
1 High-Performance Computing on
Clusters : The Distributed JVM
Approach †

Wenzhang Zhu, Weijian Fang, Cho-Li Wang, and Francis C. M. Lau

The Department of Computer Science and Information Systems
The University of Hong Kong

A Distributed Java Virtual Machine (DJVM) is a cluster-wide virtual machine
that supports parallel execution of a multithreaded Java application on clusters, as
if it was executed on a single machine but with improved computation power. The
DJVM hides the physical boundaries between the cluster nodes and allows parallelly
executed Java threads to access all cluster resources through a unified interface. It is a
more user-friendly parallel environment than many other existing parallel languages
[8], or libraries for parallel programming such as MPI [13], CORBA [16], and Java
RMI [7]. The DJVM research is valuable for high-performance computing as Java
has become the dominant language for building the server-side applications, such
as enterprise information systems, Web services, and large-scale Grid computing
systems, due to its platform independency and built-in multithreading support at
language level.

This chapter addresses the realization of a distributed Java virtual machine, named
JESSICA2, on clusters. Section 1.1 describes Java, Java Virtual Machine, and the
main programming paradigms using Java for high-performance computing. We then
focus our study on the newly emerging distributed JVM research in Section 1.2. In
Section 1.3, we introduce our JESSICA2 Distributed JVM. Section 1.4 gives the
performance analysis of JESSICA2. Related work is given in Section 1.5. Section
1.6 concludes this chapter.

†This research is supported by Hong Kong RGC Grant HKU-7030/01E and HKU Large Equipment
Grant 01021001.

i

ii

1.1 BACKGROUND

1.1.1 Java

Java [11] is a popular general object-oriented programming language. Java supports
concurrency through its multithreading framework. A Java program can have simul-
taneous control flows, i.e., threads, and all the threads share a common memory space.
To avoid the race conditions among threads, Java includes a set of synchronization
primitives based on the classicmonitorparadigm. Thesynchronizedkeyword is used
for declaring a critical section in Java source code.

Java objects can be regarded asmonitors. Each object has a header containing a
lock. A lock is acquired on entry to a synchronized method or block, and is released
on exit. The lock is also associated with a wait queue. The class java.lang.Object
provides three additional methods to control the wait queue within the synchronized
methods or blocks, i.e.,wait, notify, andnotifyAll. The methodwait causes current
thread to wait in the queue until another thread invokes thenotify method or the
notifyAll method which wake up a single thread or all the threads waiting for this
object respectively.

Each Java object consists of data and methods. The object has associated a pointer
to a virtual method table. The table stores the pointers to their methods. When a
class is loaded into JVM, the class method table will be filled with pointers to the
entries of the methods. When an object is created, its method table pointer will point
to its class method table.

The heap is the shared memory space for Java threads to store the created objects.
The heap stores all the master copies of objects. Each thread has a local working
memory to keep the copies of objects loaded from the heap that it needs to access.
When the thread starts execution, it operates on the data in its local working memory.

1.1.2 Java Virtual Machine

Unlike most of other programming languages, usually a Java source program is not
directly compiled into native code running on the specific hardware platform. Instead,
the Java compiler will translate the Java source program into a machine-independent
binary code calledbytecode. The bytecode consists of a collection of class files, each
corresponding to a Java class. A Java Virtual Machine (JVM) is then used to load and
execute the compiled Java bytecode. The bytecode is then interpreted or translated
by the JVM execution engine. The JVM provides the runtime environment for the
execution of the Java bytecode. Once a JVM is designed on a specific computer
architecture, the computer can execute any Java program distributed in bytecode
format without recompilation of source code.

The JVM is a stack-oriented and multithreaded virtual machine. Figure 1.1
illustrates the architecture of JVM. Inside a JVM, each thread has a runtime data
structure called Java stack to hold theprogram counter(PC) and the local variables.
The threads create Java objects in the centralized garbage-collected heap and refer

BACKGROUND iii

app.java app.class
Java

compiler

Java Virtual Machine

Method Area

Heap

PC PC

obj ref

Object

Thread Scheduler
Class Loader

Execution
Engine

obj ref

Object

Stack Stack

Fig. 1.1 The architecture of Java Virtual Machine.

to the objects using object references in the Java stack. All the created objects are
visible to all the threads.

The execution engine is the processor of JVM. The earlier JVMs execute Java
bytecode by interpretation. The method entries of the object are set to the call to
the interpreter with the method id as the argument. The interpreter will create the
data structures for the Java method and try to simulate the semantics of bytecode
instructions by operating on these data structures in a big loop.

The interpreter is simple to implement. However, such interpretation is slow
because it can not efficiently use the machine registers for computation. And it can
not cache the previous computed results such as the constant offset to an object. To
boost the Java execution performance, the concept of Just-in-Time (JIT) compilation
is introduced.

