Gamelet: A Mobile Service Component for Building Multi-server DVE on Grid

Tianqi Wang, Cho-Li Wang, Francis C.M.Lau
Department of Computer Science
The University of Hong Kong

What is DVE?

A Distributed Virtual
Environment (DVE) system is
a software system through
which people who are
geographically dispersed over
the world can interact with each
other by sharing a consistent
environment in terms of space,
presence and time.

- * realistic 3D graphics
- * real-time interaction
- a large number of users

Many DVE Applications

- Military team training
- Collaborative design and engineering
- Increasingly used for:
 - virtual shopping mall
 - Interactive e-learning
 - Multiplayer online games

General Client-server Model

Server Tasks:

- Receive user messages
- Calculate world state
- Ensure objects consistency
- Message filtering/compressing
- Administration work

Client Tasks:

- Scene rendering
- Simple calculations

What are the problems

- World State Consistency
- Real-time Response

- The number of users is unpredictable.
 - Support scalability and dynamic resource aggregation
- Workload imbalance among servers as users may act freely in the virtual world
 - Need dynamic load transfer support

Grid Computing

- Grid Computing (I. Foster)
 - Concerned with <u>flexible</u>, <u>secure</u>, <u>coordinated</u> resource sharing among dynamic collections of virtual organizations

Grid Service:

- * A kind of stateful, transient web service
- Large-scale scientific experiments (DOE Science Grid)
- Large-scale data analysis (EU Data Grid)

DVE Systems on Grid

- Butterfly Grid
 - Easy to use **commercial** grid computing environment for developers
 - High-performance networked servers for the publishers
- Cal-(IT)² Game Grid

Provides the first massively multi-user online game grid for research, teaching, art, and experimentation

Challenges

- How to re-design the existing DVE system into an <u>open and service oriented</u> system
 - Map monopolistic model into OGSA framework
- How to ensure the <u>quality of service</u> from the end users' perspective
 - Dynamic load migration/balancing

Our Approach

- Propose a service-oriented framework
 - Based on a component called gamelet

❖ Propose an Adaptive Gamelet Loadbalancing (AGL) algorithm

Multi-server Architecture

- Layered design:
 - Monitor Server
 - Worker Server
 - CommunicatorServer

Gamelet Concept

A mobile <u>service component</u> that is responsible for processing the workload introduced by a <u>partitioned</u> virtual environment.

- Discussions:
 - Load awareness
 - High mobility
 - Embedded Synchronization

System Framework

Message Route/Gamelet Migration

Load Balancing Strategy

- Special characteristics of Grid environment:
 - High latency, heterogeneous machines, etc
- * Adaptive Gamelet Load-balancing algorithm:
 - Use more accurate workload model
 - Adapt to the network latency and resource heterogeneity

AGL Algorithm

Graph repartition problem

- 1. For each gamelet G_i, create a node N_i in the graph G
- 2. For any two nodes N_i and N_j, if there are some intercommunications C_i,j between them, create an edge between N_i and N_j with value W_i,j = C_i,j.

- Threshold delta
- AGL Algorithm
 - 🗸 1. 👝 Select server **m, n**
 - 2. $Cost(G_i, \mathbf{n}) = Syn'(G_i) Syn(G_i)$ $Syn(G_i) = Sum\{ W(i,j) * Latency(m,n) \}$
 - 3. \rightarrow Select a gamelet with the smallest $Cost(G_i, n)$
 - 4. Estimate workload transferred:

 $Percentage(G_i) = Val(G_i) / Sum\{ Val(G_j) \}$ $Val(G_i) : weighted package sending rate$

- 5. Do 1-4 until original server is under threshold
- 6. If there is still an overloaded server, add a new Grid server, go to step 1.

Twofold Meaning

- Adapt to the network latency
 - Cost model: synchronization cost and grid inter-server latency

Workload evaluation based on the activities of the clients and also consider the resource heterogeneity

Prototype Design and Implementation

- Virtual environment:
 - ❖ Partitioned world: 100*100*20
 - Overlapping length: 5
- Client simulator
 - Random movement per 100ms
 - Hotspot (25ms)
 - **❖** Data packets (32 B)
- Performance parameters
 - Response time
 - System Capacity

Testing Environment

- Gamelet and Monitor (GT3)
- Client simulator, communicator (J2SE 1.4.2)
- Server configurations
 - ❖ Linux kernel 2.4.18, P4 2.0GHz CPU
 - ❖ 512M RAM, 100Mbps Ethernet
 - Default latency within several million seconds

Latency (ms)	S 1	S 2	S 3	S4	S5	S 6	S 7	S 8
S2	100	1	200	150	100	100	100	50

Gamelet Creation and Migration

Monitor creates 16 gamelets sequentially on 1/2/4 servers respectively

- Gamelet migration time
 - The number of avatars
 - Interaction overhead: 30 –40 ms

AGL Algorithm Evaluation

- \bullet *Delta* = 90%;
- Initially, 16 gamelets in one server; servers are added as necessary
- Compare with even-avatar algorithm (EAL)

Average Response Time

Figure 1	91	91 Clients				CPU Load				/er	RT (:		ms) AB		
	4.5	Servers	\mathbf{S} 1	1	S2	S3	S4	T	raffic	S	1 S	2 S	S S4	ms	
		AGL			_					-				248.	
		EAL	100	1%	.00%	99%	42%	184.	1 Kb	ps 50	57	2 51	2101	422.0	O
Figure 2	$\overline{1}$	176 Clients				CPU Load							Inter-server		
	8 Serve:		rs S1		S2	S3	3 S4 S5 S6		5 S7	S7 S8		Traffic			
	_	AGL		90%	6 729	699	% 7 19	% 719	% 909	% 699	% 68	% 89	91.1 F	⟨bps	1
		EAL		90%	6 889	% 89 9	% 919	% 899	% 909	% 359	% 36	% 74	126 I	Kbps	
		176 C	lier	nts	RT (ms) ART										
Figure 3	8 Ser		rvei	rs	S1	S2	S3	S4	S5	S6	S7	S8	(ms	s)	
		AGL EAL			270	323	180	180	184	247	175	158	214.	.6	
					235	402	309	278	214	235	137	110	240.	.0	

- Influence of network latency
- Influence of workload model

System Capacity

- More scalable and cost-effective
- Increase by up to 80%

Related Work

- CittaTron (Osaka University, 2001)
 - Multi-server networked Internet game
 - Only consider user number for load transfer
- * Cyber-walk (CTU, 2002)
 - * A distributed web walk through system
 - Partition is adjustable
 - Several hotspots -> cascading effect

In our proposed gamelet-based multi-server framework, these problem are resolved.

- * NetEffect (NUS, 1997)
 - VE divided into separated communities
 - Non-transparent load balancing

Thank You! Questions?