

Efficient Global Object Space Support for Distributed JVM on Cluster*

Weijian Fang, Cho-Li Wang and Francis C.M. Lau

Department of Computer Science and Information Systems
The University of Hong Kong

{wjfang+clwang+fcmlau}@csis.hku.hk

Abstract

 We present the design of a global object space in a
distributed Java Virtual Machine that supports parallel
execution of a multi-threaded Java program on a cluster
of computers. The global object space virtualizes a single
Java object heap across machine boundaries to facilitate
transparent object accesses. Based on the object
connectivity information that is available at runtime, the
object reachable from threads at different nodes, named
as distributed-shared object, are detected. With the
detection of distributed-shared objects, we can alleviate
overheads in maintaining the memory consistency within
the global object space. Several runtime optimization
methods have been incorporated in the global object
space design, including an object home migration method
that reallocates the home of a distributed-shared object,
synchronized method migration that allows the remote
execution of a synchronized method at the home node of
its synchronized object, and object pushing that uses the
object connectivity information to improve access locality.

1. Introduction

 A distributed Java Virtual Machine (JVM) supports
parallel execution of a multi-threaded Java application on
a distributed-memory platform like cluster without any
modification on the Java program. Java threads created
within the program can be transparently distributed
among the cluster nodes to achieve a higher degree of
execution parallelism and leverage cluster resources to
solve large-scale problems.

Due to the popularity of Java [3], distributed JVM has
recently become an attractive research problem and
several experimental prototypes have emerged. Java/DSM
[18], cJVM [2], Hyperion [14], Jackal [17] and JESSICA
[13], are some of the well-known examples. The
distributed JVM presents a single system image (SSI) [8]
to Java applications through the creation of a global

 *This research is supported by Hong Kong RGC grant HKU-7030/01E.

object space (GOS) that “virtualizes” a single Java object
heap across multiple cluster nodes to facilit ate transparent
object access in a distributed environment. For example,
the JESSICA system [13] which uses a page-based DSM
systems, JUMP [4], to build the GOS. This approach
greatly alleviates the burden of the construction of GOS
because all the memory consistency issues, such as object
faulting, addressing, replication policy, and transmission
mechanism, are all managed by the DSM’s cache
coherence protocol. Such a design, however, suffered
from a mismatch between object-based memory model of
Java and the underlying page-based DSM
implementation. For example, the false sharing problem
occurs because of inconsistent sharing granularity
between the variable-sized Java objects and the fix-sized
memory pages. As thus, the performance of JESSICA was
not satisfactory [5]. More eff icient solutions to support
object sharing among distributed Java threads is
demanded.

In this paper, a new global object space support for
distributed JVM is proposed. We define two types of Java
objects: node-local object that is reachable from the
threads that are at the same cluster node, and distributed-
shared object (DSO) that is reachable from at least two
threads that are located at different cluster nodes.

We argue that the separation of distributed-shared
objects and node-local objects can alleviate overheads in
maintaining the memory consistency within the global
object space and achieve better performance of distributed
JVM. Firstly, only distributed-shared objects suffer from
heavy overheads in maintaining the memory consistency
since they may have multiple duplicated copies on
different nodes. Detection of DSOs could make
consistency protocol be more lightweight. Secondly, in
Java program, synchronization primitives are not only
used to protect critical section but also to maintain
memory consistency. Synchronization operations on a
node-local object do not need to trigger the distributed
operations to maintain consistency, because node-local
objects are only reachable from some local threads.
Detection of DSO makes consistency maintaining less
frequently. Thirdly, it is not necessary to apply the

distributed garbage collection operations on node-local
objects since it is safe to garbage collect node-local
objects locally.

We proposed a lightweight solution for detecting the
distributed-shared objects. Distributed-shared objects can
be detected using an object connectivity graph derived
from object reference information that is available at
runtime. Our GOS design further leverages the
identification of distributed-shared objects and the
availabilit y of connectivity information for realizing the
Java memory model in a distributed JVM. Such
connectivity information was not exploited in most of the
previous object-based or page-based DSM systems.

Several areas of optimizations have been proposed in
our GOS design: (1) the object home migration that
reduces communication traff ic by migrating the home of a
distributed-shared object to a node that need to access the
object more frequently; (2) synchronized method
migration that optimizes critical section execution by
shipping a synchronized method to the home node of its
synchronized object; (3) object pushing that uses
connectivity information to prefetch objects for achieving
better access locality.