A JIT compiler compiles Java methods on demand. The method pointers in the
virtual method table will be set to the JIT compiler. The first time each method is
called, the JIT compiler is invoked to compile the method. The method pointer then
points to the compiled native code so that future calls to the method will jump to the
native code directly. As the time for JIT compilation is charged to the execution time
of Java program, the JIT compiler requires the lightweight compilation techniques.
Usually a JIT compiler can improve the performance of Java application by a factor.

iv

1.1.3 Programming Paradigms for Parallel Java Computing

Several programming paradigms exist in the parallelization of applications. Generally
we have three major paradigms, namely,data parallel, message passing, andshared
memory. To support these paradigms in Java, many libraries and runtime systems
have been proposed since Java was born in 1995.

1.1.3.1 Data parallel The data parallel paradigm is to apply the same operation
on different data sets residing on different cluster nodes.

One example to support the data parallel programming paradigm is the HPJava
language [8]. It extends ordinary Java with some shorthand syntax for describing
how arrays are distributed across processes. HPJava has no explicit interfaces for
communication among processes. The communication among processes is handled
transparently by the HPJava compiler.

The shortage of HPJava is that Java programmers need to master HPJava’s spe-
cific syntax in order to exploit data parallelism and leverage the cluster computing
capability. However, due to the high portability of Java, HPJava could be favored by
those who are familiar with the data parallel paradigm and are willing to try Java.

1.1.3.2 Message passingMessage passing is probably the most common paradigm
for parallel programming on the clusters. In this paradigm, the programmers write
explicit code to send and receive messages for the communication and coordina-
tion among different processes in a parallel application. Besides the famous Socket
interface to support TCP/IP communication, Java programmers can also use some ad-
ditional high-level message passing mechanisms such asMessage Passing Interface
(MPI), the JavaRemote Method Invocation(RMI) [7] and Common Object Request
Broker Architecture(COBRA) [16].

MPI is a widely accepted interface standard for communication. One implemen-
tion of MPI on Java is the mpiJava [4] library. It enables the communication of
Java programs by introducing a new class calledMPI. Using mpiJava, the program-
mers need to handle data communication explicitly that usually is a complicated and
error-prone task.

Java RMI is similar to the remote procedure call, i.e., it enables a Java program to
invoke methods of an object in another JVM. RMI applications use the client/server
model. A RMI server application creates some objects, and publish them for the
remote RMI clients to invoke methods on these objects. RMI provides the mechanism
by which the server and the client can communicate.

CORBA is an open, vendor-independent architecture for interfacing different ap-
plications over networks. Java also provides Interface Description Language (IDL) to
enable the interaction between Java programs and the CORBA-compliant distributed
applications widely deployed on the Internet. The shortage of COBRA is that it is
difficult for programmers to master.

1.1.3.3 Shared memoryThe shared memory paradigm assumes a shared memory
space among the cooperative computation tasks. The multithreading feature of

DISTRIBUTED JVM v

Java fits this paradigm well in a single-node environment. However, the current
standard JVM can only achieve limited parallelism of multithreaded programs even
the machine on which it runs is an SMP machine.

1.2 DISTRIBUTED JVM

A Distributed Java Virtual Machine (DJVM) is a cluster-wide virtual machine that
supports the parallel execution of threads inside a multithreaded Java application
with single-system image(SSI) illusion on clusters. In this way, the multithreaded
Java application runs on a cluster as if it ran on a single machine with improved
computation power. As a result, DJVM supports the shared memory programming
paradigm. Several approaches have been proposed for developing the distributed
JVM [3, 14, 2, 25]. In this chapter, we focus our study on the research of distributed
JVM in the following sections.

Such research is valuable for high-performance computing. Java provides a highly
portable language environment and a simple thread model, thus a DJVM can provide
a more portable and more user-friendly parallel environment than many other existing
parallel languages, or libraries for parallel programming, as discussed in the Section
1.1.3.

1.2.1 Design issues

Building a DJVM on cluster poses a number of challenges.

• Java thread scheduling.The thread scheduler basically decides which thread
to grasp the CPU and switches thread contexts inside the virtual machine.
The scheduling of Java threads on clusters requires a nontrivial design of
the virtual machine’s kernel, so that the Java threads can be transparently
deployed on different cluster nodes and run in parallel efficiently. Inefficient
scheduling can lead the system to an imbalanced state which results in poor
execution performance. It is therefore desirable to provide mechanisms for
load balancing in DJVM.

