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Abstract 

 
 We present the design of a global object space in a 
distributed Java Virtual Machine that supports parallel 
execution of a multi-threaded Java program on a cluster 
of computers. The global object space virtualizes a single 
Java object heap across machine boundaries to facilitate 
transparent object accesses. Based on the object 
connectivity information that is available at runtime, the 
object reachable from threads at different nodes, named 
as distributed-shared object, are detected. With the 
detection of distributed-shared objects, we can alleviate 
overheads in maintaining the memory consistency within 
the global object space. Several runtime optimization 
methods have been incorporated in the global object 
space design, including an object home migration method 
that reallocates the home of a distributed-shared object, 
synchronized method migration that allows the remote 
execution of a synchronized method at the home node of 
its synchronized object, and object pushing that uses the 
object connectivity information to improve access locality. 
 
1. Introduction  
 
 A distributed Java Virtual Machine (JVM) supports 
parallel execution of a multi-threaded Java application on 
a distributed-memory platform like cluster without any 
modification on the Java program. Java threads created 
within the program can be transparently distributed 
among the cluster nodes to achieve a higher degree of 
execution parallelism and leverage cluster resources to 
solve large-scale problems.  

Due to the popularity of Java [3], distributed JVM has 
recently become an attractive research problem and 
several experimental prototypes have emerged. Java/DSM 
[18], cJVM [2], Hyperion [14], Jackal [17] and JESSICA 
[13], are some of the well-known examples. The 
distributed JVM presents a single system image (SSI) [8] 
to Java applications through the creation of a global 
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object space (GOS) that “virtualizes” a single Java object 
heap across multiple cluster nodes to facilit ate transparent 
object access in a distributed environment. For example, 
the JESSICA system [13] which uses a page-based DSM 
systems, JUMP [4], to build the GOS. This approach 
greatly alleviates the burden of the construction of GOS   
because all the memory consistency issues, such as object 
faulting, addressing, replication policy, and transmission 
mechanism, are all managed by the DSM’s cache 
coherence protocol. Such a design, however, suffered 
from a mismatch between object-based memory model of 
Java and the underlying page-based DSM 
implementation. For example, the false sharing problem 
occurs because of inconsistent sharing granularity 
between the variable-sized Java objects and the fix-sized 
memory pages. As thus, the performance of JESSICA was 
not satisfactory [5]. More eff icient solutions to support 
object sharing among distributed Java threads is 
demanded. 

In this paper, a new global object space support for 
distributed JVM is proposed. We define two types of Java 
objects: node-local object that is reachable from the 
threads that are at the same cluster node, and distributed-
shared object (DSO) that is reachable from at least two 
threads that are located at different cluster nodes.  

We argue that the separation of distributed-shared 
objects and node-local objects can alleviate overheads in 
maintaining the memory consistency within the global 
object space and achieve better performance of distributed 
JVM. Firstly, only distributed-shared objects suffer from 
heavy overheads in maintaining the memory consistency 
since they may have multiple duplicated copies on 
different nodes. Detection of DSOs could make 
consistency protocol be more lightweight. Secondly, in 
Java program, synchronization primitives are not only 
used to protect critical section but also to maintain 
memory consistency. Synchronization operations on a 
node-local object do not need to trigger the distributed 
operations to maintain consistency, because node-local 
objects are only reachable from some local threads. 
Detection of DSO makes consistency maintaining less 
frequently. Thirdly, it is not necessary to apply the 



distributed garbage collection operations on node-local 
objects since it is safe to garbage collect node-local 
objects locally.  

We proposed a lightweight solution for detecting the 
distributed-shared objects. Distributed-shared objects can 
be detected using an object connectivity graph derived 
from object reference information that is available at 
runtime. Our GOS design further leverages the 
identification of distributed-shared objects and the 
availabilit y of connectivity information for realizing the 
Java memory model in a distributed JVM. Such 
connectivity information was not exploited in most of the 
previous object-based or page-based DSM systems. 

