
Resource Scaling Effects on MPP Performance:
The STAP Benchmark Implications

Kai Hwang, Fellow, IEEE, Choming Wang,

Cho-Li Wang, Member, IEEE, and Zhiwei Xu

AbstractÐPresently, massively parallel processors (MPPs) are available only in a few commercial models. A sequence of three ASCI

Teraflops MPPs has appeared before the new millenium. This paper evaluates six MPP systems through STAP benchmark

experiments. The STAP is a radar signal processing benchmark which exploits regularly structured SPMD data parallelism. We reveal

the resource scaling effects on MPP performance along orthogonal dimensions of machine size, processor speed, memory capacity,

messaging latency, and network bandwidth. We show how to achieve balanced resources scaling against enlarged workload (problem

size). Among three commercial MPPs, the IBM SP2 shows the highest speed and efficiency, attributed to its well-designed network

with middleware support for single system image. The Cray T3D demonstrates a high network bandwidth with a good NUMA memory

hierarchy. The Intel Paragon trails far behind due to slow processors used and excessive latency experienced in passing messages.

Our analysis projects the lowest STAP speed on the ASCI Red, compared with the projected speed of two ASCI Blue machines. This is

attributed to slow processors used in ASCI Red and the mismatch between its hardware and software. The Blue Pacific shows the

highest potential to deliver scalable performance up to thousands of nodes. The Blue Mountain is designed to have the highest network

bandwidth. Our results suggest a limit on the scalability of the distributed shared-memory (DSM) architecture adopted in Blue

Mountain. The scaling model offers a quantitative method to match resource scaling with problem scaling to yield a truly scalable

performance. The model helps MPP designers optimize the processors, memory, network, and I/O subsystems of an MPP. For MPP

users, the scaling results can be applied to partition a large workload for SPMD execution or to minimize the software overhead in

collective communication or remote memory update operations. Finally, our scaling model is assessed to evaluate MPPs with

benchmarks other than STAP.

Index TermsÐMassively parallel processors, SPMD parallelism, ASCI program, STAP benchmark, phase-parallel model, latency and

bandwidth, scalability analysis, supercomputer performance.

æ

1 INTRODUCTION

THE MPP performance is attributed to both machine
architecture and program behavior. Resource scaling

responds directly to projected advances in hardware,
software, and system integration. To balance the scaling
process, resource scaling must catch up with the scaling in
problem size and workload. Scaling determines the smallest
machine size or the minimum resources needed to meet the
speed requirement of a given application. One can use
scaling experiments to predict MPP performance, as well as
to guide the scalable design of future Teraflops MPPs.

In Linpack [12], the memory bandwidth is more critical

to achieving high performance. In the past, scalability

studies were concentrated only in the scaling of problem

size [13], [24], [31]. Our study considers the other side of the

coin, namely resources scaling to match the scaled

workload in future MPP applications. The scaling model

is first calibrated with STAP benchmark results on three

commercial MPPs. We then apply the model for resource
scaling on three exploratory ASCI machines. Holt et al.
[15] have suggested a controlled occupancy of shared
resources, especially for low-latency communication. We
will address the same issue through the balancing of
growth rates on various resource subsystems in an MPP.

The development of MPP systems followed an evolu-
tionary pattern. For example, the Cray T3E is upgraded from
T3Dusingastreamlined memorytechnology plusE-Registers
for remote memory access [28]. The SGI/Cray Origin 2000
[20], [27] has benefited from the prototype experiences of
Stanford DASH multiprocessor project [21]. The demand for
even higher performance has never ended. The SP2, Paragon,
and T3D all use distributed memory architecture to enable the
scalability [18]. Operational parameters of three commercial
MPPs are summarized in Table 1.

We start with a benchmark performance evaluation of
Cray T3D, IBM SP2, and Intel Paragon. Our experiments are
based on the STAP (Space-Time Adaptive Processing) bench-
mark suite for radar signal processing [6]. STAP radar is
used to identify real targets from decoys in a sophisticated
air defense system. In a STAP application, a backend
parallel computer is desired to process a huge volume of
reflected radar signals in real time [11]. MPPs are designed
to satisfy this computational need [18].

The STAP benchmark suite has become popular among
real-time signal processing and radar array processing
communities [5], [6], [11], [19]. This paper focuses on how to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999 509

. K. Hwang and C. Wang are with the Deptartment of Electrical
Engineering-Systems, University of Southern California, Los Angeles,
CA 90089. E-mail: kaihwang@ceng.usc.edu.

. C.-L. Wang is with the Department of Computer Science and Information
Systems, University of Hong Kong. E-mail: clwang@csis.hku.hk.

. Z. Xu is with the National Center for Intelligent Computing Systems,
Chinese Academy of Sciences, Beijing, China.
E-mail: zxu@apple.ncic.ac.cn.

Manuscript received 5 Jan. 1998; revised 14 Aug. 1998.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 106106.

1045-9219/99/$10.00 ß 1999 IEEE

map the partitioned STAP computations for scaled work-

load and resources. Previously, we reported the STAP

performance on SP2 [19], the MPI performance [17], [36],

and earlier STAP benchmark results on three commercial

MPPs in [33], [35]. Some scalable STAP algorithms are given

in [5], [6], [11].
In this study, we focus on the resources scaling effects of

the machine size, processor speed, message-passing latency, and

aggregate communication bandwidth [10], [22]. Our model

strives to provide a close match of MPP architecture with

the behavior of regularly structured problems. Our STAP

experiments were conducted with a nominal radar data set

running on current machines with up to 256 nodes. For

future MPPs with thousands of nodes, we scale the input

workload with a much enlarged data set corresponding to a

maximal STAP radar configuration projected for the future.

In 1994, the U.S. Department of Energy launched the
Accelerated Strategic Computing Initiative (ASCI) program, a
10-year, $1-billion program to build Terflops supercompu-
ter systems [8], [9]. The ASCI program develops MPP
systems to replace nuclear weapons testing with three-
dimensional numerical simulations. The goal of the ASCI
program is to deploy a 1-Tflop/s system by 1996, a 10- to
30-Tflop/s system around year 2000, and a 100-Tflop/s
system by 2004. These scalable MPPs, being separately
developed by IBM, Intel, and SGI/Cray with three U.S.
National Laboratories, are summarized in Table 2.

The Intel/Sandia ASCI Red [4], [23] scales from the mesh
interconnect in Paragon. Among the top 500 fastest
computers rated in mid-1998, this machine was ranked the
first with a 1.338 Teraflops in maximal Linpack speed. Both
ASCI Blue machines are cluster-structured using faster
floating-point microprocessors. The construction and testing

510 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

TABLE 1
Operational Parameters of Three Commercial MPPs [18]

TABLE 2
Summary of ASCI Machine Design Options

of these two Blue machines are yet to be completed. The
IBM/LLNL Blue Pacific [3] absorbs all positive features
from the IBM SP Series. The SGI/LANL Blue Mountain [2]
is expected to improve from the SGI/Cray Origin 2000, a
scalable CC-NUMA (cache coherent non-uniform memory
access) machine, to a DSM cluster of SMPs (symmetric
multiprocessors) [18]. The 1-Gflop/s speed of SN1 is needed
to achieve a peak speed of 3.0+ Teraflops in the Blue
Mountain system.

The machine size, processor speed, latency, and band-
width are scaled according to the specifications released by
the ASCI program. The link bandwidth of Blue Pacific is
extrapolated from that of the IBM SP Series. The remaining
entries in Table 2 are based on specifications of the three
ASCI machines [2], [3], [4]. Our scaling study is applied to
two STAP workloads with respect to a small and a large
radar configuration. The assessment is based on the past
growth and projected future trends in processor speed,
network bandwidth, and message-passing latency.

MPP designers and users demand quantitative data to
reveal the resource scaling effects on performance. Our
study provides partial answers to these questions. Our
results reinforce Gustafson's belief [13] that scaled work-
load will uphold higher system efficiency. However, scaled
problems may increase both computational workload and
communication overhead at the same time. The balance
between the two is hinged on how to reduce the commu-
nication-to-computation ratio (CCR) in user programs. We
will discuss all of these issues in subsequent sections.