• Distributed shared heap.The heap is the shared memory space for Java
threads to store the created objects. The separation of memory spaces among
cluster nodes is conflicting with the shared memory view of Java threads. Such
a shared memory abstraction should be reflected in a DJVM so that threads
among different nodes can still share the Java objects. Efficient management of
Java objects on clusters is critical to the reduction of communication overheads.

• Execution engine.The JVM execution engine is the processor of Java bytecode.
To make a high-performance DJVM, it is necessary to have a fast execution
engine. Therefore the execution of Java threads in native code is a must. As
the threads and heap are distributed, the execution engine needs to be extended

vi

to be “cluster-aware”, i.e., it should be able to choose appropriate actions for
local and remote objects.

1.2.2 Solutions

In our design for distributed thread scheduling, we do not choose the simple initial
thread placement, which simply spawns a thread remotely upon thread creation as
used in related projects [3, 19, 2]. Thought it can achieve the efficient parallel
execution for threads with balanced workload, it is not enough for a wide range
of applications that exhibit significant imbalanced computation workload among
threads. To provide advanced support for load balancing, we seek for a lightweight
and transparent Java thread migration mechanism.

The design of heap actually provides distributed shared object services like what a
multithreaded software DSM does. And there do exist a number of DJVMs [14, 25, 2]
that are directly built on top of an unmodified software Distributed Shared Memory
(DSM). This approach simplifies the design and implementation of a DJVM as it
only needs to call the APIs of the DSM to realize the heap. However, it is far from
an efficient solution since such a layered design will pose significant overheads in
the interactions between the JVM and the DSM due to the mismatch of the memory
model of Java and that of the underlying DSM. Moreover, the runtime information
at the JVM level such as the object type information cannot be easily channelled
to the DSM. Also the off-the-shelf DSM is difficult to be extended for supporting
other services like the SSI view of I/O objects. In our system, we instead go for a
built-in distributed shared object technique that realizes the JMM. This approach can
make use of the runtime information inside the DJVM to reduce the object access
overheads as it is tightly coupled with the DJVM kernel.

For the execution engine, we adopt the JIT compiler as the execution engine.
A Java bytecode interpreter is relatively simple. Yet it suffers from the slow Java
execution in interpretative mode and thus may not be efficient enough for solving
computation-intensive problems which are the main targets of a DJVM. Static compil-
ers, as used in Hyperion [2] and Jackal [19], although can achieve high-performance
native execution of Java threads, usually miss the dynamic JVM functionalities such
as loading new Java classes from remote machine during runtime. The mixed-mode
execution engine, which is first introduced in Sun’s hotspot compiler, is much more
complex to be adopted in the DJVM design. Dynamic or JIT compilers are rarely
considered or exploited in previous DJVM projects. The JIT compiler is relatively
simpler than the full-fledged static compilers, but it can still achieve high execution
performance. Therefore we believe that it is the best choice for DJVM.

JESSICA2 DISTRIBUTED JVM vii

1.3 JESSICA2 DISTRIBUTED JVM

1.3.1 Overview

The overall architecture of our DJVM JESSICA2 is shown in Figure 1.2. It runs
in a cluster environment and consists of a collection of modified JVMs that run in
different cluster nodes and communicate with each other using TCP connections.

The class files of the compiled multithreaded Java program can be directly run on
JESSICA2 without any preprocessing. We call the node that starts the Java program
master nodeand the JVM running on itmaster JVM. All the other nodes in the
cluster areworker nodes, each running aworker JVMto participate in the execution
of a Java application. The worker JVMs can dynamically join the execution group.
The Java thread can be dynamically scheduled by the thread scheduler to migrate
during runtime in order to help achieve a balanced system load throughout. Being
transparent, the migration operation is done without explicit migration instructions
inserted in the source program.

In a distributed JVM, the shared memory nature of Java threads calls for aglobal
object space(GOS) that “virtualizes” a single Java object heap spanning the entire
cluster to facilitate transparent object accesses. In the distributed JVM, each node can
dynamically create new objects, and manage them independently. The objects created
at the remote nodes can be replicated to improve the access locality. Concurrent
accesses on the copies of shared objects are also allowed, thus raising the issue of
memory consistency. The memory consistency semantics of the GOS are defined
based on the Java memory model (Chapter 8 of the JVM specification [12]).

There is no assumption of a shared file system in the implementation. The
application class files can be duplicated in each node, or they can be stored only in
the master node. In the latter case, when a worker JVM can not find a class file locally,
it will request the class bytecode from the master JVM on demand through network
communication. The initialization of Java classes will be guaranteed to be done only
once for all JVMs. When one worker JVM loads a class, the modified JVM class
loader will first query the master JVM to check if it has been loaded and initialized.
All such queries from different JVMs will be sequentialized. If the initialization of
the class has been done, the worker JVM will fetch its static data , and copy them
into local static data area.