We have tested our design in our JESSICA distributed
JVM. The preliminary results show that our approach is
promising. With all the optimizations enabled, all four
benchmark programs achieved an eff iciency of over 84%
on four nodes, and all achieved an eff iciency of over 75%
on eight nodes except one program.

The next section discusses the detection of distributed-
shared objects in detail . Section 3 describes our home-
based multiple-writer cache coherence protocol that
implements the Java memory model. Section 4 discusses
various optimizations implemented in GOS. Performance
results are reported in section 5. In section 6, several
related works are discussed and compared with our GOS.
Conclusions are given in Section 7.

2. Distributed-shared Object

In the JVM, each variable, including not only object
field that resides in the heap but also thread-local variable
that resides in the Java thread stacks, has a type, either a
reference type or a primitive type, such as integer, char, or
float. This type information is known at compile time and
written into class files generated by the compiler. At
runtime, the class loader builds up type information from
class files. Thus, by looking up runtime type information,
we can identify those variables that are of reference type.

2.1 Connectivity Graph and Reachability

If an object’s field contains a reference to another

object, connectivity exists between these two objects.
Instance objects created during runtime will strictly

conform to the type information of the class. Therefore, a
connectivity graph can be built to describe the referential
relationship among all objects. The graph is dynamic
since connectivity between objects may change from time
to time through the reassignment of objects fields.

Reachability describes the relationship between thread
and its reachable objects based on the connectivity graph.
A thread can reach a subset of objects in the connectivity
graph, which include the root objects whose references
reside at the thread stack, and all other objects reachable
from the root objects via some paths in connectivity
graph. Based on the reachabilit y, we can distinguish
between thread-local objects that can only be reachable
from one single thread, and thread-escaping objects that
can be reachable from multiple threads.

In the context of distributed JVM, Java threads and
objects are distributed among different nodes. With the
consideration of the relative location between the thread
and its reachable objects in a cluster environment, we
extend the concepts of thread-local and thread-escaping
object and define node-local object and distributed-
shared object: (1) Node-local object is an object that is
reachable from thread(s) located at the same cluster node.
It is either a thread-local object or a thread-escaping
object. (2) Distributed-shared object (DSO) is an object
that is reachable from at least two threads located at
different cluster nodes.

2.2 Detection of DSO

A mechanism to identify distributed-shared objects is

essential in the GOS because the accesses on the DSO
will i nitiate a series of thread synchronization and object
consistency operations, which involve multiple cluster
nodes’ collaboration. To minimize the detection
overheads, a lightweight DSO detection mechanism is
proposed. The detection of DSO in GOS is postponed to
the time when a thread is to be migrated or a remote
object request is initiated, because not all reachable
objects are necessarily accessed during the whole li fetime
of the execution.

During the thread migration, we examine the thread
context to be transmitted across node boundary. We also
examine the object content sent to a remote node. The
objective is to identify object references stored in them.
The transmitted object reference implies the object is a
DSO since it is reachable from the threads located at
different nodes. If an object reference is identified, and
the object has not been marked as a DSO, it is marked at
this moment. On the first appearance of a received remote
reference, an empty object of its exact class will be
created and associated with it. The object’s access state
will be set to invalid. When it is accessed later, its up-to-
date content will be faulted in. In this scheme, only those

objects whose references appear on multiple nodes will be
detected as DSOs.

2.3 An Example

(a) Reachability graph

 (b) After thread T2 is distributed to Node 1

(c) Access on f by T2 triggers detection of i
Figure 1. Detection of distributed-shared object

Examining the case in Figure 1, a thread T1 prepares an

object tree then passes the reference of object c to another
thread T2 as shown in the reachability graph (Figure 1.a).
When T2 is distributed to another cluster node, i.e. node 1,
all the objects reachable from object c become DSOs.
Object a, b, and d are not DSOs since they are thread-

local to T1. Instead of detecting all these objects as DSOs
at one blow, we detect object c as a DSO and send object
c to node 1. Because object e and f are directly connected
with object a, we also detect object e and f as DSOs but
do not send them to node 1 (Figure 1.b). On node 1, we
create two objects whose type are exactly the same as the
types of object e and f. Since the contents of object e and f
are not available, we set their access state to invalid. Next
time when object f is accessed by T2 on node 1 (Figure
1.c), an object fault will occur. An object request message
will be sent to node 0. This event will trigger the detection
of object i as a DSO. The up-to-date content of object f is
copied from node 0 to node 1. Details of how to maintain
the coherence of objects located among multiple nodes
are discussed in next section. If object e is not accessed by
T2, object e is always invalid on Node 1 and object g and
h will never be detected as DSOs.

