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Abstract—This paper presents a fully decentralized just-
in-time workflow scheduling method in a P2P Grid system.
The proposed solution allows each peer node to autonomously
dispatch inter-dependent tasks of workflows to run on ge-
ographically distributed computers. To reduce the workflow
completion time and enhance the overall execution efficiency,
not only does each node perform as a scheduler to distribute its
tasks to execution nodes (or resource nodes), but the resource
nodes will also set the execution priorities for the received tasks.
By taking into account the unpredictability of tasks’ finish time,
we devise an efficient task scheduling heuristic, namely dynamic
shortest makespan first (DSMF), which could be applied at both
scheduling phases for determining the priority of the workflow
tasks. We compare the performance of the proposed algorithm
against seven other heuristics by simulation. Our algorithm
achieves 20%~60% reduction on the average completion
time and 37.5%~90% improvement on the average workflow
execution efficiency over other decentralized algorithms.

Keywords-P2P Grid system; just-in-time workflow schedul-
ing; dual-phase model

I. INTRODUCTION

Peer-to-Peer (P2P) Grid systems have been used by re-
searchers for solving complex scientific problems by ex-
ploiting large amount of geographically dispersed resources
on the Internet. By integrating P2P techniques to Grid, we
are able to discover resources across multiple domains and
aggregate large amount of resources in a fully decentralized
manner. Such constructive synergies enable more efficient
resource sharing for using idle resources at the edge of In-
ternet. In recent years, we see many P2P Grid systems have
been developed, including Condor-Flock P2P [1], P2PGrid
[2], BonjourGrid [3], Alchemi [4] and Harmony [5].

Unlike independent tasks or batch-of-task (BoT) jobs,
scientific workflows are usually built with complex de-
pendencies among tasks. The delay of individual task’s
completion time could significantly hinder the execution
progress of workflow. In the P2P Grid system, each node
could be a resource consumer and also a resource provider.
They usually self-organize and perform task scheduling
autonomously, which is very different from traditional Grids
that schedules workflow tasks by a centralized scheduler or
a group of coordinated schedulers. Due to the lack of global
information and centralized control, the overall execution
efficiency is hard to optimize. Even worse, the conflicting

scheduling decisions among uncoordinated individual sched-
ulers may cause unpredictable delay of tasks’ execution
on some hotspots, consequently resulting in volatile critical
paths in workflows over time. The intermittent node arrival
and departure (known as node churning problem) post
greater challenges to optimizing scheduling efficiency.

Existing workflow scheduling models mainly include full-
ahead scheduling and just-in-time scheduling [6]. The first
model is fully static, as it schedules the whole workflow
before the actual execution starts. Most workflow scheduling
algorithms (e.g., [7], [8]) follow the full-ahead scheduling
model. They perform well in a more stable execution envi-
ronment such as the traditional Grid systems. In comparison,
the second model is more dynamic, as the task of any
workflow will not be scheduled until its dependent tasks
are all finished. This model could be more suitable for
dynamic P2P Grid systems since the scheduler can make
the scheduling decisions upon analyzing the latest progress
of workflows (e.g. each workflow’s changed critical path as
well as critical tasks) and updated resource information.

To further improve the system-wide workflow scheduling
efficiency, we propose a dual-phase just-in-time scheduling
model which makes use of a more effective heuristic, namely
dynamic shortest makespan first (DSMF). Each task will
experience two scheduling phases before its final execu-
tion. The first phase is performed at the submission site.
The scheduler will handle the workflow with the shortest
remaining makespan first and preferentially dispatch its
tasks with longer estimated execution time to the best-
selected resource nodes. At the second phase, the resource
nodes will further prioritize the waiting ready tasks whose
workflows have the shorter remaining makespans. Such a
design could distinguish different workflows based on their
structures to avoid long waiting time added to the short
workflows, significantly improving the average efficiency
which is especially important in P2P Grid systems.

The proposed scheduling method is integrated as part of
a peer-to-peer resource discovery framework to aggregate
the latest resource states from other peer nodes for making
scheduling decisions. Traditional solutions, such as DDWS-
RL [9] relying on Globus MDS [10] or DHT-based protocol
[11], suffer complex maintaining cost. We implemented a
lightweight mixed gossip protocol, by combining epidemic



gossip [12], [13] and aggregation gossip [14] protocols,
which can adapt to the dynamic environment very well.