Our system does not rely on a single-shared distributed file systems such as NFS,
nor does it need to restrict a single IP address for all the nodes in the running cluster.
The system has built the I/O redirection functionalities inside to enable the SSI view
of the file I/O operations and the networking I/O operations.

The following sections discuss our implementation of JESSICA2 [22, 23, 20].

1.3.2 Global object space

We follow the Java memory model (JMM) to solve the memory consistency issue
in GOS. We also incorporate several optimization techniques to further improve the
performance of GOS by exploiting the runtime information inside JVM.

viii

Multi-Threaded Java Application

public class App{
public void main () {
for (i=0 ; i < num ; i++) {
 workers[i]=new Worker(this,..)
}
...
}
class Worker extends java.lang.Thread {
 public void run () {

while (ts-- > 0) {
 Cell root=master.getRoot();

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

Global Object Space

Execution Engine

Java
Method

Area

T
h
r
e
a
d

T
h
r
e
a
d

T
h
r
e
a
d

O
bj

ec
t A

cc
es

s

Java Virtual Machine

JESSICA2
JVM

Thread Migration

Master Worker Worker Worker Worker

JIT compiler Mode

A Multithreaded
Java Program

Portable Java Frame

0xb6, 0x37 invokevirtual #55
0x19, 0x4 aload #4
0xc3 monitorexit
0xa7, 0x7 goto #48
0x19, 0x4 aload #4
0xc3 monitorexit
0xbf athrow

Worker

Fig. 1.2 The JESSICA2 system overview.

1.3.2.1 Implementing Java memory modelAccording to the Java memory model,
the synchronization operations in Java are used not only to guarantee exclusive access
in the critical section, but also to maintain the consistency of objects among all threads
that have performed synchronization operations on the same lock.

We follow the operations defined in the JVM specification to implement this
memory model. Before a thread releases a lock, it must copy all assigned values in
its private working memory back to the heap which is shared by all threads. Before a
thread acquires a lock, it must flush (invalidate) all variables in its working memory;
and later uses will load the values from the heap.

Figure 1.3 shows all the memory access operations in the GOS. In the JVM,
the connectivityexists between two Java objects if one object contains a reference
to another. Based on the connectivity, we divide Java objects in the GOS into
two categories:distributed-shared objects(DSOs) andnode-local objects(NLOs).
Distributed-shared objects are reachable from at least two threads in different cluster
nodes in the distributed JVM, while node-local objects are reachable from only one
cluster node. Distributed-shared objects can be distinguished from node-local objects
(by default) at runtime [21].

We adopt a home-based multiple writer cache coherence protocol to implement
Java memory model. Each shared object has a home from which all copies are derived

JESSICA2 DISTRIBUTED JVM ix

Memory Access Operations in
distributed JVM

On node-local objects On distributed-shared objects

Synchronization:
lock, unlock, wait, notify

Read Write

Remote read:
object faulting-
in from the
home node

Read on
cached
copy

Write on
cached
copy

Remote write:
diff propaga-
tion to the
home node

Synchroniza-
tion: lock,
unlock, wait,
notify

Synchronized
method

Read/write issued
on non-home nodes

Home read:
home read
fault

Other read
on home
copy

Other write
on home
copy

Home write:
home write
fault

Read/Write issued
on the home node

Fig. 1.3 Memory access operations in GOS

and to which all writes (diffs) are propagated. The access events of a distributed-
shared object comprise those on non-home nodes and those on the home node. On
non-home nodes, after acquiring a lock, the first read should fault in the object from its
home. All the subsequent reads or writes can be performed on the local copy. Before
acquiring or releasing a lock, the locally performed writes should be identified using
twin anddiff techniques and sent to the home node. We call the object faulting-in
remote read, and the diff propagationremote write.

In order to facilitate some optimizations such as object home migration that will
be discussed later, we also monitor the access operations on the home node. On the
home node, the access state of the home copy will be set to invalid on acquiring a
lock and to read-only on releasing a lock.Home read faultandhome write faultwill
be trapped. For both types of fault, the GOS does nothing more than to set the object
to the proper access state. We call the home read faulthome read, and the home write
fault home write.

All the synchronization operations performed on a distributed-shared object, such
as lock, unlock, wait, and notify, influence the object access behavior, and are thus

x

considered access events too. The synchronized method is treated as a special access
event.

1.3.2.2 Optimizations Since our GOS is built-in component inside the distributed
JVM, we are able to effectively calibrate the runtime memory access patterns and
dynamically apply optimized cache coherence protocols to minimize consistency
maintenance overhead. The optimization devices include anobject home migration
method that optimizes the single-writer access pattern,synchronized method migra-
tion that allows the execution of a synchronized method to take place remotely at
the home node of its locked object, andconnectivity-based object pushingthat uses
object connectivity information to perform pre-fetching.