Several areas of optimizations have been proposed in 
our GOS design: (1) the object home migration that 
reduces communication traff ic by migrating the home of a 
distributed-shared object to a node that need to access the 
object more frequently; (2) synchronized method 
migration that optimizes critical section execution by 
shipping a synchronized method to the home node of its 
synchronized object; (3) object pushing that uses 
connectivity information to prefetch objects for achieving 
better access locality. 

We have tested our design in our JESSICA distributed 
JVM. The preliminary results show that our approach is 
promising. With all the optimizations enabled, all four 
benchmark programs achieved an eff iciency of over 84% 
on four nodes, and all achieved an eff iciency of over 75% 
on eight nodes except one program. 

The next section discusses the detection of distributed-
shared objects in detail . Section 3 describes our home-
based multiple-writer cache coherence protocol that 
implements the Java memory model. Section 4 discusses 
various optimizations implemented in GOS. Performance 
results are reported in section 5. In section 6, several 
related works are discussed and compared with our GOS. 
Conclusions are given in Section 7. 
 
2. Distributed-shared Object 
 

In the JVM, each variable, including not only object 
field that resides in the heap but also thread-local variable 
that resides in the Java thread stacks, has a type, either a 
reference type or a primitive type, such as integer, char, or 
float. This type information is known at compile time and 
written into class files generated by the compiler. At 
runtime, the class loader builds up type information from 
class files. Thus, by looking up runtime type information, 
we can identify those variables that are of reference type.  

 
2.1 Connectivity Graph and Reachability 

 
If an object’s field contains a reference to another 

object, connectivity exists between these two objects. 
Instance objects created during runtime will strictly 

conform to the type information of the class. Therefore, a 
connectivity graph can be built to describe the referential 
relationship among all objects. The graph is dynamic 
since connectivity between objects may change from time 
to time through the reassignment of objects fields. 

Reachability describes the relationship between thread 
and its reachable objects based on the connectivity graph. 
A thread can reach a subset of objects in the connectivity 
graph, which include the root objects whose references 
reside at the thread stack, and all other objects reachable 
from the root objects via some paths in connectivity 
graph. Based on the reachabilit y, we can distinguish 
between thread-local objects that can only be reachable 
from one single thread, and thread-escaping objects that 
can be reachable from multiple threads. 

In the context of distributed JVM, Java threads and 
objects are distributed among different nodes. With the 
consideration of the relative location between the thread 
and its reachable objects in a cluster environment, we 
extend the concepts of thread-local and thread-escaping 
object and define node-local object and distributed-
shared object: (1) Node-local object is an object that is 
reachable from thread(s) located at the same cluster node. 
It is either a thread-local object or a thread-escaping 
object. (2) Distributed-shared object (DSO) is an object 
that is reachable from at least two threads located at 
different cluster nodes. 

 
2.2 Detection of DSO 

 
A mechanism to identify distributed-shared objects is 

essential in the GOS because the accesses on the DSO 
will i nitiate a series of thread synchronization and object 
consistency operations, which involve multiple cluster 
nodes’ collaboration. To minimize the detection 
overheads, a lightweight DSO detection mechanism is 
proposed. The detection of DSO in GOS is postponed to 
the time when a thread is to be migrated or a remote 
object request is initiated, because not all reachable 
objects are necessarily accessed during the whole li fetime 
of the execution.  

During the thread migration, we examine the thread 
context to be transmitted across node boundary. We also 
examine the object content sent to a remote node. The 
objective is to identify object references stored in them. 
The transmitted object reference implies the object is a 
DSO since it is reachable from the threads located at 
different nodes. If an object reference is identified, and 
the object has not been marked as a DSO, it is marked at 
this moment. On the first appearance of a received remote 
reference, an empty object of its exact class will be 
created and associated with it. The object’s access state 
will be set to invalid. When it is accessed later, its up-to-
date content will be faulted in. In this scheme, only those 



objects whose references appear on multiple nodes will be 
detected as DSOs.  