To evaluate the proposed scheduling algorithms, we built
a wide-area-network testbed based on the Brite tool [15]
and Waxman model [16]. We carried out the simulation of
asynchronous task execution based on the Peersim tool [17].
We show that our dual-phase just-in-time scheduling model
with DSMF heuristic outperforms all the other just-in-time
scheduling algorithms using min-min, max-min, sufferage
or decentralized HEFT. It also performs better than some
full-ahead scheduling algorithms (such as HEFT [7]). By
DSME, the average workflow completion time gets reduced
by 20%~60% while obtaining improvement on execution
efficiency by 37.5%~90%, which could also tolerate the
dynamic environment. They show no notable performance
degradation under the ratio of 20% churning nodes in every
periodic scheduling interval.

The rest of the paper is organized as follows. We formally
model the decentralized P2P Grid workflow scheduling
problem in Section II and describe our dual-phase just-
in-time workflow scheduling algorithm in Section III. In
Section IV, we evaluate our algorithm. The related works
are analyzed in Section V. We conclude the pros and cons
of our solution and present the future work in Section VI.

II. WORKFLOW SCHEDULING MODEL
A. Preliminaries

A workflow can be represented as a directed acyclic graph
(DAG), where the vertices and the directed edges represent
the tasks and task dependencies respectively. Task dependen-
cies are formed because some tasks will generate data that
serves as input to one or more subsequent tasks. In particular,
if task A is dependent on task B, B is called A’s precedent
and A is B’s successor. Let Pre(-) denote precedent task
set and Suc(-) the successor task set, then BEPre(A) and
A€Suc(B). In a DAG, a task without precedent is called an
entry task, and a task without successor is an exit task. For
any workflow with more than one entry task, another newly
added zero-cost task which connects all the original entry
tasks can serve as the unique entry task of the workflow.
Likewise, any workflow with many exit tasks can also be
converted to the one with unique zero-cost exit task. In the
rest of content, we assume every workflow has only one
entry task and one exit task.

In order to complete a workflow, every task in it has to be
mapped to a resource node for execution. At any time, only
the tasks whose precedents are all finished can be scheduled
and these unscheduled tasks are called schedule-points of
the workflow.

The whole procedure of P2P workflow scheduling is
illustrated in Fig. 1. Whenever one workflow is submitted
to a node (a.k.a. home node or scheduler node) (step 1 in
Fig. 1), the initial schedule-point is set as its entry task (step
2). Whenever a task is allowed to run (i.e. all its precedents

are completed), the home node performs a selection policy
(a.k.a. workflow scheduling algorithm) to determine which
resource node should execute the task (step 2 & 6). Every
task scheduled will be added to the resource node’s ready
set and wait for the execution (step 3 & 7). Meanwhile,
all dependent data of the ready task should be transmitted
from the nodes on which its precedents were computed to
the selected resource node (step 8). Once some tasks are
finished at the resource nodes, only tasks in the ready set
which have received data from all precedents will be selected
for execution (step 4 & 9).
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Figure 1. Use-case of Workflow Scheduling

B. Problem Formulation

Without loss of generality, suppose there are n peer nodes
in the whole system, denoted as p; (i=1,2,...,n), each serving
as both scheduler node and resource node. The computing
capacity of each node p; is denoted by c; (evaluated by
the number of instructions processed per second). At each
node p; (2=1,2,...,n), we assume w; workflows are submitted,
which are denoted as f;;, where j=1,2,...,w;. We also define
the rask set of the workflow f;; to be T'(f;;), whose kth
task is denoted as t,(:]), where k=1,2,..., T(fij)|. Each task’s
load (denoted as l,(;’] )) is evaluated by the number of its
instructions. On each node p;, a resource set (denoted as
RSS(p;)) is used to store the aggregated resource states and
ready set (denoted as RDS(p;)) is used to keep the ready
tasks. The summation of loads of all ready tasks (including
running tasks) at the resource node p, (r=1,2,...,n) refers to
the node’s total load (denoted by [,.).

Let ct(f;;) denote the real completion time of workflow
fij. ct(fi;) is also known as response time, which is counted
from the start of its entry task until f;;’s exit task completes.
To evaluate the execution efficiency of the workflow f;;, we
compare its real completion time with the expected finish-
time eft(f;;). We define the efficiency of the workflow f;;
(denoted by e(f;;)) as Equation (1).

e(fij) = Eft(f”),where

= ct(fiz) B -
eft(fi)= 3 (eet(t!y ettt )y (D)
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The critical path from a workflow’s entry task to its exit
task determines the expected finish-time eft(f;;). We call
the tasks along the critical path critical workflow tasks,
each denoted as 7). Let eer(t; ")) and ett(t}(i7)) denote

J

the expected execution time of task t,: !
t*(ij)
k

and the expected
data aggregation time for task to collect data from its
precedents. The expected finish-time of the workflow f;; is
equal to the sum of eet(tz(”)) and ett(tz(”)) of all of its
critical tasks. Because the expected finish-time is used as
a baseline for comparing with the actual performance, both
eet(t;"7) and ett(t;"7) are estimated using the system-
wide average node capacity and average network bandwidth.
Our objective is to reduce the average workflow comple-
tion time (ACT) and to enhance the average efficiency (AE)
based on a fully decentralized workflow scheduling algo-
rithm. The two objective functions are defined as follows.