The rest of the paper is organized as follows: In Section 2,
we present the phase-parallel model for SPMD (single
program and multiple data streams) data parallelism. Section 3
characterizes the STAP benchmark workload, where the
STAP parallelization strategy is outlined. The STAP
performance on T3D, SP2, and Paragon is presented in
Section 4. The scaling effects on T3D, SP2, and Paragon are
given in Section 5. Latency and bandwidth of ASCI
machines are assessed in Section 6. The scaling effects of
these ASCI platforms are reported in Section 7. Finally, we
summarize the research findings and comment on their
applicability and limitations. Throughout the paper, we
assess six MPP architectures and consider both hardware
and software requirements to achieve scalable performance.

2 PHASE-PARALLEL SCALING MODEL

Xu and Hwang [35] have developed a phase parallel model for
exploiting parallelism in SPMD programs. This scaling
model is refined from the BSP model by Valiant [32]. A
typical SPMD program is executed in a cascade of super-

steps, as shown in Fig. 1. Each superstep consists of a
computation phase followed by an interaction (communication)

phase. All operations in a superstep must finish before the
next superstep begins execution.

The parallelization phase lumps all initialization tasks

before entering the very first superstep. The overhead
incurred with this phase covers the time needed for process
creation, termination, grouping, regrouping, etc. The
computation phase consists of multiple processes to be
executed in parallel using local data sets preloaded to the
processing nodes. The interaction phase executes all forms of

communication operations, either point-to-point or collec-
tive communications. Massive parallelism exists at both
computation and communication phases.

The parallelization adds to the system overhead, denoted
as Tpar. Each computation phase Ci is allocated with a
computational workload of wi (in Gflop). T �i� denotes the

time to execute the wi workload on one node at phase Ci.
Thus, the total sequential time, T1 �

P
1�i�k T i� �, is the time to

execute the entire program on one node, where k is the
number of supersteps. The degree of parallelism, DOPi for
superstep i, denotes the number of parallel computations

available at phase Ci.
In the interaction phase, collective communication is

performed, such as broadcast, total exchange, barrier synchro-

nization, or reduction operations. A superstep may contain a
single computation phase, or just a parallelization phase, or
two phases of a computation followed by an interaction.

Dividing the program into supersteps enables massive
parallelism since the sequential bottleneck is moved to the
parallelization phase or to the interaction phase.

Let Tcomp, Tcomm, and Tpar be, respectively, the total

computation time, communication time, and parallelization

overhead of an SPMD program. The parallel time Tp to
execute a program on p processors is equal to the sum:

Tp � Tcomp � Tcomm � Tpar. When a phase is executed on p

processors, where 1 � p � DOPi, the execution time at
phase Ci is simply T �i�=p. The total workload equals the
sum of workloads in k supersteps. W � w1 � w2 � . . .� wk.
Several parallel performance metrics are summarized in

Table 3.
However, there are other cases where p > DOPi. There-

fore, the actual Tp�i� is calculated by dividing T �i� by the
Min�DOPi; p�. Thus, the total computation time Tcomp is
expressed as follows:

Tcomp �
X

1�i�k

T i� �
Min�DOPi;p�: �1�

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 511

Fig. 1. Phase parallel model for exploiting SPMD data parallelism.

Different communication operations may require differ-

ent amounts of time to accomplish, as we have reported in

[17]. The time of a typical communication operation is

calculated by:

Tcomp � to p� � � m

R1 p� � � to p� � �m � tc p� �; �2�

where m is the message length in byte, to�p� is the startup

latency, and R1�p� is the asymptotic bandwidth. The inverse

tc�p� � 1=R1�p� is sometimes called the per-byte time. Both

startup latency and asymptotic bandwidth are functions of

the machine size p, independent of the message size m.
Our benchmark experience shows that the parallelism

overhead Tpar is one or two orders of magnitude lower than

the computation time Tcomp or the communication overhead

Tcomm. Thus, Tpar can be ignored here without loss of much

accuracy in the timing analysis. Combining (1) and (2), we
obtain the following Tp expression:

Tp �
X

1�i�k

T i� �
Min DOPi;p

ÿ �� to p� � � m

R1 p� � : �3�

As shown in Table 3, the sustained speed Vp is obtained by

dividing the total workload W by Tp. The system speedup is

computed by the ratio Sp � T1=Tp. Let Vpeak be the peak

speed of a single processor. The system efficiency is the ratio

of the sustained speed to the peak system speed, defined by

Ep � Vp=�pVpeak�.
The critical path, T1, is defined as the theoretical

execution time using an infinite number of processors

without worry about any overhead.

T1 �
X

1�i�k

T i� �
DOPi� �: �4�

The sustained speed Vp is upper bounded by a maximum

speed defined by V1 �W=T1. The smallest p to achieve Tp �
T1 is called the maximum parallelism, denoted byNmax. Using

more than Nmax nodes will not reduce the execution time

further. Thus, one can define Nmax � MAX1�i�k�DOPi�.

The average parallelism is defined as T1=T1, which

provides an upper bound on the system speedup, that is

SpT1=T1. Brent has proven [7] that the parallel time Tp is

bounded by the following inequality:

T1=p � Tp < T1=p� T1:
Thus, the following bound on Tp is obtained:

Max�T1=p; T1� � Tp < T1=p� T1: �5�
The above performance bounds are very useful to

estimate the limits of a given MPP. Equation 2 quantifies

the communication overhead. Equation 3 is used to

compute the parallel execution time. The critical path and

performance bounds can then be easily computed using (4)

and (5).

3 THE STAP BENCHMARK AND WORKLOAD

The STAP benchmark was originally developed by MIT

Lincoln Laboratory in sequential C code for adaptive radar

signal processing on workstations. Our group parallelized

the STAP benchmark suite using MPI in five parallel

programs. We characterize these programs and the work-

load and show how to distribute the workload among

multiple nodes evenly. The STAP programs consist of some

kernel routines, which are often used in signal processing

applications.

3.1 STAP Benchmark Characteristics

The STAP benchmark suite evaluates MPP by exploiting

massive data parallelism. The input radar signals are

structured as a 3D datacube, as shown in Fig. 2a. The radar

signal datacube changes rapidly with time, corresponding

to the continuous generation of radar beams. Therefore, the

successive processing of a sequence of datacubes must be

done in real time within the PRI (pulse repetition interval).

The backend computer processes the radar datacube and

generate a target list among many targets or decoys

detected.

512 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

TABLE 3
Performance Metrics in Using the Phase Parallel Model

The benchmark requires performing 1010 to 1014 flop
(floating point operations) over a huge data set of 0.1 GB to a
few hundred GB in the fraction of a second [6], [11]. This
translates to a speed of tens of Gflop/s to 100 Tflop/s in
real-time applications. We consider two problem sizes in
STAP benchmarking experiments: the small workload versus
the large workload. The small workload has a input data set
which is bounded by the local memory of the tested MPP
node based on current technology. This small workload is
applied in Table 4, corresponding to a smaller radar
configuration with fewer antenna elements, shorter range
gates, etc. [6].

The large workload corresponds to a much bigger radar
configuration with a total computational workload of 33.26
Tflop to be performed and a total message size of 3.28 GB
for a total exchange operation. We shall consider the scaled
large workload in Sections 5 and 6 when the ASCI machines

are evaluated. The total workload W is measured by the total

flop count in the program. The STAP is a 32-bit floating-
point benchmark. The single-precision executes faster and

only uses half of the bandwidth of typical scientific
simulation programs that use double precision.

The actual flop count in a parallel program may vary due

to communication and parallelization overheads experi-
enced. The workload of the STAP program depends on the

size of its input datacube. The total message length shows the
number of bytes to be communicated. For a fixed-size

problem, the total message length is fixed. The average
parallelism in STAP programs is achievable on all commer-
cial machines we have tested. We measure the value of T1
by the flop count, such as Mflops or Gflops in Table 4, along
the critical path.

The CCR shows the average message size communicated

by unit of floating-point computation performed, denoted

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 513

Fig. 2. Parallelization of a typical STAP benchmark program (APT). (a) Dataflow in parallel STAP execution. (b) Parallel execution of the APT code
on IBM SP2.

as KB / Mflop. The HO-PD is computation intensive, hence,
its CCR is lower, only 4.49 KB/Mflop, than the others in
Table 4. The El-Stag has the highest CCR among all five
STAP programs, meaning that it requires to pass more
messages than other programs. The value of the CCR
depends on program behavior, independent of machine
characteristics or runtime conditions.