Object home migration In a home-based cache coherence protocol, the home
node of a DSO plays a special role among all nodes holding a copy. Accesses
happening in the non-home nodes will incur communication with the home node,
while accesses in the home node can proceed in full speed.

Our GOS is able to determine a better location of the home of an object and
perform object home migration accordingly. we choose to only apply object home
migration to those DSOs exhibiting the single-writer access pattern, where the object
is only written by one node, to reduce home migration notices that are used to notify
of the new home. In the situation of multiple-writer pattern where the object is
written by multiple nodes, it does not matter which is the home node as long as the
home node is one of the writing nodes.

In order to detect the single-writer access pattern, the GOS monitors all home
accesses as well as non-home accesses at the home node. To minimize the overhead
in detecting the single-writer pattern, the GOS records consecutive writes that are
from the same remote node and that are not interleaved by the writes from other
nodes. We follow a heuristic that an object is in the single-writer pattern if the
number of consecutive writes exceeds a predefined threshold.

Synchronized method migrationThe execution of a synchronized method of a
DSO not at its home will trigger multiple synchronization requests to the home node.
For example, on entering and exiting the synchronized method, the invoking node
will acquire and then release the lock of the synchronized object. Memory consis-
tency maintenances are also involved according to Java memory model. Migrating a
synchronized method of a DSO to its home node for execution will combine multiple
round-trip messages into one and reduce the overhead for maintaining memory con-
sistency. While object shipping is the default behavior in the GOS, we apply method
shipping particularly to the execution of synchronized methods of DSOs.

Connectivity-based object pushingObject pushing is a pre-fetching strategy
which takes advantage of the object connectivity information to more accurately
pre-store the objects to be accessed by a remote thread, therefore minimizing the
network delay in subsequent remote object accesses. Connectivity-based object
pushing actually improves the reference locality. Theproducer-consumerpattern is
one of the patterns that can be optimized by connectivity-based object pushing [21].

Object pushing is better than pull-based pre-fetching which relies on the request-
ing node to specify explicitly which objects to be pulled according to the object

JESSICA2 DISTRIBUTED JVM xi

connectivity information. A fatal drawback of pull-based pre-fetching is that the
connectivity information contained in an invalid object may be obsolete. Therefore,
the pre-fetching accuracy is not guaranteed. Some unneeded objects, even garbage
objects, may be pre-fetched, which will end up wasting communication bandwidth.
On the contrary, object pushing gives more accurate pre-fetching results since the
home node has the up-to-date copies of the objects and the connectivity information
in the home node is always valid.

In our implementation, we rely on an optimal message length, which is the pre-
ferred aggregate size of objects to be delivered to the requesting node. Reachable
objects from the requested object will be copied to the message buffer until the cur-
rent message length is larger than the optimal message length. We use a breadth-first
search algorithm to select the objects to be pushed.

1.3.3 Transparent Java thread migration

One of the unique features of our system is that we support the dynamic transparent
migration of Java threads. This section describes our lightweight and efficient solution
for thread migration in the context of JIT compiler.

Transparent thread migration has long been used as a load balancing mechanism
to optimize the resource usage in distributed environments [10]. Such systems
usually use theraw thread context(RTC) as the communication interface between
the migration source node and target node. RTC usually includes the virtual memory
space, thread execution stack and hardware machine registers.

We adopt thebytecode-oriented thread context(BTC) to make the system more
portable. The BTC consists of the identification of the Java thread, followed by
a sequence of frames. Each frame contains the class name, the method signature
and the activation record of the method. The activation record consists of bytecode
program counter (PC), JVM operand stack pointer, operand stack variables, and the
local variables, all encoded in a JVM-independent format.

In a JIT-enabled JVM, the JVM stack of a Java thread becomes native stack and
no longer remains bytecode-oriented. We solve the transformation of the RTC into
the BTC directly inside the JIT compiler. Our solution is built on two main functions,
stack capturingandstack restoration(see Figure 1.4). Stack capturing is to take a
snapshot of the RTC of a running Java thread and transforms the snapshot into an
equivalent BTC. Stack restoration is to re-establish the RTC using the BTC. Such a
process via an intermediate BTC takes advantage of the portability of the BTC.

1.3.3.1 Stack capturing To support the RTC-BTC transformation, we perform
Just-in-Time native code instrumentation inside the JIT compiler. We insert addi-
tional optimized native code in a method when it is first compiled. The instrumented
code enables the running thread to manage its own context in a reflexive way. Dur-
ing execution, the thread maintains the execution trace of the Java thread in some
lightweight runtime data structures. Figure 1.5 shows the working flow of the JIT
compiler in our system.

xii

Raw Thread Context (RTC)

Bytecode-oriented Thread Context (BTC)

%esp: 0x00000000
%esp+4: 0x082ca809
%esp+8: 0x08225400
%esp+16: 0x8266bc0
...