 
2.3 An Example 
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  (b) After thread T2 is distributed to Node 1     
                   
                   
                   
                   
                   
                   
                   
             
 
 
 

 
 
 

(c) Access on f by T2 triggers detection of i 
Figure 1. Detection of distributed-shared object 

 
Examining the case in Figure 1, a thread T1 prepares an 

object tree then passes the reference of object c to another 
thread T2 as shown in the reachability graph (Figure 1.a). 
When T2 is distributed to another cluster node, i.e. node 1,  
all the objects reachable from object c become DSOs. 
Object a, b, and d are not DSOs since they are thread-

local to T1. Instead of detecting all these objects as DSOs 
at one blow, we detect object c as a DSO and send object 
c to node 1. Because object e and f are directly connected 
with object a, we also detect object e and f as DSOs but 
do not send them to node 1 (Figure 1.b). On node 1, we 
create two objects whose type are exactly the same as the 
types of object e and f. Since the contents of object e and f 
are not available, we set their access state to invalid. Next 
time when object f is accessed by T2 on node 1 (Figure 
1.c), an object fault will occur. An object request message 
will be sent to node 0. This event will trigger the detection 
of object i as a DSO. The up-to-date content of object f is 
copied from node 0 to node 1. Details of how to maintain 
the coherence of objects located among multiple nodes 
are discussed in next section. If object e is not accessed by 
T2, object e is always invalid on Node 1 and object g and 
h will never be detected as DSOs.  
 
3. Cache Coherence Protocol  
 

Java memory model (JMM) mainly defines the 
memory consistency [1] semantics of multi-threaded Java 
applications. Any implementation of GOS support for 
distributed JVM must conform to JMM. We follow the 
JMM proposed in [15], which is very similar to lazy 
release consistency [10].  

In Java, there is a lock associated with each Java 
object. Java language provides synchronized block 
facility, either a synchronized method or a synchronized 
statement, for achieving exclusive access in a critical 
section. Enter and exit of a synchronized block 
correspond to acquiring and releasing the lock associated 
with the synchronized object. The JMM requires that 
when a thread acquires a lock, all object values modified 
by threads previously release the same lock, should be 
visible to the thread acquiring the lock.  

Our GOS implements the JMM with a home-based 
multiple-writer cache coherence protocol. The object is 
the unit of coherence. Each DSO is associated with a 
home node, which is the node that creates the object. 
Since DSOs can be detected at runtime, accesses on 
invalid copies of DSOs will fault in their contents on 
demand. Upon releasing a lock, all updated values to non-
home copies of DSOs should be forwarded to 
corresponding home nodes. Upon acquiring a lock, a flush 
action is required to set the access states of the non-home 
copies of DSOs invalid, which guarantees the up-to-date 
contents will be faulted in from the home nodes when 
they are accessed later. Before the flush, all updated 
values to non-home copies of DSOs should be forwarded 
to the corresponding home nodes. Therefore, in such a 
way, a thread is guaranteed to see the up-to-date content 
of DSOs after it acquires the proper lock. Since a lock can 
be regarded as a special field of an object, all the 
operations on a lock are also executed at the 
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corresponding home node. Thus the home node of the 
object being locked acts as the lock manager. 

The concurrent writes to DSO are permitted by using 
twin and diff techniques [11]. On the first write to a non-
home copy of DSO, a twin of object will be created, 
which is the exact copy of the object. On lock acquiring 
and releasing, the diff is created by comparing twin with 
current object content word by word and sent to the home 
node. 