1 n w;
ACT = gor— > 2, o) @
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III. DUAL-PHASE JUST-IN-TIME WORKFLOW
SCHEDULING

A. Overview

The whole scheduling process will be conducted in two
phases. At the first scheduling phase, all home nodes (a.k.a.
scheduler nodes) will dispatch their workflow tasks to re-
source nodes and add the tasks to the resource nodes’ ready
set. At the second phase, the resource nodes will further
schedule the tasks waiting in their ready set for execution.
The proposed solution makes use of a mixed gossip protocol
to aggregate the latest resource states from other peer nodes
for determining the site(s) of executing its schedule-point
tasks once they become available for execution. A dynamic
shortest makespan first (DSMF) heuristic is applied at both
phases for determining the priority of workflow tasks. (to be
discussed in Section III.C)

Fig. 2 shows the basic idea of the dual-phase scheduling
method. At each home node, there could be many workflows
submitted. Based on DSMF, at the scheduler nodes, the
schedule-point tasks from the workflows that have shorter
makespans will be preferentially processed, with the aim to
minimize the average waiting time of workflows.

As execution proceeds, more schedule-point tasks become
activated at the home node. Within one workflow, the
estimated remaining path’s execution time (i.e., RPM to be
defined later) of each schedule-point task is computed. The
schedule-point task that has the longest remaining path’s
execution time toward the exit task will be scheduled with
higher priority. Each home node will dispatch their schedule-
point tasks to the resource nodes which can finish their
execution the earliest based on the latest resource states
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Figure 2. Dual-Phase Workflow Scheduling Model

aggregated from other peer nodes. The scheduling policy is
similar to the static HEFT algorithm [7], yet in our approach,
the schedule-point task’s finish-time can be dynamically
estimated based on the real-time state of resource node’s
load and the network status. This achieves more proper
resource allocation and higher adaptability. At the second
phase, upon the completion of a task, the resource node
will select another task from its ready set such that the
task’s workflow has the shortest remaining makespan for
execution, following the DSMF guideline. The details are
discussed in Section III.D.

B. Mixed Gossip Protocol

The proposed scheduling method is integrated as part of
a peer-to-peer resource discovery framework for supporting
the dynamic task scheduling work. Each node needs to
aggregate the latest resource information to facilitate the
subsequent task scheduling process. This information could
be split into two categories, state information and statistics.
We devise a mixed gossip protocol, which integrates the
epidemic gossip protocol and aggregation gossip protocol,
to synthetically aggregate the two types of information on
each node required by the task scheduling.

The epidemic gossip protocol is responsible for collecting
the updated state information, such as the nodes’ states.
Each node periodically pushes the messages about its known
state, including its latest total load (I;), its capacity (c;) and
those of other nodes collected, to only a few neighbors.
The neighbors of node p; are randomly selected at every
propagation cycle based on the Newscast model [14] and
the fan-out degree (i.e., the number of neighbors) is limited
to log,(n) to avoid excessive network traffic. Each node
p; will maintain a resource node set (RSS(p;)) containing
these messages while the space complexity |RSS(p;)| on
average per node is O(logy(n)) (to be shown in Section



IV). The estimation of network status can be performed as
follows: each node monitors its network links connecting to
log,(n) landmarks, and duly propagates the list containing
its network conditions to other nodes via epidemic gossip
protocol. Thereafter, the global network conditions can be
estimated at every node autonomously.

The aggregation gossip protocol is responsible for ag-
gregating global statistics, including average node capacity,
average bandwidth, and make them known to every node.
Particularly, these statistics will be used for the estimation of
eft(fi;). For each metric, each node just continually com-
putes a new average using its updated value and the means
calculated by neighbors, then push it back to neighbors.

Both epidemic gossip protocol and aggregation gossip
protocol have been proven very efficient - low cost and
exponential converging speed are obtained [12], [13], [14].