Frames{
method CPI::run ()V@111
local=13;stack=0;
var:
arg 0:CPI;33,0x8225400;
local 1:[D;33,0x8266bc0@2;
local 2:int,2;
...

%esp: 0x00000000
%esp+4: 0x0x86243c
%esp+8: 0x08623200
%esp+16: 0x08293010
...
%eax=0x8623200
%ebx=0x8293010

Stack capturing Stack rest
oratio

n

Fig. 1.4 The thread stack transformation. The frame for method run() of class CPI is encoded
in a text format in the BTC box.

In the instrumentation of JIT compiler, we limit the migration to take place at
some specific points calledmigration points. We choose two types of points in our
system. The first type (referred as M-point) is the site that invokes a Java method.
The second type (referred as B-point) is the beginning of a bytecode basic block
pointed by a back edge, which is usually the header of a loop.

At such points, the instrumented native code is used to check the migration request
and to spill the machine registers to the memory slots of the variables. For the variable
types, we usetype spillingto store the variable types at the migration points. The type
information of stack variables will be gathered at the time of bytecode verification.
We use one single type to encode the reference type of stack variable as we can
identify the exact type of a Java object from the object reference. Therefore, we can
compress one type into 4-bit data. Eight compressed types will be bound in a 32-bit
machine word, and an instruction to store this word will be generated to spill the
information to appropriate location in the current method frame. For typical Java
methods, only a few instructions are needed to spill the type information of stack
variables in a method.

The Java frames in the stack are linked by the generated native code. The code only
needs a few instructions to spill the previous Java frame stack pointer and previous
machine stack pointer. Such arrangement makes it possible to tell a Java frame from

JESSICA2 DISTRIBUTED JVM xiii

Bytecode verifier

bytecode translation

code generation

Intermediate Code

invoke

1. Add migration checking
2. Add object checking
3. Add type & register spilling

Native Code

Linking &
Constant Resolution

cmp obj[offset],0
jz ...

cmp mflag,0
jz ...

mov 0x110182, slot
...

Global Object Access

migration point
Selection

Fig. 1.5 The working flow of the JIT compiler. The native instruction “cmp mflag, 0” checks
the migration flag. The instruction “cmp obj[offset],0” is for checking object status. The
instruction “mov 0x110182, slot” stores the variable types in the memory slot. The “Global
Object Access” is the GOS layer.

the internal JVM functions frames (we call it C frames). In our thread migration,
we choose the consecutive Java frames to be migrated to the remote machine. Upon
completion of such Java frames, the control will return back to the source machine
to complete the C frame execution.

1.3.3.2 Stack restoring The restoration of the thread is done through the BTC-to-
RTC transformation. The destination JVM, after accepting the thread context BTC
in the JVM-independent text format, will create a new native thread. The newly
created thread becomes the clone of the migrated thread in current JVM. The clone
thread then brings back the calling sequence as described by the input context. In
our system, we build a sequence of stack frames with the return addresses and the
frame pointers properly linked together to simulate the method invocation. The local
variable inside the frames will be initialized to the values according to the input thread
context.

The stack restoring needs to recover the machine registers in the migration target
node. Most previous approaches supporting thread stack restoring often build the
stack by simulating the method invocation and use additional status variables to
distinguish the restoring execution flow and the normal execution flow inside the
methods [18]. This will results in large overheads because it needs to add such
branching codes in all the methods. Rather we directly build the thread stack and use
recompilation techniques to get the mapping between the thread variables and the
machine registers at all restoration points. Each mapping is then used by a generated
code stub that will be executed before the restoration point to recover the machine

xiv

registers. In our implementation, we allocate the code stubs inside the restored thread
stack so that they will be freed automatically after execution.

1.3.3.3 Load balancing policy We have integrated the load balancing policy in
our current DJVM so that it is responsive for thread scheduling. The policy adopts
a scheme similar to the work stealing [6]. A lightly loaded JVM will try to acquire
computation threads from other heavily loaded nodes periodically. The load informa-
tion such as the CPU and memory usages is stored on the master node. All the worker
JVMs do not directly contact each other for the exchange of workload information
to save bandwidth. Instead, the lightly loaded node will post its advertisement on the
master node while the heavily loaded node will try to acquire the information from
the master node. Subsequent thread migration operation will be negotiated between
the lightly loaded node and the heavily loaded node.