In addition, we can impose some special coherence 
protocols on some types of objects. For example, since 
String objects are read-only, the cached copy of a 
distributed shared String object can be simply treated as a 
node-local object. Some objects are considered as node-
dependent resources, such as file etc. When these node-
dependent objects are detected as DSOs, object 
replication should be prohibited. Instead, the accesses to 
them should be transparently redirected to their home 
nodes. This is an important issue to guarantee complete 
single system image to Java applications.  
 
4. Optimizations 
 
 In this section, we study three optimization techniques 
coupled with the distributed-shared objects. The first two 
techniques, object home migration and synchronized 
method migration, are the refinements to our memory 
coherence protocol that implements JMM. The third one, 
object pushing, makes use of object connectivity 
information to improve access locality and achieve the 
effect of communication aggregation.  
 
4.1 Object Home Migration 
  
 In our home-based protocol, a Java thread can access a 
DSO with less overhead if the thread is located at the 
home node of the DSO.  Thus, it will be more eff icient if 
we can set the home of a DSO according to thread’s 
runtime object access pattern. In GOS, a mechanism is 
applied to determine the home of a DSO at runtime. 
Subsequent object home migration is allowed to adapt to 
thread’s object access pattern.  
  We take a conservative solution that only those objects 
written from a single remote node will be applied the 
home migration. In other words, we only apply this 
optimization to objects exhibiting single writer access 
pattern. This scheme was adopted because migrating 
object home may have negative impacts on performance. 
For example, to notify a thread that doesn’ t know the 
object home has already been migrated, an additional 
redirection message should be sent.  

Under our coherence protocol, non-home object writes 
are reflected to home node on synchronization points. On 
home node, object request can be considered as a remote 
read and the diff received on synchronization point as 

remote write. Object accesses on the home node are also 
recorded. 

To minimize the overhead in detecting single writer 
pattern at runtime, we record only the consecutive writes 
on an object, which are from the same remote node. Table 
1 shows the events and the corresponding actions on the 
object’s current home node when object home migration 
is enabled. In the table, C denotes the count of 
consecutive writes from a specific remote node N. The 
counter C will be reset to 1 if a different remote node 
issues an object write. 

The number of consecutive writes roughly records the 
number of synchronization iterations during which the 
object is only updated by that node. We follow a heuristic 
that an object presents single writer pattern if the count of 
consecutive writes exceeds a predefined threshold. If 
single writer pattern is detected, the object home is 
migrated to the writing node. 
 

Table 1. Events and actions in object home migration 
Event Action 
Local read No action 
Local write C = 0 
Remote read from a 
different node from N No action 

Remote write from a 
different node from N 

C = 1; N = the writing 
node 

Remote read from N  If C > threshold, migrate 
home to N 

Remote write from N C++ 

 
4.2 Synchronized Method Migration 
  
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Synchronized method migration example 
 

Java’s synchronization primitives (e.g., synchronized 
block, wait and notify methods of Object class) are 
originally designed for thread synchronization in a shared 
memory environment. The synchronization constructs 
built from them may be ineff icient in the distributed JVM 
that is implemented in a distributed memory architecture 
like cluster.  

Considering the Counter class source code in figure 2, 
we suppose the instance object is a DSO and its home is 
not the node that invokes inc(). Upon entering and exiting 

1 class Counter { 
2  private int i; // internal counter 
3   
4  public Counter() { 
5   i = 0;   
6  } 
7   
8  public synchronized void inc() {   
9   i++; 
10  }  
11 }   



the synchronized inc() method, the invoking node will 
acquire and release the lock of the instance object. In line 
9, the object will be faulted in. In this case, we observe 3 
message roundtrips.  

It is a common behavior that synchronized object’s 
fields will be accessed in the synchronized method. Thus, 
all the synchronization requests or object requests will be 
sent to the home node of the DSO. This will l ead to 
multiple short messages floating between the nodes 
involving in this synchronization operation.  
 Migrating synchronized method of DSO to its home 
node for execution will effectively reduce the number of 
messages and reduce consistency maintaining overhead 
incurred in synchronization operations.   
 