3. Cache Coherence Protocol

Java memory model (JMM) mainly defines the
memory consistency [1] semantics of multi-threaded Java
applications. Any implementation of GOS support for
distributed JVM must conform to JMM. We follow the
JMM proposed in [15], which is very similar to lazy
release consistency [10].

In Java, there is a lock associated with each Java
object. Java language provides synchronized block
facility, either a synchronized method or a synchronized
statement, for achieving exclusive access in a critical
section. Enter and exit of a synchronized block
correspond to acquiring and releasing the lock associated
with the synchronized object. The JMM requires that
when a thread acquires a lock, all object values modified
by threads previously release the same lock, should be
visible to the thread acquiring the lock.

Our GOS implements the JMM with a home-based
multiple-writer cache coherence protocol. The object is
the unit of coherence. Each DSO is associated with a
home node, which is the node that creates the object.
Since DSOs can be detected at runtime, accesses on
invalid copies of DSOs will fault in their contents on
demand. Upon releasing a lock, all updated values to non-
home copies of DSOs should be forwarded to
corresponding home nodes. Upon acquiring a lock, a flush
action is required to set the access states of the non-home
copies of DSOs invalid, which guarantees the up-to-date
contents will be faulted in from the home nodes when
they are accessed later. Before the flush, all updated
values to non-home copies of DSOs should be forwarded
to the corresponding home nodes. Therefore, in such a
way, a thread is guaranteed to see the up-to-date content
of DSOs after it acquires the proper lock. Since a lock can
be regarded as a special field of an object, all the
operations on a lock are also executed at the

T2

Node 0 Node 1

T1 T2

Cluster network

Node 0 Node 1

Java thread
stack frame

Java object

Connectivity
between objects

Object reference
in thread stack

Detected
DSO

Invalid
DSO

c b

a

f e d

h g

T1

c b

a

f d

T2

c

f

T1

c b

a

f d

c

f

i

e

h g i

e

e

h g i

e

i

corresponding home node. Thus the home node of the
object being locked acts as the lock manager.

The concurrent writes to DSO are permitted by using
twin and diff techniques [11]. On the first write to a non-
home copy of DSO, a twin of object will be created,
which is the exact copy of the object. On lock acquiring
and releasing, the diff is created by comparing twin with
current object content word by word and sent to the home
node.

In addition, we can impose some special coherence
protocols on some types of objects. For example, since
String objects are read-only, the cached copy of a
distributed shared String object can be simply treated as a
node-local object. Some objects are considered as node-
dependent resources, such as file etc. When these node-
dependent objects are detected as DSOs, object
replication should be prohibited. Instead, the accesses to
them should be transparently redirected to their home
nodes. This is an important issue to guarantee complete
single system image to Java applications.

4. Optimizations

 In this section, we study three optimization techniques
coupled with the distributed-shared objects. The first two
techniques, object home migration and synchronized
method migration, are the refinements to our memory
coherence protocol that implements JMM. The third one,
object pushing, makes use of object connectivity
information to improve access locality and achieve the
effect of communication aggregation.

4.1 Object Home Migration

 In our home-based protocol, a Java thread can access a
DSO with less overhead if the thread is located at the
home node of the DSO. Thus, it will be more eff icient if
we can set the home of a DSO according to thread’s
runtime object access pattern. In GOS, a mechanism is
applied to determine the home of a DSO at runtime.
Subsequent object home migration is allowed to adapt to
thread’s object access pattern.
 We take a conservative solution that only those objects
written from a single remote node will be applied the
home migration. In other words, we only apply this
optimization to objects exhibiting single writer access
pattern. This scheme was adopted because migrating
object home may have negative impacts on performance.
For example, to notify a thread that doesn’ t know the
object home has already been migrated, an additional
redirection message should be sent.

Under our coherence protocol, non-home object writes
are reflected to home node on synchronization points. On
home node, object request can be considered as a remote
read and the diff received on synchronization point as

remote write. Object accesses on the home node are also
recorded.