The worker JVM maintains its own workload by querying the CPU and memory
usage in local /proc file system. The state transition in a worker JVM between heavy
load and light load resembles the way of charging and discharging the electricity
capacity. In the charging phase, the JVM will go in the direction of acquiring threads
until some threshold is met. It will switch the state to heavy load after it stays at
the state of heavy load for a time period. Then the discharging begins by migrating
threads to lightly loaded nodes.

The master node will not be a bottleneck caused by the load information because
only those worker nodes that have radical load changes (from heavy load state to
light load state or vice versa) will send the messages to it.

1.4 PERFORMANCE ANALYSIS

Our distributed JVM, JESSICA2, is developed based on Kaffe open JVM 1.0.6 [24].
We run JESSICA2 on the HKU Gideon 300 Linux cluster to evaluate the performance.
Each cluster node consists of 2GHz Pentium 4 CPU, 512M RAM and runs Linux
kernel 2.4.14. The cluster is connected by a Foundry Fastiron 1500 Fast Ethernet
switch.

The following benchmarks are used in our experiments.

• CPI calculates an approximation ofπ by evaluating the integral.

• ASP (All-Shortest Path) computes the shortest paths between any pair of nodes
in a graph using a parallel version of Floyd’s algorithm.

• TSP (Travel Salesman Problem) finds the shortest route among a number of
cities using a parallel branch-and-bound algorithm.

• Raytracer renders a 3-D scene by using the raytracing method.

• SOR (Successive Over-Relaxation) performs red-black successive over-relaxation
on a 2-D matrix for a number of iterations.

PERFORMANCE ANALYSIS xv

 (a) ASP (b) SOR

(c) Nbody (d) TSP

0%

20%

40%

60%

80%

100%

64 128 256 512 1024

Problem size

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

No HM HM+SMM HM+SMM+Push

0%

20%

40%

60%

80%

100%

128 256 512 1024 2048

Problem size

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

No HM HM+SMM HM+SMM+Push

0%

20%

40%

60%

80%

100%

128 256 512 1024 2048

Problem size

N
o

rm
al

iz
ed

 c
o

m
m

u
n

ic
at

io
n

 d
at

a

No HM HM+SMM HM+SMM+Push

0%

20%

40%

60%

80%

100%

11 12 13 14 15

Problem size

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

No HM HM+SMM HM+SMM+Push

Fig. 1.6 Effects of adaptations w.r.t. execution time

• Nbody simulates the motion of particles due to gravitational forces between
each other over a number of simulation steps using the algorithm of Barnes &
Hut.

• SPECjvm98 [9] is the benchmark suite used for testing JVM’s performance.

1.4.1 Effects of optimizations in GOS

In the experiments, all adaptations are disabled initially; and then we would enable
the planned adaptations incrementally. Fig. 1.6 shows the effects of adaptations
on the execution time. We present the normalized execution time against different
problem sizes.

Our application suite consists of four multi-threaded Java programs, namely ASP,
SOR, Nbody, and TSP. In ASP, we scale the size of the graph; in SOR, we scale
the size of the2-D matrix; in Nbody, we scale the number of the bodies; in TSP,
we scale the number of the cities. All data are normalized to that when none
of the adaptations are enabled. All tests run on16 processors. In the legend, “No”
denotes no adaptive protocol enabled, “HM” denotes object home migration, “SMM”
denotes synchronized method migration, and “Push” denotes object pushing. All the
application are running in the interpreter mode of JVM.

xvi

As can be seen in the figures, object home migration greatly improves the per-
formance of ASP and SOR. In ASP and SOR, the data are in the2-D matrices that
are shared by all threads. In Java, a2-D matrix is implemented as an array ob-
ject whose elements are also array objects. Many of these array objects exhibit the
single-writer access pattern after they are initialized. However, their original homes
are not the writing nodes. Object home migration automatically makes the writing
node the home node in order to reduce communication. We can see that object home
migration dramatically reduces the execution time. Also the effect of object home
migration is amplified when the problem size is scaled up in ASP and SOR. In Nbody
and TSP, the single-writer access pattern is insignificant, and therefore the effect of
object home migration cannot be obviously observed.

Synchronized method migration optimizes the execution of a synchronized method
of a non-home DSO. Although it does not reduce the communication volume, it
reduces the number of messages significantly. We also observe in Fig. 1.6(a) and (b)
that synchronized method migration improves ASP and SOR’s overall performance to
some extent, particularly when the problem size is small. ASP requiresn barriers for
all the threads in order to solve ann-node graph. The synchronization is quite heavy
in ASP. So synchronized method migration has more positive effect on ASP. When the
problem size is scaled up, the communication-to-computation ratio decreases, thus the
adaptation effect becomes not so evident. The synchronization overhead comprises
not only the processing and transmission time, but also the waiting time. Sometimes
the synchronization overhead is dominated by the waiting time, which cancels out
the benefit from synchronized method migration. Nbody’s synchronization uses
synchronized block instead of synchronized method, and so synchronized method
migration has no effect here. TSP’s situation is similar to Nbody’s.

