
InstantGrid: A Framework for On-Demand Grid

Point Construction

Roy S.C. Ho, K.K. Yin, David C.M. Lee, Daniel H.F. Hung,
Cho-Li Wang, and Francis C.M. Lau

Department of Computer Science
The University of Hong Kong, Hong Kong?

{scho,kkyin,cmlee,hfhung,clwang,fcmlau}@cs.hku.hk

Abstract. This paper proposes the InstantGrid framework for on-demand
construction of grid points. In contrast to traditional approaches, Instant-
Grid is designed to substantially simplify software management in grid
systems, and is able to instantly turn any computer into a grid-ready
platform with the desired execution environment. Experimental results
demonstrate that a 256-node grid point with commodity grid middleware
can be constructed in five minutes from scratch.

1 Introduction

To build platforms for grid computing is nontrivial. First, there is the problem
of potential mismatch between the platforms and what is expected or required
by the applications. Therefore, grid systems need to build upon a custom model
that can manage multiple execution environments (EE’s) in order to provide
flexible support matching the applications. Secondly, the installation and con-
figuration of contemporary OS’es or middleware are usually a time-consuming
process. As a result, it could take a long while to construct an EE, or to switch
from one EE to another, which complicates system administration and results
in poor user experience. Finally, it is difficult to construct grid platforms with
customized EE’s in production systems—even if there are idle computing re-
sources. This is because the installation of additional software might affect the
data originally stored in the permanent storage, an effect that is certainly not to
be desired. While the current R&D efforts have been focusing on how to aggre-
gate (e.g., [1][4]) and make use of (e.g., [2][3]) distributed computing resources,
few addressed the above issues. In this paper, we report on the InstantGrid

framework, which is the result of our effort in creating a tool to facilitate the
management of EE’s and their efficient dissemination to networked machines
on-demand according to the requirements of the target applications. In response
to the last problem mentioned above, InstantGrid supports an in-memory exe-

cution mode for an EE to be executed entirely in the physical memory without
affecting the data stored in the permanent storage.

? This research is supported in part by HKU Foundation Seed Grant 28506002, HKU
Large Equipment Grant 01021001, and a HKU grant for the HKU Grid Point.



2 The InstantGrid Framework

InstantGrid works in the client/server mode, where all EE’s are stored in and
managed by an InstantGrid server from which the compute nodes obtain their
EE’s on-demand to form the grid platform (Figure 1). The framework allows
for replication of the InstantGrid service for better performance and reliability.
The framework consists of an EE management model and an EE dissemination

service, as shown in Figure 2.

OS’es and grid
middleware are
disseminated via
the network

Cluster nodes Desktop computers

instance
InstantGrid service Replicated service

Fig. 1. InstantGrid Servers and Clients

Proactive Software Configuration

EE Management Model

EE Dissemination Service

Application−Centric Software Grouping

File Sharing
Policy

Compute Node
Storage Mgmt.

Fig. 2. The InstantGrid Framework

Application-centric software grouping. In InstantGrid, an EE is a col-
lection of software components, including an OS, the supporting libraries and
applications, grid middleware, cluster middleware, user applications, and the
user data. Essentially, we can see what is in an EE by taking a snapshot of all
software components in a running system. Each EE is associated with an EE

specification, which contains a list of software required by a specific application.
This application-centric requirement specification facilitates EE management as
different users and their applications may require different platforms over time.
Once the administrators have defined the list of software in each EE, the system
can conveniently switch from one EE to another according to the user require-
ments, without having to deal with the individual software components.

Proactive software configuration. Traditionally, the OS and system soft-
ware are installed and configured incrementally. In InstantGrid, by contrast,
software belonging to the same EE have to be configured in the central server
before being disseminated to the compute nodes. In other words, InstantGrid
creates and maintains ready-to-run versions of various EE’s. This arrangement
saves installation and configuration time during the dissemination process. Nev-
ertheless, some software must perform local configuration. For instance, some
grid middleware (e.g., Globus Toolkit) require host credentials such as certifi-
cates, which have to be handled locally at the respective nodes. In any case,
InstantGrid takes a “greedy” approach and carries out as many configuration



tasks in the central server as possible, leaving minimum work to the compute
nodes.

Discriminative file sharing mechanisms. Disseminating the entire EE
from the InstantGrid server to the compute nodes is challenging as the size of
a typical EE could be in the order of gigabytes, and full replication is therefore
impractical. However, to access all files through NFS all the time is also inefficient
since many files in an EE are frequently updated—retrieving them through the
NFS would result in poor runtime performance as well as heavy loading at the file
server. InstantGrid adopts a hybrid approach to the problem: it only replicates
files that are likely to be modified (e.g., the files in /etc or /dev), and leaves
the others in the file server for sharing via a network file system.