To minimize the overhead in detecting single writer
pattern at runtime, we record only the consecutive writes
on an object, which are from the same remote node. Table
1 shows the events and the corresponding actions on the
object’s current home node when object home migration
is enabled. In the table, C denotes the count of
consecutive writes from a specific remote node N. The
counter C will be reset to 1 if a different remote node
issues an object write.

The number of consecutive writes roughly records the
number of synchronization iterations during which the
object is only updated by that node. We follow a heuristic
that an object presents single writer pattern if the count of
consecutive writes exceeds a predefined threshold. If
single writer pattern is detected, the object home is
migrated to the writing node.

Table 1. Events and actions in object home migration
Event Action
Local read No action
Local write C = 0
Remote read from a
different node from N No action

Remote write from a
different node from N

C = 1; N = the writing
node

Remote read from N If C > threshold, migrate
home to N

Remote write from N C++

4.2 Synchronized Method Migration

Figure 2. Synchronized method migration example

Java’s synchronization primitives (e.g., synchronized
block, wait and notify methods of Object class) are
originally designed for thread synchronization in a shared
memory environment. The synchronization constructs
built from them may be ineff icient in the distributed JVM
that is implemented in a distributed memory architecture
like cluster.

Considering the Counter class source code in figure 2,
we suppose the instance object is a DSO and its home is
not the node that invokes inc(). Upon entering and exiting

1 class Counter {
2 private int i; // internal counter
3
4 public Counter() {
5 i = 0;
6 }
7
8 public synchronized void inc() {
9 i++;
10 }
11 }

the synchronized inc() method, the invoking node will
acquire and release the lock of the instance object. In line
9, the object will be faulted in. In this case, we observe 3
message roundtrips.

It is a common behavior that synchronized object’s
fields will be accessed in the synchronized method. Thus,
all the synchronization requests or object requests will be
sent to the home node of the DSO. This will l ead to
multiple short messages floating between the nodes
involving in this synchronization operation.
 Migrating synchronized method of DSO to its home
node for execution will effectively reduce the number of
messages and reduce consistency maintaining overhead
incurred in synchronization operations.

4.3 Object Pushing

 In Java program execution, after an object is accessed,
its reachable objects in connectivity graph are very likely
to be accessed afterward. Since object connectivity
information is available at runtime, it is possible to
prefetch multiple related objects in connectivity graph to
improve this kind of access locality.

We use object pushing to improve the prefetching
accuracy. While requesting a DSO, the home node will
push the requested object together with multiple objects
reachable from it to the requesting node. This mechanism
provides accurate prefetching since the home node has the
up-to-date copies of the objects and the connectivity
information maintained in the home node is always valid.

This solution is better than the pull -based one, which
relies on the requesting node to fault in the requested
objects. In this scenario, the faulting node issues explicit
instructions to specify which objects to be pulled. A fatal
drawback of this solution is that the connectivity
information contained in the invalid object may be
obsolete. Therefore, the prefetching accuracy is not
guaranteed. Some unneeded objects, even garbage
objects, may be prefetched. This will result in the waste of
communication bandwidth.

In our implementation, we set an optimal message
length, which is the preferred aggregation size of objects
to be carried to the requesting node. Reachable objects
rooted from the requested object will be selected to copy
to the message buffer until the current message length is
larger than the optimal message length. Some selection
mechanism, either depth-first or bread-first algorithm, can
be applied.

To reduce negative impact of pushing unneeded
objects, we will not push large objects. For example, the
arrays of reference type, e.g., multi -dimension arrays, are
usually shared among multiple threads. Object pushing is
not performed on the request of an array of reference type.

Overall , the object pushing improves the access
locality since objects to be accessed in the future have

been moved to the executing thread’s local memory.
Object pushing can also improve performance by
achieving aggregation effect on communication because it
can effectively reduce the number of object requests
during the execution cycles.

5. Performance Evaluation

 In this section, we study the performance of GOS. The
GOS is embedded in our JESSICA distributed JVM for
supporting object sharing in a cluster environment. All the
tests are performed on a cluster of 300MHz Pentium II
PCs, running Linux 2.2.14, and connected by a fast
Ethernet. The JESSICA is executed under the interpreter
mode. In our tests, when the Java applications are started,
Java threads are automatically distributed among cluster
nodes to achieve maximal parallelism.