C. Dynamic Shortest Makespan First (DSMF) Heuristic

DSMF first handles the workflow with the shortest re-
maining makespan at any time and priorities its tasks in
the scheduling procedure. We will describe how to estimate
makespan for each workflow in this section, and present
details with pseudo-codes in next section.

We denote ST(t,(C” ) pn) and FT(t,(C” ). pp) to be the start
time and completion time of task té” ) if it is to be executed
at node pp. They can be estimated based on Equation (5)
and Equation (6) before the tasks are actually allocated to
resource nodes. In Equation (5), R(t(” ) pn) stands for the
queuing delay that t,g” ) has to wait before pp, becomes avail-

t( ij)

able for executing this task, while et(t,”’,pp) represents

t,(c”)’s execution time on py. R(té” ),ph) can be conserva-
tively estimated via the total load (i.e. [, related to the run-
ning task and waiting tasks) of pj and its capacity (cp). The
wst(t,(;,] ,t,(C” ) denotes the time of aggregating dependent
data from t,&” )°s precedent t,(j,] ). Since the data transmissions
toward the execution nodes could be performed concurrently
on the network, the slowest one will determine task’s final
dependent transmission delay, a.k.a. longest transmission

delay (LTD( t](fj ))) as defined in Equation (4).

LTD(t") =

max

. . (FT(t,(C/ D) + cost(t](j,]),t(”))) 4
tys EPre(t;”’)

STH) p) = max( R(t7 py), LTD(#7)))  (5)

FTA py) = STED py) + et p)  (©6)

In general, the data transmission time could be estimated
as datasize(t,(;f ),t(” )Ybandwidth(py: ), where pj, refers to
the node completing the precedent task tg;,] ), Then, the start

time ST(t,(f] ),ph) could be determined by either the longest

transmission delay or the longest queuing delay on the target
node, because such two delays could overlap in time.

Apparently, it is impossible to precisely predict the re-
maining execution time of the workflow f;; as the actual lo-
cations for performing the schedule-point task’s subsequent
tasks have not yet been decided. In particular, et(té” ), Dr),
cost(tg,])7t(”)), and R(t\7 py,) of all the offspring tasks
remain unknown. Therefore, we propose a spec1al metric rest
path makespan (RPM), denoted by RPM(t(” ), to estimate
the lon%est execution time along the paths from the schedule-
point ¢, D to fi;’s exit task.

By expanding the definition of FT(t,(C” ). pn) based an
Equation (6), we derive a new recursive function:

FT(5”, pn) = ) }
max(R(t,(c”),ph), LTD(t,(;J))) + et(tgjj),ph)

Thus, to predict the remaining execution time of the
workflow f;;, we can recursively expand Equation (7) from
its exit task backward (or upward) to all schedule-points to
deduce their rest path makespans (RPM). Given a workflow
task t(” ), the RPM(IE,:7 ) consists of two parts: (1) t(” )
execution time and transmission/waiting delay on resource
node p;, and (2) the execution time of t(” )°s offspring tasks.
The transmission/waiting delay could be computed based
on the resource node states (i.e. l;, and cp) collected by
the epidemic gossip protocol, while each of its offspring
tasks t, will be computed based on the expected execution
time (eef(t,)) and expected data transmission time (ett(t,)).
Both eet(t,) and ett(t,) are approximated using the system-
wide average node capacity and average network bandwidth
which are dynamically collected by the aggregation gossip
protocol. Thus, each workflow’s remaining makespan can be
expressed as Equation (8), where spset(f;;) denotes f;;’s
current schedule-point set.

(N

~ max
tL"”Espset(ﬂ;j)

ms(fij) = (RPM (")) ®)

D. Dual-Phase Just-in-Time Scheduling Algorithm

Algorithm 1 shows the pseudo-code which autonomously
runs on each scheduler node (denoted by p,) at the first
scheduling phase, while Algorithm 2 shows that of the
second-phase scheduling on each resource node (denoted
by p,). As every node in the P2P Grid system could serve
as both the scheduler node and resource node, the two
algorithms are actually running concurrently at each node.