The STAP benchmark results enabled us to quantify
communication overhead in existing MPPs, as well as to
project them for the ASCI machines. The scaling results will
be particularly useful in converting the exploratory ASCI
machines to commercial models in the future. The
commercial models must be built with the latest technology
[8]. We chose a nominal radar configuration for the STAP
benchmark on existing commercial MPPs. For the ASCI
machines, the much enlarged workload will be applied.

3.2 SPMD Node Program and Internode
Communications

Each data element in the signal cube is a complex number
(two floating-point numbers). All nodes execute the same
program. Each node program consists of three computation
steps: Doppler processing (DP), beamforming (BF), and target
detection (TD), as shown in Fig. 2b. The total exchange,
broadcast, and reduction are needed in collective commu-
nications. The input data cube is partitioned into p equal
slices along the range-gate (RNG) dimension. Each node
takes one slice as its input data subcube.

In the Doppler-processing step, all nodes execute 8,192
FFT routines on their allocated data slices simultaneously.
After Doppler processing, every node must exchange their
results of FFT with every other nodes via a total exchange
operation, which involves O�p2� pairs of point-to-point
communications. The data distribution after total exchange
is represented by the horizontally sliced data cube, which is
partitioned into p equal slices along the PRI dimension. The
total message length is the sum of all messages among all
node pairs involved. Thus, the individual message length
equals the total message size 16.78 MB divided by p2

messages over p nodes.
The Householder Transform (HT) is a sequential step

performed on a single node. The HT results are broadcast to

all nodes. The next phase is to perform the beamforming
operations on all nodes. In the final Reduction (RD) phase,
each node generates a partial target list, which will be
merged to form a single target list as the output to the user.

The granularity varies among the five benchmark
programs. The HO-PD is the most computation-intensive
one with a total flop count of near 11.2 Gflop for a nominal
small workload. On a large radar configuration, this
workload could increase to 33.26 Tflop, to be discussed in
Sections 6 and 7. The STAP benchmark needs to perform
point-to-point, broadcast, reduce, and total exchange commu-
nications. The broadcast is done with a logarithmic
algorithm [17]. The fast delivery of long message relies
more on the network bandwidth. The short message is often
slowed down by the start-up latency experienced.

4 MEASURED STAP BENCHMARK RESULTS

Benchmark experimental results of thousands of parallel
STAP run on the T3D, SP2, and Paragon are reported below.
The memory, I/O, and communication bandwidth require-
ments are revealed. Architectural implications of STAP
benchmark results are given.

4.1 Measured Performance and Bottlenecks

First, we present the sustained speed of three current MPPs
and then identify their performance bottlenecks in execut-
ing the STAP programs on these machines. The sustained
speed is the raw speed measured in a benchmark run. In
real-time applications, such as the STAP, the sustained
speed is the most important one, instead of the normalized
speed with respect to a reference machine. To some extent,
the relative speed is reflected by the system efficiency.
These speed measures are reported and analyzed below.

4.1.1 Sustained System Speed

Using the critical path values in Table 4 and (5), we obtain
the speed bounds on three MPPs: SP2 within 9.34-11.0
Gflops, T3D within 3.89-4.39 Gflops, and paragon within
2.63-2.98 Gflops, if 128 nodes are used. In reality, the
sustained speed is much lower, as shown in Fig. 3, varying
with machine sizes and different platforms.

514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

TABLE 4
Workload Characteristics in STAP Benchmark

Based on our measurements, none of the commercial
machines has exceeded 10 Gflop/s speed in executing the
STAP programs up to 128 nodes. The best case is the SP2,
which achieved a 9.8 Gflops speed with 128 nodes, as
shown in Fig. 3a. In general, the SP2 achieved the highest
sustained speed, followed by the T3D, and the slowest is the
Paragon. This is true for all 15 machine-program combina-
tions we have evaluated.

Only the speed results of two extreme programs are
illustrated in Fig. 3. The HO-PD program is a computational
intensive program with a workload of 11.2 Gflop (Table 4)
and a nominal input data cube of 50.33 MB. It requires
communicating a total of 51.1 MB of messages. Hence, its
CCR is rather low as 0.049 Byte/flop. The EL-Stag program
is communication-intensive with the largest CCR rate in
Table 4.

On a 64-processor system, the SP2, T3D, and Paragon
achieved the speeds of 5.2, 2.1, and 1.4 Gflop/s, respec-
tively. With 128 nodes, the SP2 achieved the highest speed
of 9.8 Gflop/s. A 128-node Paragon achieved 2.0 Gflop/s
speed in executing the HO-PD program. The performance
dip of Paragon with eight nodes or less is due to the disk
swap delay (DSD) effect reported in [33]. The disk swap
delay is caused by the collective communications opera-
tions involving a large number of messages to be exchanged
simultaneously. Obviously, there is no communication cost
on a single-node machine.

The speed results of the EL-Stag program are shown in
Fig. 3b. Both the Paragon and T3D experienced a speed dip
on a small configuration of 16 or less nodes. This is again
due to the DSD effect. This program has a huge commu-
nication overload because it needs to handle collective
messages of 98.3 MB all in one phase (see Table 4). The
communication time in the EL-Stag program occupies a
large percentage in the total execution time. This slows
down the speed of EL-Stag program by 10 times, compared
with that of the HO-PD program.

4.1.2 Time Breakdown

To identify the bottleneck, the HO-PD execution time is
plotted in Fig. 4a for the small machines of no more than
eight nodes and in Fig. 4b for medium-sized machines from
32 to 128 nodes. The disk swap time appears only in small

configurations of Paragon. The major bottleneck in a small
MPP configuration is resulted from the disk access penalties
as shown on top of bars in Fig. 4a. For example, on a 4-node
Paragon, the disk access time is 331s, about 73 percent of the
overall execution time.

The Paragon shows the worst disk swap penalty. The
SP2 has no disk problem at all. The T3D has this problem
only up to four nodes. This is due to the fact that the local
memory in each Paragon was too small (16-32 MB) to
handle the large data set we have in STAP benchmarks. The
SP2 uses 256 MB per node to avoid the disk swap problem.
The communication time is very small in small MPPs.

On medium-sized machines, the beamforming (BF)
consumes the most computation time, as sown in the white
portions of the bars in Fig. 4b. The communication time
shows in black sections on top of the bars. The disk access
time is reduced to zero because each subdivided data slice
can fit the local memory entirely. However, the reduction in
communication time is much slower than that of the BF
time because HO-PD has the lowest CCR among the five.
As the machine size increases, the major reduction in
execution time is found in the parallel execution of the BF
phase rather than the DP phase.

4.1.3 System Efficiency

The system efficiency is defined as the ratio of the sustained
system speed to the peak system speed. The ranges of
system efficiency of three commercial MPPs are shown in
Fig. 5, considering all five STAP programs running on four
MPP sizes. The SP2 achieved the highest efficiency of
around 30 percent. However, the SP2 has a wide efficiency
range, between 2 percent and 33 percent. The Paragon has
the lowest efficiency of at most 17 percent. The T3D has
very stable efficiency rate of 22 percent to 25 percent for all
machine sizes.

Compared with the NAS and Linpack reports, these
efficiencies are not considered that low. This means the
parallelization of the STAP code was fairly successful on the
MPPs. On the other hand, all three machines have shown
less than 5 percent efficiency at the low end. This implies
that some of the STAP benchmark codes, with large
sequential bottlenecks, cannot take advantage of the
massive parallelism provided by the MPPs.

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 515

Fig. 3. Sustained speed of three commercial MPPs.

The system efficiency decreases with increasing machine

size in STAP benchmark experiments. In a relative sense,

the system efficiency reflects the normalized speed perfor-

mance because different-speed processors are used in the

MPPs. Both sustained speed and normalized speed (effi-

ciency) are important in the evaluation of MPP perfor-

mance. The sustained speed is more useful to real-time

applications like STAP. The normalized speed gives a fairer

comparison among different MPP architectures.

4.2 Memory, I/O, and Communication Requirements

We discuss below the STAP results and their architectural

implications on the memory, I/O, and communication

requirements in commercial MPP systems.

4.2.1 Memory Requirement

A key parameter for parallel execution is the physical
memory capacity per node. This parameter also affects the
processor selection in the node design and its physical
address space. The per-node memory requirements for the
HO-PD program are shown in Fig. 6a. The diamond-curve
corresponds to data memory for each node program. The
squares refer to the program memory. The total curve is the
sum of the two.