5.1 Application Suite

 Our application suite consists of four multi -threaded
Java programs: All -pair Shortest Path (ASP), Successive
Over-Relaxation (SOR), Traveling Salesman Problem
(TSP), and Nbody.
 ASP calculates the shortest path between any pair of
nodes in a graph using a parallel version of Floyd’s
algorithm. It requires n iterations to solve an n-nodes
problem. At iteration k, all threads need the value of the
kth row of the distance matrix. There is a barrier at the
end of each iteration. The workload is distributed equally
among worker threads in row wise.
 SOR does red-black successive over-relaxation on a 2-
D matrix for a number of iterations. There are two barriers
in each iteration. The workload is distributed equally
among worker threads in row wise.

Nbody simulates the motion of particles due to
gravitational forces over a number of simulation steps.
The program follows the algorithm of Barnes & Hut.
Each worker thread is computing the motion simulation of
a part of particles. A quadtree is constructed at the
beginning of each step, which will be accessed by all
worker thread.

TSP finds the shortest route among a number of cities
using parallel branch-and-bound algorithm, which prunes
large parts of the search space by ignoring partial routes
already longer than current best solution. We divide the
whole search trees to many small ones to form a job
queue. Every worker thread will get jobs from this queue
until the queue is empty.

5.2 Application Performance

 Figure 3 shows the eff iciency for each application after
all optimizations are enabled. Sequential performance

data is measured on the original Kaffe JVM when
calculating eff iciency.

All 4 benchmark programs have achieved eff iciency
larger than 84% on 4 nodes and all have achieved
eff iciency larger than 75% on 8 nodes except Nbody. ASP
even achieves an eff iciency of 98% on 4 nodes. In ASP,
while the cluster size is scaled to 8 nodes, the global
synchronization among all threads becomes a primary
factor to pull down the eff iciency. SOR’s situation is
similar. In Nbody, there is a construction of quadtree in
each simulation step, which cannot be parallelized. When
the main thread performs construction of quadtree, all
other threads are waiting. The eff iciency decreases while
the cluster size increases. TSP is a computation intensive
program comparing with other benchmark programs.
Load imbalance among worker threads is a major factor
affecting eff iciency.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8

Number of processors

E
ffi

ci
en

cy

ASP

SOR

Nbody

TSP

Figure 3. Efficiency

Table 2 shows their communication effort for some

given parameters on a 4-node cluster after all
optimizations are enabled. Msg column shows the number
of messages and the Data column shows the network data
volume involved. All the four programs need to access the
object heap intensively and involve considerable
communication effort except TSP.

Table 2. Communication effort

 Parameters Msg (K) Data (MB)

ASP A graph of 512 vertices 21.5 24.98
SOR 1024 by 1024 matrix

for 30 iterations
22.9 42.01

Nbody 400 particles for 10
simulation steps

10.6 4.74

TSP 12 cities 2.9 0.24

Figure 4 shows the normalized execution time break

down against number of processors for the four
benchmark programs. Obj denotes the time to request an
up-to-date copy of a faulting object. Syn denotes the time

spent on synchronization operations, such as lock, unlock,
and wait. Comp denotes the computation time.

0%

20%

40%

60%

80%

100%

2 4 8 2 4 8 2 4 8 2 4 8

SOR ASP Nbody TSP

Number of processors

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Comp Syn Obj

Figure 4. Percentage of execution time break down

against no. of processors

Since we insert software checks before object accesses

to test object access states, an additional test was
conducted to evaluate the overhead of the access checks
in our GOS. Comparing the sequential performance on
JESSICA with that on Kaffe, the cost of checks can be
derived. Since our implementation is based on interpreter
model, check cost doesn’ t contribute significant overhead.
In all four benchmarks, check cost is less than 3.5%
against execution time on Kaffe.

5.3 Effect of Optimizations

In this subsection, the effect of individual
optimizations is studied. Figure 5 shows the effects of
optimizations on execution time, message number, and
communication data volume when running the benchmark
suite on a 4-node cluster. In the below figures, NO means
no optimization, HM means object home migration, SMM
means synchronized method migration, Push means
object pushing. In this test, TSP solves a problem of 8
cities.