The design of Algorithm 1 aims at reducing the waiting
time of workflows and also tries to minimize each work-
flow’s completion time, synthetically improving the execu-
tion efficiency. We will select the workflow with the smallest
ms(fi;) to schedule first at each home node, similar to the
shortest job first scheduling policy which can minimize the
overall waiting time. In Line 2~7, we first calculate the RPM
of schedule-point tasks for each submitted workflow based



Algorithm 1 Workflow Scheduling on Scheduler Node

Notice: We show the code executed on scheduler node ps
Input: workflows (fs;, 1<j<ws: resource node set (RSS(ps));
Output: Schedule tasks from T'(ps) to the nodes selected from RSS(ps).
: while (TRUE) do
for (each workflow fs;, 1<j<ws) do
t](jj)

for (each schedule-point task in spset( fsj )) do

1

2

3

4: Calculate RPM(t;CSJ >) based on Equation (7);

S: end for

6: Compute workflow fs;’s makespan ms(fs;) via Equation (8);
7 end for

8 Sort workflows at ps in ascending order w.r.t. their remaining
makespans;

9 if (RSS(ps)# 0)) then

10 for (each f,; in the sorted list) do

11 Sort spset(fs;) in descending order w.r.t. RPM;

12 for (each task 7 € the sorted spset(fs;)) do

13: Select resource node p, from RSS(ps) via Formula (9);
14: Migrate 7 from ps to p, (kept in ready set RDS(pr));
15 Update p,’s state record in RSS(ps);

16 end for

17 end for

18 end if

19: Sleep and wait for the next scheduling cycle;

20: end while

on Equation (7), then we estimate the remaining makespan
of each workflow based on Equation (8). These workflows
are sorted in ascending order (line 8) with respect to their
remaining makespans (ms(fs;)), and are handled one by one
in this order at line 9~18. Among the schedule-point tasks
of a specific workflow, the one with the largest RPM(t(ZJ )
will be handled with the highest priority. Therefore, we sort
its schedule-point tasks in descending order with respect to
their RPM (Line 11), then schedule them in order. Both the
calculation of RPM and ms(f;;) make use of the system-
wide average node capacity and average network bandwidth
periodically collected by the aggregation gossip protocol to
reflect the most updated system status.

The selection of target node for completing task 7 is based
on Formula (9) below. We choose a resource node p, from
RSS(ps), which can achieve its earliest finish time.
(FT(r.pn)) )

target node = arg  min
prhERSS(ps)
According to Equation (6), the finish time of task 7
performed at resource node p, (i.e., FT(7,p,)) could be
affected by the task waiting time R(7,p,) (i.e., i—’;), depen-
dent data aggregation time, and 7’s execution time at p,.
Intuitively, we will select a less loaded or more powerful
node for executing the task. In addition we consider the node
locality issue for minimizing the network delay during data
aggregation based on an unified equation, i.e., FT(7, p,). As
the resource node is selected, the task 7 will be migrated
to the node together with its rest path makespan and its
workflow’s makespan.
Indeed, such a “finish-earliest” guideline has been used
commonly by traditional Grids (e.g., the static HEFT algo-

rithm). But it may not be suitable for rather dynamic P2P
Grid systems which adopted a fully decentralized scheduling
method. Improper task scheduling may cause contention on
resources, which could severely delay tasks’ finish times on
some hotspot nodes. The node churning problems further
add challenges on the accuracy of the estimation of finish
time used to guide the scheduling process. Our just-in-
time scheduling approach proactively estimates workflows’
changeable remaining makespans which can adapt to such
a volatile environment well. Based on each node’s limited
space complexity (O(logy(n))) of the randomly aggregated
RSS(ps), the selection of candidate resource nodes can
effectively mitigate the execution hotspot problem.

We give an example to illustrate our algorithm in Fig.
3: Suppose there are two workflows submitted to node pj,
whose DAGs are shown in Fig. 3. The numerical values
marked on the vertices and edges represent the estimated
execution time and data transmission time predicted based
on average node capacity and average bandwidth. The tasks
to be scheduled are A2, A3, B2, and B3 and there are three
resources (denoted by X, Y, and Z) known by the node
ps. The matrix represents the estimated finish-time for each
task to run on the three resource nodes. In terms of Equa-
tion (5) and Equation (6), we can compute RPM(A2)=80,
RPM(A3)=115, RPM(B2)=65, and RPM(B3)=60. Therefore,
the makespans of the two workflows are 115 and 65 re-
spectively. According to DSMF, the scheduling order is thus
B2, B3, A3, A2. In comparison, the min-min and max-min
algorithms will respectively select A2 and B2 first, and then
respectively select the next earliest-finish and latest-finish
task after updating the state of resources (node Y and node
Z), and so on. The HEFT algorithm will choose A3, A2, B2,
and B3 one by one, due to their decreasing order of RPM.
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Figure 3. A Use-case with Two Workflows on a Scheduler Node