The memory requirement per node is estimated by
C1=p� C2, where p is the number of nodes allocated and C1

and C2 are two program dependent constants. The values of
C1 and C2 depend on the data slices, memory for temporary
I/O, and communication message buffers, etc. The divided
node program/data sets demand different amounts of
memory for various machine sizes. For larger machines, the
total data memory required approaches C2, which accounts

516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

Fig. 4. Breakdown of the HO-PD execution time on three MPPs coded as S for SP2, P for Paragon, and T for T3D: (a) Small machines, (b) medium-
size machines.

Fig. 5. System efficiency in executing STAP programs on three MPPs. (Captions: S = SP2, P = Paragon, and T = T3D).

for the data size and sequential and control portions of the
node program. For example, the HO-PD program requires
(102:8=p� 1:5) MB data memory, and the program memory
uses (50:3=p� 0:79� MB using data from Table 4.

Most STAP benchmarks have large problem sizes and
need more memory than what can be accommodated by a
single node on most MPPs in use today. However, the
required memory per node decreases almost linearly when
more nodes are added. The memory buffer used for
message passing is just a small percentage of the total
memory. For instance, for the HO-PD running on a Paragon
with 16 MB per-node memory, at least 16 nodes must be
used. Otherwise, the performance goes down sharply due
to excessive page faults.

4.2.2 I/O Requirement

While executing the STAP programs, the successive proces-
sing of a sequence of datacubes must be transmitted from the
distributed disk arrays or a centralized I/O subsystem to the
backend MPP in real time. Thus, the backend computer can
process the radar datacube and generate a target list among
many targets or decoys detected. The I/O bandwidth
requirement depends on the I/O data size, the machine
size, and memory/disk hierarchy.

In STAP benchmark, the data size is predetermined for
each program. To avoid the I/O bottleneck, the I/O
bandwidth is defined as the ratio of the datacube size over
the total data transfer time from disks to internal memory.
Based on the STAP operational requirement, the I/O
transfer rate must match with the parallel-processing rate
among the nodes. Fig. 6b shows that the I/O bandwidth of
the HO-PD benchmark program increases quadratically
with respect to the machine size. These I/O requirements
suggest at least a 1 GB/s I/O bandwidth when less than 128
processors are used.

The leveling-off of the I/O requirement for an even larger
machine is due to the sequential bottleneck in each node
program. When the processor speed reaches 1 Gflop/s, the
required I/O bandwidth falls within the range of 100 to
500 MB/s. With current disk and RAID technology,
sequential I/O (single-disk or single RAID) is enough
for small to medium machine sizes (e.g., up 64 nodes). But
if the machine size exceeds 64 processors, then parallel I/O is
needed to maintain a balanced system performance. With
regular I/O access patterns, parallel I/O can access the
data file in stride across multiple disks.

4.2.3 Communications Bandwidth

An often asked question is: How fast a communication

subsystem is needed in an MPP design? Both latency (or

startup time) to and asymptotic bandwidth R1 can partially

answer this question. A rule of thumb for collective MPI

communication is to make it shorter than the computation

time [15]. The bandwidth requirement for the El-Stag

program is shown in Fig. 7.
El-Stag is the most communication-intensive program in

the STAP benchmark suite. The three curves show that the

bandwidth increases with respect to the number of

processors involved in a collective communication. The

communication bandwidths of SP2, T3D, and Paragon in

Fig. 7 are in consistency with the speed ranking in Fig. 3b

and the I/O bandwidth ranking in Fig. 6. The speed and

bandwidth are highly correlated in communication-inten-

sive applications. For SPMD programs with low CCR value

(such as the HO-PD program), this correlation may be not

necessarily hold.

5 SCALING EFFECTS ON COMMERCIAL MPPS

Scaling can be conducted at various dimensions, such as the

machine size, problem size, processor speed, messaging latency,

and aggregate bandwidth of an MPP system. We analyze the

scaled performance of T3D, SP2, and Paragon with respect

to a fixed workload. In other words, we scale along all

resources dimensions, but not the problem size applied to

current machines. Increasing the problem size will be

studied in the next section when the ASCI design options

are assessed.

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 517

Fig. 7. Communication bandwidth of the El-Stag program.

Fig. 6. Per-node memory and I/O requirements of the HO-PD program.

Table 5 summarizes important scaling parameters for

executing the STAP benchmark programs on three current

MPPs. All data entries are based on measurements on the

target machines. The latency and bandwidth expressions

were derived from our previous work [17]. The total message

size, m, is the sum of all messages communicated in a

collective operation.
Using (2), the latency and bandwidth expressions are

derived for the total exchange (all-to-all) operation in Table 5.

This is the most time-consuming collective communication

operation. Similar expressions can be also derived for other

collective communication operations such as broadcast and

reduction operations mentioned in Fig. 2b. In our previous

papers [17], [36], timing experiments and procedures are

given to quantify the coefficients and powers in the latency

and bandwidth expressions. The details will not be

repeated here.

5.1 Scaling in Machine Size

The speed performance of STAP benchmark on SP2,

Paragon, and T3D is depicted in Fig. 8. We have only

considered the scaling up to 1,024 processors. The sustained

speed increases steadily as the machine size increases. The

El-Stag does not scale well with large machines for its high

CCR encountered in Fig. 8a. On the other hand, the

computation-intensive HO-PD program scales well in

Fig. 8b. In both cases, the SP2 has demonstrated the best

speed performance due to the use of a scalable network and

fast POWER2 processors.

The Paragon scales better than the T3D for the El-Stag

program, but their ranking is reversed in the HO-PD code.

The main reason is that i860 in Paragon is much slower than

Alpha 21064 in T3D. The T3D scales better for computation-

intensive codes. Another limit is the network bandwidth.

When the CCR is high in a program like El-Stag, the

network bandwidth limits the size scalability. When the

computation workload is high (like the HO-PD code), all

three MPPs scale well.
Based on 1998 technology, our scaling results imply that

a machine size up to 4,169 processors can still improve the

HO-PD performance on all three machines. Beyond this

limit, the sustained speed begins to fall due to a sharp

increase of communication time. In the case of the El-Stag

code, the upper limit is lowered to 1,200 processors in size

scalability.
The key message being conveyed here is that the size

scalability is very sensitive to the CCR in user programs.

Among five STAP programs, the scaling limit falls between

968 and 4,196 processors, depending on the program

structure. This result confirms the fact that a maximum of

1,024 processors in commercial MPPs was indeed a good

choice in 1997. The system cost does not increase linearly

with the number of processors used. In other words, cost

scaling is equally important as resources scaling. However,

cost-effectiveness is a very complex issue which is beyond

the scope of this paper.

518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

TABLE 5
Measured Machine Parameters of Paragon, SP2, and T3D in STAP Benchmark Experiments with a Small Workload

5.2 Scaling in Processor Speed

In general, the system speed improves with faster processors.

With 128 processors, we show the speed scaling effects on

three commercial machines in Fig. 9. According to Moore's

Law [25], the processor speed can improve from 1 Gflop/s to

64 Gflop/s in nine years. With 128 1-Gflop/s processors, the

peak would be 128 Gflop/s. However, Fig. 9 shows a

sustained speed between 8 and 50 Gflop/s. Using faster

processors, the Paragon shows the sharpest increase in

system speed.
The T3D shows the slowest increase rate. This is mostly

explained by the network scalability of the 2D mesh in

Paragon, as compared with the 3D torus in T3D. The SP2

shows some slowdown when the processor speed increases

beyond 64 Gflop/s. None of the three machines can scale to

1 Tflop/s performance with processor speed increases to 64

Gflop/s. The system speed reaches a limiting value when

the processor speed scales infinitely.
For HO-PD program to reach 90 percent of its limiting

speed, the processor speed of SP2, Paragon, and T3D must

increase 239, 3,005, and 337 times, respectively. Further

increase in the processor speed will boost at most 10 percent

of the performance. This result shows the importance of

matching the memory latency and network design with the

scaling of the processor speed. Overshot in processor speed

may create performance bottleneck.
The SP2 reaches 90 percent of the saturated speed when

its processor increases in speed by 239 times. The lower the

saturation point is, the better a match is expected between

the network/memory hierarchy and the processor speed. In

this sense, the SP2 processor matches nicely with its switch

network characteristics. The Paragon has the poorest match

between its subsystems. The T3D sits in the middle between

the extreme cases.