As seen from the figures, object home migration
greatly improves the performance of ASP and SOR. This
is because some DSOs are only written by one thread in
some duration of execution in SOR and ASP. The use of
synchronized method migration decreases the number of
messages by 29.96% for ASP and 4.58% for SOR.
Synchronized method migration also results in less
synchronization operations. As a result, the execution
time decreases by 8.82% for ASP and 1.84% for SOR.
Object pushing aggregates small object messages into a
larger message. Nbody is a typical application involved
with lots of small -sized DSOs. The number of messages is
remarkably reduced by 79.83% with object pushing
enabled. Since object pushing may push unneeded objects
as well , communication data volume increases by 5.23%.
Nevertheless, Nbody’s execution time decreases by

0%

20%

40%

60%

80%

100%

120%

N
O H

H
S

H
S

P

N
O H

H
S

H
S

P

N
O H

H
S

H
S

P

N
O H

H
S

H
S

P

ASP SOR Nbody TSP

B
re

ak
 d

ow
n

of
 e

xe
cu

tio
n

tim
e

Comp Syn Obj

(a) Breakdown of execution time

H: HM, HS: HM+SMM, HSP: HM+SMM+Push

0%

20%

40%

60%

80%

100%

120%

ASP SOR Nbody TSP

M
es

sa
ge

 n
um

be
r

NO HM HM+SMM HM+SMM+Push

(b) Message number

0%

20%

40%

60%

80%

100%

120%

ASP SOR Nbody TSP

C
om

m
un

ic
at

io
n

da
ta

 v
ol

um
e

NO HM HM+SMM HM+SMM+Push

(c) Communication data volume

Figure 5. The effects of optimizations

37.81% as a final result. Object pushing also reduces
TSP’s message number by 27% and incurs a littl e more
communication data. As a result, TSP’s execution time
decreases by 14%. Compared with Nbody and TSP, most
DSOs used in ASP and SOR are large 2-dimension arrays.
Object pushing has littl e effect on them. Synchronized
method migration increases Nbody’s execution time by
within 2%. Object pushing increases ASP’s execution

time by 1%. Overall , the negative impact incurred by
these optimizations in our benchmark programs is very
limited.

6. Related Work

 As a distributed JVM, cJVM [2] uses a proxy object
model to implement global object space. Method
invocation and fields accessing on the proxy object are
shipped to its master object in general. Several optimizing
techniques were applied to reduce such shipping. This
approach is more suitable for the sequential consistency
memory model. However, under the proposed Java
memory model, i.e., the lazy release consistency, this
approach may not be very effective since a more
aggressive object caching mechanism, like our global
object space, seems more appropriate. In addition, the
load distribution in cJVM is determined by object
distribution in method shipping approach. Load balance
might be diff icult to achieve without programmer’s effort.
 JESSICA [13] leveraged a page-based DSM to build
GOS. All objects are allocated into distributed shared
memory. Such an approach suffers from false sharing
problem that is inherited from the page-based DSM. Since
page-based DSM isn’ t aware of Java runtime connectivity
information, it is diff icult to detect distributed-shared
objects and do further optimizations. The detail analysis
of various factors contributing to the eff iciency in using
page-based DSM for supporting distributed object sharing
can be found in [5]. Java/DSM [18] is another similar
example that builds global object space on top of page-
based DSM.
 Some other approaches reply on compiler techniques
to transparently run multi -threaded Java applications on a
cluster. They directly compile multi -threaded Java
program to native code that is able to execute in a
distributed platform. In these systems, JVM is not
involved in the execution and a software DSM is
employed to support global object accesses. Hyperion
[14] compiles Java bytecode to C source code, then
compiles to native code further. Jackal [17] compiles Java
source code to native code. In both cases, most efforts to
improve performance are done at compile time. Jackal’s
compiler enables two optimizations: object-graph
aggregation and automatic computation migration, which
are similar to our object pushing and synchronized
method migration. Object-graph aggregation uses heap
approximation algorithm [6] to identify those related
objects. However, heap approximation algorithm cannot
distinguish between different runtime objects that are
created at the same allocation site. Hence this approach is
effective only at the situation when the related objects are
from different allocation sites. Comparatively, our object
pushing is a runtime approach and has no such drawback.

Both Jackal and Hyperion do not intend to detect
distributed-shared objects.
 In the DSM field, DOSA [7] implements a fine-grained
DSM support for typed language such as Java. Its aim is
to keep sharing granularity at object level but still rely on
the virtual memory support to do the access state check as
in the page-based DSM. It introduces a level of
indirection on object accessing. Access to objects will go
through a handle table to locate object’s actual address.
The indirection adds overhead on object accesses and
impairs cache locality.