During the second phase, the waiting tasks in each
resource node’s ready set will be chosen for execution
according to Algorithm 2, which applies the same heuristic.
Note that the tasks in the ready set are likely to correspond to
different workflows from different home nodes, thus the task
to be executed is supposed to be the one whose workflow has
the shortest remaining makespan (i.e. Formula (10), where



fi refers to the task 7’s corresponding workflow).

target task = arg min
TERDS (pr)&TET(fk)

(ms(fx))  (10)

Algorithm 2 Ready Task Scheduling on Resource Node

Notice: We show the code executed on resource node p

Input: RDS(p,), the rest path makespan (RPM) of every task in

RDS(p,) and the makespans of their corresponding workflows

Output: Assign local computing resource to one task from p,.’s ready set.
1: Sort tasks in RDS(p,) in ascending order of the makespans of their
workflows;

: From RDS(py,), Select the tasks based on Formula (10);

: if (the number of tasks selected > 1) then

Choose the task with the longest RPM;

: end if

: Assign the local resource (CPU) to the selected task;

: Waiting for the task-finish signal;

E. Time Complexity of DSMF

The time complexity of Algorithm 1 is analyzed as
follows. From Line 2~7, since Line 3~5 could be performed
by calculating the rest path makespans of offspring tasks
reversely rooted from the exit task to each schedule-point
task, each edge of the DAG just needs to be checked (or
passed) at most once. Thus, the time complexity of Line
3~5 is O(0(fs;)), where O(fs;) denotes the number of
edges in the DAG of workflow f,;. As the time complexity
of Line 6 is |spset(fs;)|, the complexity of Line 2~7 is

052, 0(fs5)) = O(ws-), where a = j_mmax (0(fi5))-
The complexity of Line 8 is O(w, - log(w,)).

The time complexity of Line 11 is O(|spset(fs;)| -
log(|spset(fs;)])). Accordingly, the complexity of Line
9~18 could be estimated as O(w, - max(3,7)), where 3
= max;j—12,..w,(|spset(fs;)]), and v = 3 - [RSS(ps)|.

As a result, time complexity of Algorithm 1 is O(ws -
max(cq, 7y, log(ws))). The complexity should be satisfied in
that |RSS(ps)| is O(log(n)) per node. The time complexity
of Algorithm 2 is O(|[RDS (p,)|-log(|RDS(p;)|)).

IV. PERFORMANCE EVALUATION

A. Experimental Setting

We carry out the simulation via the Peersim tool [17]
over an emulated Internet environment constructed by Brite
tool [15] and Waxman model [16]. Each node receives one
or more workflows initially. For each workflow, the fan-
out degree of each task ranges from one to five. The total
experimental time is 36 hours. The scheduler is activated
every 15 minutes. Each node forwards the state information
to its neighbors every gossip cycle (five minutes) with
message’s TTL (the max number of hops) set as four. Each
node maintains connections to log,(n) neighbors, but will
be reselected at the end of each gossip cycle.

In our design, each message carries about 80 bytes data
payload and 20 bytes header information (about 100 bytes

Table 1
EXPERIMENTAL SETTING

Parameter Value
# of nodes 200 ~ 2000
# of tasks per workflow 2~ 30
the computing amount per task 100 ~ 10000 M1
image size per task 10 ~ 100 Mb
dependent data size to be transmitted 100 ~ 10000 Mb
network bandwidth 0.1 ~ 10 Mb/s
heterogeneous node’s capacity 1,2,4,8,0or 16 MIPS
Communication-to-Computation Ratio (CCR) 0.16~16

in total). Suppose system scales up to 10° nodes, then
each node needs to communicate with other 20 (=log2(106))
neighbors. So the average amount of network traffic gener-
ated at each node is 20x100 bytes=2K bytes per gossip
cycle. The overhead is insignificant as compared to the task
migration cost and dependent data transmission overhead.
We assume each node owns unique CPU, which is non-
sharable and non-preemptive. That is, only one task can be
executed at any time. Other settings are shown in Table I.

We compare the performance of the dual-phase scheduling
algorithm (denoted as DSMF) against seven other schedul-
ing algorithms. Among them, Heterogeneous Earliest Fin-
ish Time (HEFT) [7] and the self-implemented Shortest
Makespan First (SMF) adopt static full-ahead scheduling
model. HEFT is a popular list scheduling algorithm for het-
erogeneous system. It uses a recursive procedure to compute
the rank for each task, which is similar to the way we
compute RPM. SMF gives higher priority to the workflows
with shorter makespans. For tasks within a workflow, SMF
preferentially schedules the tasks with longer RPMs. Since
the scheduling work of the two algorithms is centrally
performed before the execution starts, the resource nodes
will just execute the ready tasks via the FCFS policy. The
two algorithms are selected as the base for comparison.