5.3 Scaling in Latency and Bandwidth

Both latency and bandwidth affect the MPP performance.

The effects of reducing latency are rather limited. But the

aggregate bandwidth has greater effects on the collective

communication, especially when the message length is

large. In both cases, the effects become saturated quickly in

all three machines.

5.3.1 Reducing Communication Latency

With reduced latencies for total exchange over 128 proces-
sors, the performance of the El-Stag program is depicted in
Fig. 10a. The latency accounts for all software overhead to
establish the communication links within a communication
group and the time required to set up the message buffers
and to process the messages. The sustained speed of the El-
Stag program is plotted below against a scaled-down
communication latency for all three commercial MPPs.

The system speed increases with reduced latency. It
quickly reaches a saturation value when the latency
becomes sufficiently small. The current latencies for total
exchange on SP2, Paragon, and T3D are 3.2, 5.6, and 9.7 ms,
respectively. When the latency is reduced to 10 �s, the
speed improves from the current speed by 2 percent on SP2
and Paragon and 5 percent on T3D. In summary, the
communication latency controls only less than 5 percent of
the STAP speed.

The values of current latency and bandwidth in paragon
and T3D have reached their saturated speed range in Fig. 10.
The latency is relatively unimportant since parallel STAP
programs use collective communication to exchange large
amount of data. Hence, the bandwidth requirement is lot
more important as shown in Fig. 10b. The darkened dots in
Fig. 10 correspond to the latency and bandwidth values
measured on commercial machines available in late 1997.

5.3.2 Scaling in Bandwidth

The performance of El-Stag program is plotted in Fig. 10b
against increasing aggregate bandwidth in three MPPs.
Again, we consider the total exchangeoperation over 128
processors. Running the El-Stag code on SP2 is most
sensitive to the bandwidth increase. But the scaling effects
become quickly saturated as well. The speed increases
sharply for the SP2 with increasing bandwidth. The SP2
achieved an aggregate bandwidth of 1.4 GB/s and a
sustained speed of 2.5 Gflop/s. Further speed increases
becomes saturated as the bandwidth becomes greater.

The T3D achieved 850 MB/s aggregate bandwidth and
1.18 Gflop/s speed. The SP2 and T3D scale within 12 percent
and 9 percent of the limiting speed when the bandwidth
increases to 1 GB/s. The Paragon achieved a bandwidth of
6.87 GB/s and a low speed of 530 Mflop/s. Scaling
bandwidth has almost no effect on the Paragon. For the

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 519

Fig. 8. Effects of increasing machine size on the performanceof two STAP programs on three commercial MPPs.

El-Stag program, the bandwidth effects are greater than that
for the HO-PD program. With lower bandwidth, increasing
processor speed becomes saturated faster. The increase in
processor speed must match the bandwidth increase to
have a balanced growth.

6 LATENCY AND BANDWIDTH OF ASCI MACHINES

The scaled, large workload cannot be tested on existing
MPPs such the T3D, SP2, or Paragon for a memory-bound
problem. Because the ASCI machines are much bigger in
machine size, memory capacity, and communication band-
width, we will test them with a much enlarged workload.
The large and small workload differs almost 3,000 times in
magnitude. For the ASCI machines, latency and bandwidth
are mostly unknown because only the Intel/SNL Option
Red was built when this paper was written. The other two
ASCI design options are still under construction and will
not be delivered to the user sites until late 1998 or later.

We use an extrapolation method to estimate the latency
and bandwidth values of the ASCI machines. We estimate
these parameters for possible execution of the HO-PD
program on ASCI machines. This estimation is guided by
the ASCI specifications reported by Crawford [9]. The
common goal of the three ASCI machines is to have a
network bandwidth which is linearly scalable. Therefore,
the asymptotic bandwidth is mainly affected by the link
bandwidth.

Machine parameters for executing the STAP benchmarks
on ASCI machines are calibrated in Table 6 for a scaled

workload. These parameters are stretched from those in
Table 5 with the help from data recently released from Intel
TFOPS machine [4], [23], the latest IBM/SP extension [3],
and the SGI/Cray Origin 2000 upgrade [2], [27]. All ASCI
computers emphasize the architectural scalability with
respect to changing workload.

The sequential time T1 corresponds to execution on a
single node of the ASCI machines. The average time to
execute a floating point operation is tied to the peak
processor speed. The processor speed for Paragon, SP2, and
T3D are 100, 266, and 150 Mflop/s, respectively, and the
processor scaling factor for processors used in Option Red
(200 Mflop/s), Blue Pacific (800 Mflop/s), and Blue
Mountain (1 Gflop/ s), are 2, 3, and 6.67, respectively.

The same reasoning was also applied to estimate the
latency expressions in Table 6. Scaling of latency is done by
reducing the coefficients in the latency expressions in
Table 5 while keeping the exponential terms unchanged.
The coefficients are reduced inversely in proportion to the
increase of the processor speed, because higher processor
speed reduces the software overhead in passing messages.

Scaling of the asymptotic bandwidth is tied to the per-
port link bandwidth and bisection bandwidth of the
interconnection networks used in the ASCI machines. The
link bandwidth of Paragon, SP2, and T3D were given as
175, 40, 150 MB/s, respectively. The corresponding link
bandwidths of Option Red, Blue Pacific, and Blue Mountain
are given as 800, 800, 1,560 MB/s, as listed in Table 2,
respectively. The ASCI Red implemented a 2D mesh
stretched from the Paragon [4], [23]. The Blue Pacific

520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

Fig. 9. Effects of increasing processor speed on three commercial MPPs.

Fig. 10. Effects of reducing latency and increasing bandwidth. (Late 1997 values are highlighted by darkened dots.)

architecture is based on the High Performance Switch (HPS)
used in SP2 [3]. The Blue Mountain is based on using the
SGI/Cray routers and the fat hypercube architecture [2],
[20] as built in the Origin 2000.

Our estimation of the latency and bandwidth in the ASCI
machines are primarily based on extending data from these
predecessor commercial machines. Fig. 11 plots the pre-
dicted startup latencies for message passing on the ASCI
machines. The latency unit was indicated in ms, 1,000 times
higher than �s used to measure the latency in today's
commercial computers.

The latency increases slowly in the Blue Pacific design,
which has the shortest latency among the three machines.
The Blue Pacific supports an affinity property which
allocates the nodes within the same SP frame to the same
user application. This property can avoid longer latency
across the SP2 frame boundary. As the machine size
increases from 128 to 8,192 processors, the latency of Blue
Pacific increases from 1 ms to 15 ms.

The Blue Mountain is second in latency growth, showing
an increase from 5 ms to 100 ms. The ASCI Red is the worst,
growing from 10 ms to 1,000 ms on very large machines.
This long latency of ASCI Red is caused by the slow

Pentium Pro processors used. It is also due to the adoption

of long-latency mesh architecture. Fig. 12 estimates the

growth of the asymptotic bandwidth in three ASCI machines

for sufficiently long messages. The Blue Mountain design

scores the highest asymptotic bandwidth of 666 GB/s if the

machine scales to 8,192 nodes. This design stretches the

S2MP nodes and the fat hypercube architecture of the

Origin 2000 to the extreme. The 1,560 MB/s link bandwidth

of the Blue Mountain design is twice as that of the Blue

Pacific design.
Both ASCI Red and Blue Pacific show a poorer

asymptotic bandwidth due to the use of interconnection

networks with narrow links and smaller bisection band-

width. The bandwidth of the Blue Pacific outperforms that

of ASCI Red for having much higher bisection bandwidth in

its network design. In general, a communication-intensive

program (such as the EL-Stag in STAP benchmark)

demands higher bandwidth requirement, while the compu-

tation-intensive one (like the HO-PD) relies on the use of a

low-latency network and high-speed processors.

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 521

TABLE 6
Machine Parameters Calibrated for Executing STAPBenchmarks on ASCI/MPPs with a Large Workload

Fig. 11. Projected latency for total exchange on the ASCI/MPPs.

7 SCALING IN ASCI MACHINE DESIGN OPTIONS

In this section, the scaling effects on machine size, problem
size, processor speed, start-up latency, and asymptotic
bandwidth are presented separately. Again, cost scaling is
not among studies.