7. Conclusions

This paper presents a global object space support for
distributed JVM. Distributed-shared objects are detected
with the help of runtime object connectivity information
to improve the performance. Only distributed-shared
objects are taken care of to maintain consistency in global
object space. Several optimizations can be incorporated
into the global object space. Among them, home
migration and object pushing can effectively improve the
performance of applications presenting certain access
behaviors. Synchronized method migration can optimize
the execution of Java synchronized method in the context
of distributed JVM. After all optimizations are enabled,
considerable performance is obtainable.

In our future work, we will i ncorporate the detection of
distributed-shared object with our distributed garbage
collection algorithm in global object space. To further
improve the performance of global object space, an
adaptive cache coherence protocol will be implemented,
which will automatically adjust to the various access
patterns of distributed-shared objects. As object access
pattern may change dynamically during the execution
li fetime, we believe a runtime solution is more effective
to adapt to the access patterns.

References

[1] S. Adve and K. Gharachorloo. Shared memory

consistency models: A Tutorial. IEEE Computer, 29(12):
66-76, December 1996.

[2] Y. Aridor, M. Factor, and A. Teperman. cjvm: a single
system image of a jvm on a cluster. In Proc. of
International Conference on Parallel Processing, 1999.

[3] Gilad Bracha, James Gosling, Bill Joy, and Guy Steele.
The Java Language Specification, Second Edition.
Addison Wesley, 2000.

[4] B. Cheung, C.L. Wang, Kai Hwang. A Migrating-Home
Protocol for Implementing Scope Consistency model on a
Cluster of Workstations. International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA' 99), pp. 821-827, 1999, Las Vegas.

[5] W.L. Cheung, C.L. Wang, and F.C.M. Lau. Building a
Global Object Space for Supporting Single System image

on a Cluster. To appear in Annual Review of Scalable
Computing, Volume 4, World Scientific, 2002.

[6] Rakesh Ghiya and Laurie J. Hendren. Putting pointer
analysis to work. In 25th Annual ACM SIGACT-SIGPLAN
Symposium on the Principles of Programming Languages,
pages 121--133, January 1998.

[7] Y. Charlie Hu, Weimin Yu, Dan Wallach, Alan Cox, and
Will y Zwaenepoel. Runtime support for distributed
sharing in typed languages. In Proceedings of the Fifth
ACM Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, Rochester, NY, May
2000.

[8] K. Hwang, E. Chow, C.L. Wang, H. Jin, and Z. Xu,
Desinging SSI Cluster with Hierarchical Checkpointing
and Single I/O Space. In IEEE Concurency, 1999.

[9] P. Keleher. Distributed Shared Memory Home Pages.
http://www.cs.umd.edu/~keleher/dsm.html.

[10] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release
consistency for software distributed shared memory. In
Proceedings of the 19th Annual International Symposium
on Computer Architecture, pages 13--21, May 1992.

[11] P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. Proceedings of the
Winter 94 Usenix Conference, pp. 115-131, January 1994.

[12] Tim Lindholm and Frank Yelli n. The Java Virtual
Machine Specification, Second Edition. Addison Wesley,
1999.

[13] Matchy J. M. Ma, Cho-Li Wang, and Francis C. M. Lau.
Jessica: Java-enabled single-system-image computing
architecture. Journal of Parallel and Distributed
Computing, 60, Oct. 2000. (JESSICA source code is
available at: http//www.srg.csis.hku.hk/Jessica-src/.)

[14] M. MacBeth, K. McGuigan, and P. Hatcher. Executing
java threads in parallel in a distributed-memory
environment. In Proc. of IBM Center for Advanced Studies
Conference, 1998.

[15] Jeremy Manson and Willi am Pugh. Core Semantics of
Multithreaded Java. In Proc. of Joint ACM Java Grande -
ISCOPE 2001 Conference, June 2001.

[16] Transvirtual Technologies Inc. Kaffe JVM.
http://www.kaffe.org.

[17] R. Veldema, R. F. H. Hofman, R. A. F. Bhoedjang, and H.
E. Bal. Runtime Optimizations for a Java DSM
Implementation. In Proc. Joint ACM JavaGrande-
ISCOPE 2001, Stanford, 2001.

[18] W. Yu and A. Cox. Java/dsm: A platform for
heterogeneous computing. In Proc. of ACM 1997
Workshop on Java for Science and Engineering
Computation, 1997.