We also compare our DSMF heuristic with five other clas-
sical heuristics used in decentralized scheduling algorithms,
namely min-min, max-min, sufferage, decentralized HEFT
(DHEFT), and dynamic shortest deadline first (DSDF).
We implemented all of them in our dual-phase scheduling
framework, and make use of the mixed gossip protocol for
the aggregation of resource information. The decentralized
versions of min-min, max-min, and sufferage algorithms are
modified from the work described in [18]. Basically we
apply min-min, max-min, and sufferage heuristics in the first
phase scheduling, while in the second phase scheduling (i.e.
ready set scheduling) we adopt shortest task first (STF),
longest task first (LTF), and largest sufferage first (LSF)
respectively. We made these modifications since the original
version of min-min, max-min, and sufferage algorithms in
[18] did not carry the second phase scheduling.

Lastly, the decentralized HEFT (DHEFT) applies a
longest RPM first policy at both scheduling phases, while
DSDF schedules tasks with the shortest deadlines (defined



as the difference between its rest path makespan and its
workflow’s makespan) to run first at both phases.

B. Experimental Result

We arrange the evaluation under both static environment
(i.e., without churning nodes) and dynamic environment (i.e.
nodes may arbitrarily join/leave the system).

Fig. 4 reports the system throughput of the eight al-
gorithms running in a static environment. In this exper-
iment, there ‘are 1000 nodes, each receiving three work-
flows and l](j‘7)=100~10000 million instructions (MI) and
datasize(t\”)=10~1000. The CCR is about 0.16. Without
further note, following tests will also use the above setting.

We observe that both HEFT and DHEFT achieve the
lowest system throughput in the beginning stage (i.e., during
the first 12 hours) though it could firstly complete all the
workflows. This is because HEFT adopts the rather static
approach with global information but overlook the different
makespans among workflows, which may probably cause
long waiting times to the workflows with short makespans.

SMEF performs the best as it preferentially processes the
workflows with shorter makespans, which will lead to much
higher system throughput especially during the beginning
period. The proposed DSMF heuristic can achieve very good
system throughput, only second to SMF.
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Figure 4. Throughput of Workflows in Static P2P Grid System

Fig. 5 and Fig. 6 present the average completion time
(i.e. Formula (2)) and average execution efficiency (i.e.
Formula (3)) of workflows under the same static setting.
The converged average finish-time of min-min, max-min,
sufferage, and decentralized HEFT are 31977, 33495, 30321,
and 30728 respectively, compared to the 32874, 33746,
32781, and 32636 in their original versions using FCFS
on the second-phase scheduling at resource nodes. Thus,
FCEFS is not suggested to take over the ready task scheduling
work. Two figures show the full-ahead SMF still keeps the
best performance, i.e. the lowest average workflow finish-
time and highest average efficiency. The outcome of DSMF
approaches SMF and outperforms the other decentralized
algorithms and even the full-ahead HEFT with 20%~60%

reduction on average completion time and 37.5%~90%
improvement on average efficiency.
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Through our experiments, we also noted that the perfor-
mance would be influenced to different extents of resource
competition. We define load factor as the average number of
submitted workflows per node. The increase of load factor
implies the whole system is under a higher workload, thus
higher resource competition. Fig. 7 and Fig. 8 compare the
average finish-time and average execution efficiency when
we scale the load factor from 1 to 8. We can observe
that our DSMF adapts better to the situation when resource
competition is getting more serious (i.e., load factor = 6,7,8),
owing to its dynamic analysis on the remaining makespan
for each workflow. DSMF outperforms the rest of algorithms
on the average finish-time, when load factor is 7 and 8.

Fig. 9 and Fig. 10 study the performances affected by
CCR by using different combinations of average task loads
and data sizes. We could estimate that the CCRs in the four
cases are respectively 1.6, 0.16, 1.6, and 16. Through these
two figures, we found SMF could still achieve good results
in most cases, while our DSMF remains the winner among
all decentralized algorithms with different CCRs.

We further study the effectiveness of the mixed gossip
protocol built on the P2P network. Fig. 11 (a) shows the
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average number of resource nodes known by each node via
the mixed gossip protocol, as we scale the system size.
We could see that the number of “acquaintance nodes”
are bounded by a small number (less than 30), even we
extend the system size to 2000. This can greatly reduce the
time complexity on each scheduler node when selecting the
best resource node for each task, in addition to the benefit
of saving memory space. Fig. 11 (b) and (c) report the
average execution efficiency and finish-time of workflows
with increasing scale. Our DSMF can consistently achieve
quite stable results due to its fully decentralized design.