7.1 Scaling in Machine Size

The machine size is scaled to predict the highest system speed
achievable by ASCI computers. The speed effects in scaling
the machine size from 128 to 8,192 processors are projected
on all three ASCI machines in executing the HO-PD
program. The system speed, Vp �W=Tp, is calculated by the
time expression for Tp. Speed performance covers both
small workload (Fig. 13a) and large workload (Fig. 13b).

The parallel execution time Tp is derived from (3). The
latency and bandwidth given in Table 6 are used to derive
the communication overheads, Tcomm � to�p� �m=R1�p�,
by varying the machine sizes. Blue Pacific and Blue
Mountain are projected to have approximately the same
performance as shown by the top curves in Fig. 4. They both
outperform the Option Red, mainly due to the use of faster
processors.

For the small workload, the maximum speed to run the
HO-PD program on ASCI Red, Blue Mountain, and Blue
Pacific are 22.6 Gflop/s (with 4,169 processors), 266.8 Gflop/s
(with 2,552 processors), and 317.3 Gflop/s (with 2,885
processors). The predicted performance is less than 10 percent

of the claimed peak performance of the three ASCI machines.
The small workload cannot demonstrate the full computing
power designed in the ASCI machines. Beyond the optimal
machine size (indicated within the parentheses above),
further increase on machine size will result in a decrease of
sustained speed. This is due to the offset by the increase of
communication overhead, which cancels the benefit from
using more processors.

With a large workload, the sustained system speed does
show a sublinear speedup in the Blue Pacific and Blue
Mountain options. The scaled workload does pay off as
claimed in Gustafson's law [13]. Both ASCI Blue machines
can easily achieve 1-Tflop/s performance at a machine size
exceeding 8,000 processors. As shown in Table 7, there is a
dramatic difference in the optimal machine size and the
maximum performance between the El-Stag and HO-PD
programs.

In the El-Stag code, the maximum speed is 30 Gflop/s for
both ASCI Blue machines. The first number in Table 7 is the
machine size and the number in parentheses is the maximal
speed achieved. The ASCI Red requires a very large
machine size to achieve a high speed. This suggests that
fast processors must match with faster networks. The
optimization in machine size in Table 7 cannot be repeated
on other system parameters because faster processors and
faster networks are always desired with lower latency and
higher bandwidth to yield higher performance.

522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

Fig. 12. Asymptotic bandwidth for total exchange on the ASCI machines.

Fig. 13. Effects of machine size on the performance of ASCI machines.

7.2 Scaling in Processor Speed

The projected effects of using even faster processors in three

ASCI machines are depicted in Fig. 14. Again, we consider

the execution of the HO-PD code with respect to two

workload sizes. All ASCI machines can be upgraded with

the use of faster processors, but not necessarily in a linear

fashion. For a small workload, the speed saturates quickly,

as shown in Fig. 14a. For a large workload, almost a linear

speedup is observed in Fig. 14b. The Blue Pacific shows a

speed exceeding 1 Tflop/s using 1-Gflop/s processors. The

large workload is sufficiently large to keep all processors

busy.

7.3 Effect of Latency and Bandwidth

The performance of the El-Stag program with different

communication latency is depicted in Fig. 15a. The scaling

of latency reflects the impact on the performance of the

ASCI MPP platforms. The system speed increases while

decreasing latency, and then saturates to a limiting value

quickly.
When the latency is reduced from 1 ms to 0.1 ms, the

sustained speed improves 20 percent in the Blue Pacific

and Blue Mountain machines. The ASCI Red improves

only 2 percent in speed in the same latency range. The

speed of the El-Stag program increases with the network

bandwidths of ASCI computers, as depicted in Fig. 15b. In

all cases, the Option Red shows flat low speed performance.

The sustained speed increases with bandwidth, and then

gets saturated.

When the bandwidth increases from 10 to 100 GB/s, the

speed improves less than 10 percent in the Blue machines.

The lower curves show that the Option Red does not

improve as bandwidth increases. Further increase in net-

work bandwidth may not necessarily pay off unless faster

processors and better memory hierarchy are used. This is

especially true in the case of the Option Red. Based on

Fig. 15a, all ASCI machines get saturated in speed when the

latency is reduced to 0.1 ms. From Fig. 15b, all machines

cannot further improve in speed when the bandwidth

increases beyond 100 GB/s.

7.3.1 Combined Effects

Below we scale both processor speed and network

bandwidth simultaneously for both small and large work-

loads. The 3D diagrams in Fig. 16 show the combined

effects. The speed range of the processors is limited from 1

to 16 Gflop/s. The bandwidth increases from 1.6 to 102.4

GB/s. These ranges are very close to the predicted processor

speed and network bandwidth for the next decade.
For the small workload and low bandwidth, all ASCI

machines increase in speed slightly with the use of faster

processors. As the bandwidth increases, the performance

surfaces become much steeper. The largest gap occurs when

the bandwidth increases to 12.8 GB/s for a small workload.

The message here is that simply increasing bandwidth

alone without increasing processor speed will not pay off.

The processor speed and network bandwidth should

increase proportionally, as shown in Fig. 16.

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 523

TABLE 7
The Optimal Machine Sizes of ASCI Machines for Executing Two STAP Codes

Fig. 14. Effects of processor speed on the ASCI performance.

For a large workload, all the speed surfaces on the
right side increase steadily, even with a low bandwidth.
With 1 Gflop/s processors and 1.6 GB/s link bandwidth,
the Blue Mountain may achieve a 0.8 Tflop/s perfor-
mance, about 25 percent of the peak speed in Table 2. The
Blue Pacific may achieve 20 Tflop/s if the processor speed
were scaled to 16 Gflop/s with an aggregate bandwidth of
102.4 GB/s. As Fig. 16b shows, the system speed is less
sensitive to the increase of bandwidth alone. The Option
Red is least sensitive to bandwidth increase for a large
workload.

A machine running a small workload is more sensitive to
bandwidth upgrade than scaling in processor speed. For a
large workload, upgrading both processor speed and
network bandwidth will enhance the performance linearly
in both dimensions. However, the system speed becomes
less sensitive to bandwidth increase when the processor
speed becomes extremely high. In general, scaling along
multiple resources dimensions simultaneously should be
conducted in a balanced manner. Our scaling study has
ignored the cost-effectiveness factor because it is out of the
scope of this paper.

8 RELATED WORK AND CONCLUSIONS

We summarize below the major research findings of this
scalability study. Then we discuss the limitations and
possible generalization of our work. Finally, we make a
number of suggestions for further research work to follow.
Related works are also commented upon.

8.1 Summary of Research Findings

Among the three commercial MPPs, the SP2 shows the
highest speed and efficiency. This is mainly attributed to the
use of a well-designed switching network that is integrated
with middleware support for clustering operations. By far,
the SP2 has the best middleware support for single system
image (SSI) in cluster-structured MPPs [16]. The T3D
demonstrates the highest aggregate bandwidth with an
impressive design in its memory hierarchy. The T3E is
improved further in this aspect. Both caching and remote
memory accesses have been accelerated in the T3D/T3E
series.

The Paragon trails far behind in all performance
attributes in our study. We found that the bottleneck comes

mainly from the use of slow processors (i860 in Paragon and
Pentium Pro in ASCI Red) and a long latency incurred with
the execution of the NX or MPICH for passing messages.
The mesh networks in the Intel MPP Series have been
proven quite scalable in size, but not necessarily in
performance. The long latency in Paragon is largely
attributed to the use of low-level primitives or heavy
weight processes for message passing.

This latency problem was solved in the SP2 and T3D by
fine tuning of the MPI operations to better match with the
target machine architecture. For communication-intensive
programs (like the El-Stag), its speed performance is more
sensitive to the bandwidth variation, while computation-
intensive programs (like the HO-PD) are more sensitive to
the magnitude of the message-passing latency. These two
extreme program types are distinguished by the CCR
measure shown in Table 4. The CCR value of a given
program can be adjusted by algorithm redesign or by an
intelligent compiler to yield a lower CCR.

Among the ASCI design options, the Blue Pacific has the
potential to deliver the highest performance. Based on data
released by IBM, it became the fastest supercomputer ever
built up to late 1998. The Blue Pacific is quite scalable for
having a cluster architecture which is supported by many
SSI services such as single-entry point, global job manage-
ment, single networking, etc. The strength of the Blue
Pacific machine lies in its low latency, better software
support, and many SSI services provided.

