source of remote 

locks. In fact, more scalable containers have been re-

cently developed under the latest Java concurrent util-

ity package [13]. However, these concurrent data struc-

tures are not immediately portable to cluster environ-

ments, in terms of performance. For example, they 

make heavy use of volatile fields for lightweight syn-

chronization, but these are treated as locks and handled 

inefficiently by most DJVMs. Advanced coherence pro-

tocol designs such as concurrent-read-exclusive-write 

support for volatile fields will be vital for continued 

success in using the DJVM technology to scale the 

latest Java applications. 

The importance of optimizations that save or aggre-

gate fine-grained remote operations in DJVMs is next 

to concurrency. Some solutions like method shipping, 

thread migration, object home migration and prefetch-

ing have been proposed [1, 8, 10]. But these items of 

work focus on mechanisms, rather than how to best use 

these mechanisms for a balanced effect of data locality, 

message aggregation and load distribution. An adaptive 

hybrid use of these runtime techniques, guided by 

lightweight profiling, is a challenging research problem 

for future study. 
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