4.3 Object Pushing 
 
 In Java program execution, after an object is accessed, 
its reachable objects in connectivity graph are very likely 
to be accessed afterward. Since object connectivity 
information is available at runtime, it is possible to 
prefetch multiple related objects in connectivity graph to 
improve this kind of access locality.  

We use object pushing to improve the prefetching 
accuracy. While requesting a DSO, the home node will 
push the requested object together with multiple objects 
reachable from it to the requesting node. This mechanism 
provides accurate prefetching since the home node has the 
up-to-date copies of the objects and the connectivity 
information maintained in the home node is always valid.  

This solution is better than the pull -based one, which 
relies on the requesting node to fault in the requested 
objects. In this scenario, the faulting node issues explicit 
instructions to specify which objects to be pulled. A fatal 
drawback of this solution is that the connectivity 
information contained in the invalid object may be 
obsolete. Therefore, the prefetching accuracy is not 
guaranteed. Some unneeded objects, even garbage 
objects, may be prefetched. This will result in the waste of 
communication bandwidth. 

In our implementation, we set an optimal message 
length, which is the preferred aggregation size of objects 
to be carried to the requesting node. Reachable objects 
rooted from the requested object will be selected to copy 
to the message buffer until the current message length is 
larger than the optimal message length. Some selection 
mechanism, either depth-first or bread-first algorithm, can 
be applied.   

To reduce negative impact of pushing unneeded 
objects, we will not push large objects. For example, the 
arrays of reference type, e.g., multi -dimension arrays, are 
usually shared among multiple threads. Object pushing is 
not performed on the request of an array of reference type.  

Overall , the object pushing improves the access 
locality since objects to be accessed in the future have 

been moved to the executing thread’s local memory. 
Object pushing can also improve performance by 
achieving aggregation effect on communication because it 
can effectively reduce the number of object requests 
during the execution cycles. 
 
5. Performance Evaluation 
 
 In this section, we study the performance of GOS. The 
GOS is embedded in our JESSICA distributed JVM for 
supporting object sharing in a cluster environment. All the 
tests are performed on a cluster of 300MHz Pentium II 
PCs, running Linux 2.2.14, and connected by a fast 
Ethernet. The JESSICA is executed under the interpreter 
mode. In our tests, when the Java applications are started, 
Java threads are automatically distributed among cluster 
nodes to achieve maximal parallelism. 
 
5.1 Application Suite 
 
 Our application suite consists of four multi -threaded 
Java programs: All -pair Shortest Path (ASP), Successive 
Over-Relaxation (SOR), Traveling Salesman Problem 
(TSP), and Nbody. 
 ASP calculates the shortest path between any pair of 
nodes in a graph using a parallel version of Floyd’s 
algorithm. It requires n iterations to solve an n-nodes 
problem. At iteration k, all threads need the value of the 
kth row of the distance matrix. There is a barrier at the 
end of each iteration. The workload is distributed equally 
among worker threads in row wise. 
 SOR does red-black successive over-relaxation on a 2-
D matrix for a number of iterations. There are two barriers 
in each iteration. The workload is distributed equally 
among worker threads in row wise.  

Nbody simulates the motion of particles due to 
gravitational forces over a number of simulation steps. 
The program follows the algorithm of Barnes & Hut. 
Each worker thread is computing the motion simulation of 
a part of particles. A quadtree is constructed at the 
beginning of each step, which will be accessed by all 
worker thread.   

TSP finds the shortest route among a number of cities 
using parallel branch-and-bound algorithm, which prunes 
large parts of the search space by ignoring partial routes 
already longer than current best solution. We divide the 
whole search trees to many small ones to form a job 
queue. Every worker thread will get jobs from this queue 
until the queue is empty. 
 
5.2 Application Performance 
 
 Figure 3 shows the eff iciency for each application after 
all optimizations are enabled. Sequential performance 



data is measured on the original Kaffe JVM when 
calculating eff iciency.   