The Blue Mountain is projected to achieve the second
best performance. Its DSM cluster architecture uses a high-
bandwidth interconnect improved from the SGI/Cray
Origin 2000. The DSM architecture limits its scalability,
because remote memory update through page migration
takes longer time than today's message-passing operations.
However. the use of 1 Gflop/s SN1 processors helps the
Blue Mountain accelerate floating-point operations.

The ASCI Red was designed in 1995 and implemented in
1996, two years ahead of the ASCI Blue machines, although
the ASCI Red was ranked the world's fastest computer with
a maximal speed of 1.338 Terflops. Our analysis shows that
it may achieve the lowest STAP speed on today's ASCI Red
configuration compared with the projected speed of the
ASCI Blue machines. This was attributed to both hardware
and software problems associated with the ASCI Red
implementation in 1997.

524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

Fig. 15. Effects of communication latency and networkbandwidth on the ASCI machine performance.

It is not a surprise to project the trailing in ASCI Red

speed due to the use of slower processors and older

interconnect technology. Another drawback is on the

software side. All Intel MPPs were implemented with

third-party operating systems and message passing li-

braries, while both IBM and SGI/Cray have developed

their own system software. The poor match between

hardware and software has pulled down the performance

of both Paragon and Option Red in succession. Of course,

our speed projections are biased by STAP behavior. The

ranking of the ASCI machines may change if different

benchmarks are used to evaluate them in the future.

8.2 Limitations and Generalization

We discuss below MPP applications other than the STAP

benchmark for signal processing. The above benchmark

findings suggest that a balanced scalable design in both

architectural resources and software support is the key to

future success in massively parallel processing. Our results

reinforce this rule of the thumb.

Our phase-parallel scaling model applies only to
regularly structured coarse-grained SPMD programs. Our
resource scaling method does not work with fine-grained
SIMD (single instruction stream and multiple data streams) or
MIMD (multiple instruction streams and multiple data streams)
machines either [18]. This does pose some limitations in
applying our scaling model.

The restriction is not as bad as it looks because most
scientific codes running on existing MPPs choose the
coarse-grained SPMD mode [18] instead of the fine-
grained SIMD, MIMD, or coarse-grained MPMD (multiple
programs and multiple data streams) operations. Many real-
life benchmarks have regular structures similar to the
STAP benchmark. Therefore, our STAP benchmark ex-
periments can be generalized to model the resource
scaling effects of some regularly structured programs in
the NAS [26], Linpack [12], C3I [24], SPLASH-2 [34], and
Parkbench [14] benchmarks, all of which have coarse-
grained characteristics.

All of the above benchmarks should be tested on current
and future MPPs. The high-performance supercomputing

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 525

Fig. 16. Combined effects of scaling processor speed and communication bandwidth on the performance of ASCI machines.

community has speculated the use of LAN-based multi-
computer clusters [16], DSM multiprocessors, or even
Internet-connected metacomputers to build future MPPs
[10], [15], [16], [18]. However, neither DSM nor message
passing is practical in handling massive parallelism because
both page migration and MPI operations are still very slow
today. Fast message passing and fast remote memory
update must match the growth rate of processor speed
before network-based machines can handle massive paral-
lelism effectively.

Irregular problems pose another dimension of difficulty
to evaluating the MPPs. Irregularly structured N-body
problem has been studied by Singh et al. [29]. Their scaling
experiments were conducted on the DASH multiprocessor.
Both CCR and working-set size grow slowly when running
a large problem on a larger machine. The lack of a single
address space may substantially degrade the performance.
Irregularity in program and data structures and unpredict-
able communication patterns demand a new scaling model
that could be very different from our phase-parallel model.

The new scaling model must be designed to handle
randomness in MPMD programs and to cope with the
complex communication patterns encountered in distribu-
ted programs. Such a scaling scheme is even more difficult
to formulate in a network-based cluster environment. The
LogP model [10] was an initial attempt to handle randomly
structured parallelism. Further research is needed to merge
the strengths of the LogP model, the BSP model [32], and
our phase-parallel model to deal with randomly structured
parallelism. With today's long latency in passing messages,
the new model may have to focus on coarse-grain MPMD
programs.

8.3 Suggestions for Extended Work

Our STAP benchmark is MPI-coded. Our experiences
suggest that users should always apply the most powerful,
high-level MPI functions available instead of using a
sequence of low-level primitives. For communication-
intensive applications, such as the EL-Stag program in
STAP, a high network/memory bandwidth is crucial to
yield high performance. We suggest testing the STAP
benchmark on clusters of workstations. However, the
effects of long communication overhead in clusters are
severer than those in today's MPPs. Therefore, the problems
become more difficult to handle.

How to reduce the node granularity to fine grain posts
an important challenge to increase the degree of parallelism
in MPP or cluster applications. Hiding latencies within
computations is desirable in many scientific or business
computations. A possibility is to extend the phase-parallel
model as such to overlap the computation phases with the
interaction or communication phases. Clustering offers the
potential to handle massive data parallelism in the future if
the message passing overhead could be hidden within the
computations. Besides, clusters offer higher availability in
case of failure of a few nodes among thousands of nodes.

Our scaling model helps MPP designers determine the
latency, bandwidth, processors, memory, networks, and
I/O rate desired for specific applications. It can also be
applied to optimize the partition of large workload among
the MPP nodes. MPP users can apply our scaling model to

reveal architectural bottlenecks and to trade off between
computations and communications in the optimization of
parallel applications. The processes of resource scaling,
problem scaling, and cost scaling must be balanced to
expect a truly scalable performance in future MPP systems
or in large-scale clusters of computers.

ACKNOWLEDGMENTS

This work was carried out by the co-authors at the
University of Hong Kong during 1996-1998. We appreciate
the valuable suggestions from the anonymous referees. We
are indebted to Dr. Hai Jin for his help in redrawing some of
the illustrations. The research was supported by Hong
Kong Research Grants Council grants HKU 2/96C, HKU
7022/97E, HKU 548/96E, and HKU 7030/98E and by the
development fund of the Area-of-Excellence in Information
Technology from the University of Hong Kong in 1998.

REFERENCES

[1] T. Agerwala, J.L. Martin, J.H. Mirza, D.C. Sadler, D.M. Dias, and
M. Snir, ªSP2 System Architecture,º IBM Systems J., vol. 34, no. 2,
pp. 152-184, 1995.

[2] ASCI Blue Mountain, http://www.lanl.gov/Internal/projects/
asci/bluemtn, Dec. 1997.

[3] ASCI Blue Pacific home page, http://www.llnl.gov/asci/
platforms/bluepac, Dec. 1997.

[4] ASCI Option Red home page, http://mephisto.ca.sandia.gov/
TFLOP/sc96, Dec. 1997.

[5] P. Bhat, Y. Lim, and V. Prasanna, ªScalable Portable Parallel
Algorithms for STAP,º Proc. Adaptive Sensor Array Processing
Workshop, MIT Lincoln Lab., Mar. 1996.

[6] R. Bond, ªMeasuring Performance and Scalability Using Extended
Versions of the STAP Processor Benchmarks,º technical report,
MIT Lincoln Lab., Dec. 1994.

[7] R.P. Brent, ªThe Parallel Evaluation of General Arithmetic
Expressions,º J. ACM, vol. 21, no. 2, pp. 201-206, 1972.

[8] D. Clark, ªASCI Pathforward: To 30 Tflops and Beyond,º IEEE
Concurrency, vol. 6, no.2, pp.13-15, Apr.-June, 1998.

[9] D. Crawford, ªASCI Academia Strategic Alliances Program:
Research Interests in Computer Systems and Computational
Science Infrastructure,º Sandia National Lab., Dec. 1996.

[10] D.E. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E.
Santos, R. Subramonian, and T. von Eicken, ªLogP: Towards a
Realistic Model of Parallel Computation,º Proc. ACM Symp.
Principles and Practice of Parallel Programming, pp. 1-12, 1993.

[11] J. Day, ªTutorial on Digital Adaptive Beamforming,º Proc. IEEE
National Radar Conf., Martin Marietta Corp., Utica, N.Y., 22 Apr.
1993.

[12] J.J. Dongarra, ªThe Linpack Benchmark-Parallel Report,º http://
performance.netlib.org/performance/html/linpack-parallel.
data.co10.html, 1996.