Compute node storage management. InstantGrid allows the files being
replicated to a compute node to be stored in the hard disk (“Full-copy to HD”) or
entirely in the physical memory (“Full-copy to RAM”). The in-memory execution
mode enables any computer to participate in a grid without affecting the data
stored in its local storage. If the files are stored in the hard disk, InstantGrid
supports an additional option of I/O caching (“Copy-if-needed”): before a file is
transferred from the InstantGrid server to a compute node, InstantGrid would
first check if there is a local version of that file; if so, it would verify whether
it is up-to-date, and file transfer would only take place if the file is missing or
outdated.

EE dissemination service. This service is offered through a DHCP server,
a TFTP server, and an NFS server. When a client machine boots up, it obtains its
IP address and the kernel (a Linux kernel in our reference implementation) from
the DHCP and TFTP servers, respectively. When the booting process finishes,
InstantGrid constructs the pre-defined EE by replicating writable files to local
storage and mounting the read-only directories through the NFS.

3 Experiments

We evaluated the performance of InstantGrid using the HKU CS Gideon cluster
which consists of 300 Pentium IV machines (we used 256 in the experiments).
The EE’s are disseminated through a hierarchical Ethernet network in which 13
24-port Fast Ethernet switches are interconnected by a Gigabit Ethernet switch.
The InstantGrid server, which connects to the Gigabit Ethernet, is a Pentium
IV machine with 512MB RAM and an IDE hard disk. In the experiments, In-
stantGrid disseminated the Fedora Core 1 OS to the cluster nodes by sharing
the /bin, /lib, /sbin, and /usr directories through the NFS, and replicating
the remaining directories to the nodes’ local storage.

Figure 3(a) presents the time to construct a grid point which is a cluster con-
sisting of a frontend node (Fedora OS, Globus Toolkit 2.4, Ganglia, and PBS)
and a number of compute nodes (Fedora OS, Ganglia, PBS, and MPICH-G2).
The results show that a 256-node grid point can be constructed from scratch in
three (“Copy-if-needed”) to five (“Full-copy to HD”) minutes. The good perfor-
mance mainly attributes to the proactive software configuration in InstantGrid,



C
on

st
ru

ct
io

n 
tim

e 
(s

ec
on

ds
)

Number of compute nodes

(a) A cluster−based grid point

Full−copy to RAM
Full−copy to HD
Copy−if−needed

50

100

150

200

250

300

0 50 100 150 200 250 300

C
on

st
ru

ct
io

n 
tim

e 
(s

ec
on

ds
)

Number of compute nodes

(b) Standalone grid points

Full−copy to RAM

Copy−if−needed
Full−copy to HD

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300

Fig. 3. Construction Time of Grid Points

which shortens substantially the dissemination time. Figure 3(b) shows the con-
struction time of standalone service grid points (Fedora OS, Globus Toolkit 3.2,
and Ganglia). The reason for the longer construction time compared to that
of the previous test is that each compute node is treated as a standalone grid
point, i.e., each node requires a unique host certificate; and that the certificates
have to be generated sequentially in a central certificate authority server. This
result suggests that some software configuration processes are indeed time con-
suming, which should either be avoided or redesigned to allow for more efficient
deployment.

4 Conclusion

We have proposed the InstantGrid framework for on-demand construction of
grid points. The experimental results show that InstantGrid is able to efficiently
construct Linux-based grid points with commodity grid middleware. Future work
will be conducted along two dimensions. First, we will devise standard proto-
cols for communicating EE specifications between the InstantGrid servers and
compute nodes. Secondly, we will look into possible performance optimizations
for InstantGrid in WAN, which could enable remote construction of grid points
through broadband networks.

References

1. A. Grimshaw and A. Ferrari and A. Knabe and M. Humphrey. Legion: An Operating
System for Wide-Area Computing. IEEE Computing, 32(5):29–37, May 1999.

2. I. Foster, C. Kesselman, J.M. Nick, and S. Tueckel. The Physiology of the Grid -
An Open Grid Services Architecture for Distributed Systems Integration. In White
Paper, The Globus Project. http://www.globus.org/.

3. J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A Compu-
tation Management Agent for Multi-Institutional Grids. Cluster Computing, 5:237–
246, 2002.

4. S. Zhou. LSF: Load Sharing in Large-scale Heterogeneous Distributed Systems. In
Workshop on Cluster Computing, 1992.