All 4 benchmark programs have achieved eff iciency 
larger than 84% on 4 nodes and all have achieved 
eff iciency larger than 75% on 8 nodes except Nbody. ASP 
even achieves an eff iciency of 98% on 4 nodes. In ASP, 
while the cluster size is scaled to 8 nodes, the global 
synchronization among all threads becomes a primary 
factor to pull down the eff iciency. SOR’s situation is 
similar. In Nbody, there is a construction of quadtree in 
each simulation step, which cannot be parallelized. When 
the main thread performs construction of quadtree, all 
other threads are waiting. The eff iciency decreases while 
the cluster size increases. TSP is a computation intensive 
program comparing with other benchmark programs. 
Load imbalance among worker threads is a major factor 
affecting eff iciency.  
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Figure 3. Efficiency 

 
Table 2 shows their communication effort for some 

given parameters on a 4-node cluster after all 
optimizations are enabled. Msg column shows the number 
of messages and the Data column shows the network data 
volume involved. All the four programs need to access the 
object heap intensively and involve considerable 
communication effort except TSP. 

 
Table 2. Communication effort 

 Parameters Msg (K) Data (MB) 

ASP A graph of 512 vertices 21.5 24.98 
SOR 1024 by 1024 matrix 

for 30 iterations 
22.9 42.01 

Nbody 400 particles for 10 
simulation steps 

10.6 4.74 

TSP 12 cities 2.9 0.24 
 
Figure 4 shows the normalized execution time break 

down against number of processors for the four 
benchmark programs. Obj denotes the time to request an 
up-to-date copy of a faulting object. Syn denotes the time 

spent on synchronization operations, such as lock, unlock, 
and wait. Comp denotes the computation time.  
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Figure 4. Percentage of execution time break down 

against no. of processors 
 
Since we insert software checks before object accesses 

to test object access states, an additional test was 
conducted to evaluate the overhead of the access checks 
in our GOS. Comparing the sequential performance on 
JESSICA with that on Kaffe, the cost of checks can be 
derived. Since our implementation is based on interpreter 
model, check cost doesn’ t contribute significant overhead. 
In all four benchmarks, check cost is less than 3.5% 
against execution time on Kaffe. 

  
5.3 Effect of Optimizations 
 

In this subsection, the effect of individual 
optimizations is studied. Figure 5 shows the effects of 
optimizations on execution time, message number, and 
communication data volume when running the benchmark 
suite on a 4-node cluster. In the below figures, NO means 
no optimization, HM means object home migration, SMM 
means synchronized method migration, Push means 
object pushing. In this test, TSP solves a problem of 8 
cities. 

As seen from the figures, object home migration 
greatly improves the performance of ASP and SOR. This 
is because some DSOs are only written by one thread in 
some duration of execution in SOR and ASP. The use of 
synchronized method migration decreases the number of 
messages by 29.96% for ASP and 4.58% for SOR. 
Synchronized method migration also results in less 
synchronization operations. As a result, the execution 
time decreases by 8.82% for ASP and 1.84% for SOR.  
Object pushing aggregates small object messages into a 
larger message. Nbody is a typical application involved 
with lots of small -sized DSOs. The number of messages is 
remarkably reduced by 79.83% with object pushing 
enabled. Since object pushing may push unneeded objects 
as well , communication data volume increases by 5.23%. 
Nevertheless, Nbody’s execution time decreases by  
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(b) Message number 
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(c) Communication data volume 

Figure 5. The effects of optimizations   
 
37.81% as a final result. Object pushing also reduces 
TSP’s message number by 27% and incurs a littl e more 
communication data. As a result, TSP’s execution time 
decreases by 14%. Compared with Nbody and TSP, most 
DSOs used in ASP and SOR are large 2-dimension arrays. 
Object pushing has littl e effect on them. Synchronized 
method migration increases Nbody’s execution time by 
within 2%. Object pushing increases ASP’s execution 

time by 1%. Overall , the negative impact incurred by 
these optimizations in our benchmark programs is very 
limited. 
 