We also evaluated the performance of DSMF over a
dynamic environment with churning nodes. We define the
dynamic factor (df) to be the ratio of the number of churning
nodes (i.e. joined/disconnected nodes) and that of the total
number of nodes in every task scheduling interval. For
example, if df=0.1 and the system scale is 1000 nodes,
there will be 100 new nodes joined and 100 old nodes
disconnected within every task scheduling interval. We just
consider the dynamic cases where the churning nodes are
not home nodes, because checkpointing-based solution is
beyond the scope of this research. In this experiment, 500
out of 1000 nodes (which serve as both scheduler nodes and
resource nodes) will permanently stay in the system, while
the rest 500 nodes are allowed to dynamically join/leave
based on different dynamic factors.

Fig. 12, Fig. 13 and Fig. 14 report the throughput, average
finish-time and execution efficiency of workflows in the
dynamic environment. We observe that the throughput of
DSMF could be distinctly lower with the increasing value of
dynamic factor (df), but each successfully finished workflow
keeps relatively stable finish-time and efficiency when df <
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0.2. The degraded throughput is mainly induced by the large-
load tasks which cannot be finished quickly. This issue can
be solved by automatically rescheduling the failed tasks at
the scheduler nodes, which will be left to our future work.
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V. RELATED WORK

There are several well-known decentralized workflow
scheduling algorithms, including SwinDeW [19], DDWS-
RL [9] and R. Ranjan’s work [11].

The basic idea of SwinDew is to classify widely dis-
tributed web services into multiple virtual groups which
have reciprocal dependencies and execute them one by one.
However, it never considered how to optimize the workflow’s
execution efficiency by analyzing changeable makespans of
workflows. SwinDeW-S [20] and SwinDew-G [21] are two
extended versions of SwinDeW.

In DDWS-RL, every agent makes scheduling decisions
by leveraging a machine learning strategy, namely rein-
forcement learning. Such a method is more suitable for the
traditional grid systems rather than P2P Grid systems, in
that it adopts a centralized resource discovery method (i.e.,
client-server or hierarchical model).

R. Ranjan et al. [11] proposed a fully-decentralized coop-
erative workflow scheduling based on DHT [22], [23]. Their
work focuses on the scheduling coordination. There are two
drawbacks: (1) DHT needs to be carefully maintained if
there are many frequently churning nodes; (2) The workflow
scheduling adopts a simple First-Come-First-Serve (FCES)
ticket-matching policy to assign resources, which is likely
to suffer inferior workflow execution efficiency.

Indeed, more heuristics are based on centralized collection
of global information. Two popular list scheduling algo-
rithms, Heterogeneous Earliest Finish Time (HEFT) and
Critical-Path-on-a-Processor (CPOP) were studied in [7].
Such algorithms adopted a two-step scheduling approach.
Before the entry task’s execution, every task will be set a
upward (downward) rank estimated as the sum of commu-
nication time and execution time routing from this task to
the exit task (entry task), and then be scheduled in order of
decreasing ranks. Luiz et al. [24] improved HEFT’s average
workflow execution time by up to 20% via the lookahead
method by estimating each task’s upward ranks as well as
those of its children. Obviously, all of them are unsuitable
for the autonomous workflow scheduling in dynamic P2P
Grid systems, because of their full-ahead model.

Another popular algorithm Dynamic Critical Path for
Grid (DCP-G) [8] also takes critical path into account. They
consider the locality issue to optimize the selection of critical
path, which performs well under full-ahead model. This
algorithm, however, is not suitable for dynamic P2P Grid
systems because the full-ahead model is not adaptive to the
delay of tasks caused by the dynamic environment.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an autonomic workflow scheduling
strategy especially suitable for the dynamic P2P Grid sys-
tems. This algorithm is self-organized by each individual
node and designed based on the dynamic estimation for the
priority of tasks of given workflows. Through our designed
mixed gossip protocol, the algorithm has high robustness
and adaptability in resource discovery. With the dynamic
estimation of workflow’s changeable makespans and volatile
critical tasks, it may effectively mitigate the efficiency loss



caused by the control/data dependencies. We finally prove
via simulation that DSMF outperforms other decentralized
algorithms in different cases, such as different load factor,
CCR, etc. Our algorithm also shows satisfactory average
efficiency under dynamic situation. The throughput under
our approach might somehow be degraded in dynamic
environments. This issue can be solved by rescheduling the
failed tasks, and this study will be our future work.
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