[13] J.L. Gustafson, ªReevaluating Amdahl's Law,º Comm. ACM,
vol. 31, pp. 532-533, 1988.

[14] R.W. Hockney and M. Berry, ªPublic International Benchmarks
for Parallel Computers: PARKBENCH Committee Report No. 1,º
Scientific Programming, vol. 3, no. 2, pp. 101-146, 1994.

[15] C. Holt, M. Heinrich, J. Singh, E. Rothberg, and J. Hennessy, ªThe
Effects of Latency, Occupancy, and Bandwidth in Distributed
Shared Memory Multiprocessors,º Technical Report CSL-TR-95-
660, Computer Systems Lab., Stanford Univ., Jan. 1995.

[16] K. Hwang, E. Chow, C.L. Wang, H. Jin, and Z. Xu, ªDesigning SSI
Clusters with Hierarchical Checkpointing and Single I/O Space,º
IEEE Concurrency, pp. 60-69, Jan.-Mar. 1999.

[17] K. Hwang, C.J. Wang, and C.-L. Wang, ªEvaluating MPI
Collective Communication on the SP2, T3D, and Paragon Multi-
computers,º Proc. Third Int'l Symp. High-Performance Computer
Architecture, (HPCA-3), pp. 106-116, San Antonio, Tex., 1-5 Feb.
1997.

[18] K. Hwang and Z. Xu, Scalable Parallel Computing: Technology,
Architecture, Programming. New York: McGraw-Hill, 1998.

526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 5, MAY 1999

[19] K. Hwang, Z. Xu, and M. Arakawa, ªBenchmark Evaluation of the
IBM SP2 for Parallel Signal Processing,º IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 5, pp. 522-536, May 1996.

[20] J. Laudon and D.E. Lenoski, ªThe SGI Origin: A ccNUMA
Highly Scalable Server,º Proc. 24th Int'l Symp. Computer Archi-
tecture, pp. 241-251, June 1997.

[21] D.E. Lenoski, J. Laudon, T. Joe, and D. Nakahira, ªThe DASH
Prototype: Logic Overhead and Performance,º IEEE Trans. Parallel
and Distributed Systems, vol. 4, no. 1, pp. 41-61, Jan. 1993.

[22] R.P. Martin, A.M. Vahdat, D.E. Culler, and T.E. Anderson,
ªEffects of Communication Latency, Overhead, and Bandwidth
in a Cluster Architecture,º Proc. 24th Int'l Symp. Computer
Architecture, pp. 85-97, Denver, Colo., 2-4 June 1997.

[23] T.G. Mattson, D. Scott, and S. Wheat, ªA TeraFLOPS Super-
computer in 1996: The ASCI TFLOPS System,º Proc. Sixth Int'l
Parallel Processing Symp., pp. 84-93, 1996. Also available as http://
www.cs.sandia.gov/ISUG97/papers/Mattson/OVERVIEW.html.

[24] R. Metzger, B. Voorst, L. Piere, R. Jha, W. Au, M. Amin, D.
Cstanon, and V. Kumar, ªThe C3I Parallel Benchmark Suite -
Introduction and Preliminary Results,º Proc. Supercomputing, 1996.

[25] G.E. Moore, ªCan Moore's Law Continue Indefinitely?º Computer-
world, July 1996.

[26] W. Saphir, A. Woo, and M. Yarrow, ªThe NAS Parallel Bench-
marks 2.1 Results,º NASA Ames Research Center Report NAS-96-
010, Aug. 1996.

[27] Silicon Graphics Inc., ªOrigin 200 and Origin 2000 Technical
Report,º Silicon Graphics Computer Systems, Mountain View,
Calif., 1997.

[28] SGI/CRI, ªCray T3E Information,º http://www.cray.com/
products/systems/crayt3e/, 1997.

[29] J.P. Singh, J.L. Hennessy, and A. Gupta, ªImplications of
Hierarchical N-Body Methods for Multiprocessor Architectures,º
ACM Trans. Computer Systems, vol. 13, May 1995.

[30] D.G. Stunkel, B. Shea, M.G. Abali, C.A. Atkins, C.A. Bender, D.G.
Grice, P. Hochschild, D.J. Joseph, B.J. Nathanson, R.A. Swetz, R.F.
Stucke, M. Tsao, and P.R. Varker, ªThe SP2 High-Performance
Switch,º IBM Systems J., vol. 34, no. 2, pp. 185-204, 1995.

[31] X.H. Sun and J. Zhu, ªPerformance Prediction, A Case Study
Using a Scalable Shared-Virtual-Memory Machine,º IEEE Parallel
and Distributed Technology, pp. 36-49, Winter 1996.

[32] L.G. Valiant, ªA Bridging Model for Parallel Computation,º
Comm. ACM, vol. 33, no. 8, pp. 103-111, Aug. 1990.

[33] C.J. Wang, C.-L. Wang, and K. Hwang, ªSTAP Benchmark
Evaluation of the T3D, SP2, and Paragon,º Proc. 10th Int'l Conf.
Parallel and Distributed Computing Systems, PDCS-97, pp. 181-188,
New Orleans, 1-3 Oct. 1997.

[34] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, ªThe
SPLASH-2 Programs: Characterization and Methodology,º Proc.
Inl'l Symp. Computer Architecture, pp. 24-36, 1995.

[35] Z. Xu and K. Hwang, ªEarly Prediction of MPP Performance:
SP2, T3D, and Paragon Experiences,º J. Parallel Computing, vol. 22,
pp. 917-942, Oct. 1996.

[36] Z. Xu and K. Hwang, ªModeling Communication Overhead: MPI
and MPL Performance on the IBM SP2,º IEEE Parallel and
Distributed Technology, pp. 9-23, Mar. 1996.

Kai Hwang received the PhD degree in elec-
trical engineering and computer science from
the University of California at Berkeley in 1972.
He is a professor of computer engineering at the
University of Southern California. Prior to joining
USC, he taught at Purdue University for many
years. An IEEE fellow, Dr. Hwang specializes in
computer architecture, digital arithmetic, parallel
processing, and distributed computing. He has
published more than 150 scientific papers and

six books in computer science and engineering. His latest book,
Scalable Parallel Computing (McGraw-Hill 1998), coauthored with
Zhiwei Xu, covers the architecture and programming of scalable
multiprocessors or multicomputer clusters. He served as a distinguished
visitor of the IEEE Computer Society, on the ACM SigArch Board of
Directors, and as the founding editor-in-chief of the Journal of Parallel
and Distributed Computing. He chaired international conferences,
ARITH-7 in 1985, ICPP 86, IPPS 96, and HPCA-4 in 1998. His current
interests focus on fault tolerance and single system image in multi-
computer clusters and integrated information technology for multiagent,
Java, Internet, and multimedia applications.

Choming Wang was a PhD candidate in
computer engineering at the University of South-
ern California, Los Angeles, where he received
the MS degree in computer engineering in 1986.
He received the BS degree in chemical engi-
neering from the National Taiwan University in
1979. From 1986 to 1995, he worked as a
software engineer at Siemens Pacesetter, Inc.,
Sylmar, California. His technical interest covers
the areas of software engineering, parallel

computing, and supercomputer applications.

Cho-Li Wang received his BS degree in
computer science and information engineering
from National Taiwan University in 1985. He
earned his MS and PhD degrees in computer
engineering from the University of Southern
California in 1990 and 1995, respectively. He is
currently an assistant professor of computer
science at the University of Hong Kong. His
research interests include high-speed network-
ing, computer architectures, and software en-

vironment for distributed multimedia applications. He is a member of
the IEEE.

Zhiwei Xu received his MS degree in electrical
engineering from Purdue University in 1984 and
his PhD degree in computer engineering from
the University of Southern California in 1987.
From 1987 to 1994, he taught at Rutgers
University and New York Polytechnic University.
He participated in the STAP/MPP benchmark
projects led by Dr. Hwang at USC and HKU from
1994 to 1998. Presently, he is a professor and
chief architect at the National Center for In-

telligent Computing Systems (NCIC), Chinese Academy of Sciences,
Beijing, China. He leads a design group at NCIC building a series of
cluster-based superservers. His current interests lie in network-based
computing, parallel programming, and supercomputing technology.

HWANG ET AL.: RESOURCE SCALING EFFECTS ON MPP PERFORMANCE: THE STAP BENCHMARK IMPLICATIONS 527