6. Related Work 
  
 As a distributed JVM, cJVM [2] uses a proxy object 
model to implement global object space. Method 
invocation and fields accessing on the proxy object are 
shipped to its master object in general. Several optimizing 
techniques were applied to reduce such shipping. This 
approach is more suitable for the sequential consistency 
memory model. However, under the proposed Java 
memory model, i.e., the lazy release consistency, this 
approach may not be very effective since a more 
aggressive object caching mechanism, like our global 
object space, seems more appropriate. In addition, the 
load distribution in cJVM is determined by object 
distribution in method shipping approach. Load balance 
might be diff icult to achieve without programmer’s effort. 
 JESSICA [13] leveraged a page-based DSM to build 
GOS. All objects are allocated into distributed shared 
memory. Such an approach suffers from false sharing 
problem that is inherited from the page-based DSM. Since 
page-based DSM isn’ t aware of Java runtime connectivity 
information, it is diff icult to detect distributed-shared 
objects and do further optimizations. The detail analysis 
of various factors contributing to the eff iciency in using 
page-based DSM for supporting distributed object sharing 
can be found in [5]. Java/DSM [18] is another similar 
example that builds global object space on top of page-
based DSM. 
 Some other approaches reply on compiler techniques 
to transparently run multi -threaded Java applications on a 
cluster. They directly compile multi -threaded Java 
program to native code that is able to execute in a 
distributed platform. In these systems, JVM is not 
involved in the execution and a software DSM is 
employed to support global object accesses. Hyperion 
[14] compiles Java bytecode to C source code, then 
compiles to native code further. Jackal [17] compiles Java 
source code to native code. In both cases, most efforts to 
improve performance are done at compile time. Jackal’s 
compiler enables two optimizations: object-graph 
aggregation and automatic computation migration, which 
are similar to our object pushing and synchronized 
method migration. Object-graph aggregation uses heap 
approximation algorithm [6] to identify those related 
objects. However, heap approximation algorithm cannot 
distinguish between different runtime objects that are 
created at the same allocation site. Hence this approach is 
effective only at the situation when the related objects are 
from different allocation sites. Comparatively, our object 
pushing is a runtime approach and has no such drawback. 



Both Jackal and Hyperion do not intend to detect 
distributed-shared objects. 
 In the DSM field, DOSA [7] implements a fine-grained 
DSM support for typed language such as Java. Its aim is 
to keep sharing granularity at object level but still rely on 
the virtual memory support to do the access state check as 
in the page-based DSM. It introduces a level of 
indirection on object accessing. Access to objects will go 
through a handle table to locate object’s actual address. 
The indirection adds overhead on object accesses and 
impairs cache locality.  
 
7. Conclusions 
 

This paper presents a global object space support for 
distributed JVM. Distributed-shared objects are detected 
with the help of runtime object connectivity information 
to improve the performance. Only distributed-shared 
objects are taken care of to maintain consistency in global 
object space. Several optimizations can be incorporated 
into the global object space. Among them, home 
migration and object pushing can effectively improve the 
performance of applications presenting certain access 
behaviors. Synchronized method migration can optimize 
the execution of Java synchronized method in the context 
of distributed JVM. After all optimizations are enabled, 
considerable performance is obtainable. 

In our future work, we will i ncorporate the detection of 
distributed-shared object with our distributed garbage 
collection algorithm in global object space. To further 
improve the performance of global object space, an 
adaptive cache coherence protocol will be implemented, 
which will automatically adjust to the various access 
patterns of distributed-shared objects. As object access 
pattern may change dynamically during the execution 
li fetime, we believe a runtime solution is more effective 
to adapt to the access patterns. 
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