Connectivity-based object pushing is a pre-fetching strategy which takes advantage
of the object connectivity information to improve reference locality. Particularly, it
improves the producer-consumer pattern greatly. Nbody is a typical application of
the producer-consumer pattern. In Nbody, a quadtree is constructed by one thread
and then accessed by all other threads in each iteration. The quadtree consists of a lot
of small-sized objects. We can see that object pushing greatly reduces the execution
time in Nbody, as seen from Fig. 1.6(c). However, when the problem size is scaled up,
the communication-to-computation ratio decreases, thus the effect of object pushing
decreases. Notice that communication is relatively little in TSP, the improvement on
the total execution time due to this optimization is limited. Compared with Nbody
and TSP, most DSOs in ASP and SOR are array objects, and object pushing is not
performed on them to reduce the impact of pushing unneeded objects.

1.4.2 Thread migration overheads

We first test the space and time overheads charged to the execution of Java threads
by the JIT compiler when enabling the migration mechanism. Then we measure the
latency of one migration operation.

The time overheads are mainly due to the checking at the migration points; and
the space overheads are mainly due to the instrumented native code. We do not

PERFORMANCE ANALYSIS xvii

require the benchmarks to be multithreaded in the test since the dynamic native code
instrumentation will still function even on single-threaded Java applications.

We use SPECjvm98 benchmark in the test. The initial heap size was set to 48MB.
We compared the differences in time and space costs between enabling and disabling
the migration checking at migration points. The measurements on all the benchmarks
in SPECjvm98 were carried out 10 times and the values were then averaged.

Table 1.1 shows the test results. The space overheads are in terms of the average
size of native code per bytecode instruction, i.e., it is the blowup of the native code
compiled from the Java bytecode.

From the table we can see that the average time overheads charged to the execution
of Java thread with thread migration are about 2.21% and the overheads of generated
native code are 15.68%. Both the time and space overheads are much smaller than the
reported results from other static bytecode instrumentation approaches. For example,
JavaGoX [17] reported that for four benchmark programs (Fibo, qsort, nqueen and
compress in SPECjvm98), the additional time overheads range from 14% to 56%,
while the additional space costs range from 30% to 220%.

Table 1.1 The execution overheads using SPECjvm98 benchmarks.
Benchmarks Time(seconds) Space(native code/bytecode)

No migration Migration No Migration Migration

compress 11.31 11.39(+0.71%) 6.89 7.58(+10.01%)

jess 30.48 30.96(+1.57%) 6.82 8.34(+22.29%)

raytrace 24.47 24.68(+0.86%) 7.47 8.49(+13.65%)

db 35.49 36.69(+3.38%) 7.01 7.63(+8.84%)

javac 38.66 40.96(+5.95%) 6.74 8.72(+29.38%)

mpegaudio 28.07 29.28(+4.31%) 7.97 8.53(+7.03%)

mtrt 24.91 25.05(+0.56%) 7.47 8.49(+13.65%)

jack 37.78 37.90(+0.32%) 6.95 8.38(+20.58%)

Average (+2.21%) (+15.68%)

We also measured the overall latency of a migration operation using different
multithreaded Java applications including a latency test (LT) program, CPI, ASP,
Nbody, and SOR. The latency measured includes the time from the point of stack
capturing to the time when the thread has finished its stack restoration on the remote
node and has sent back the acknowledgement. CPI only needs 2.68 ms to migrate
and restore thread execution because it only needs to load one single frame and one
Java class during the restoration. LT and ASP need about 5 ms to migrate a thread
context consisting of one single frame and restore the context. Although they only
have one single frame to restore, they both need to load two classes inside their frame
contexts. For SOR which migrates two frames, the time is about 8.5 ms. For NBody,
which needs to load four classes in 8 frames, it takes about 10.8 ms.

xviii

1.4.3 Application benchmark

In this section, we report the performance of four multi-threaded Java applications
on JESSICA2. The applications are CPI, TSP, Raytracer, and Nbody.

We run TSP with 14 cities, Raytracer within a 150x150 scene containing 64
spheres, Nbody with 640 particles in 10 iterations. We show the speedups of CPI, TSP,
Raytracer and Nbody in Figure 1.7 by comparing the execution time of JESSICA2
against that of Kaffe 1.0.6 (in a single-node) under JIT compiler mode. From the
figure, we can see nearly linear speedup in JESSICA2 for CPI, despite the fact that
all the threads needed to run in the master JVM for 4% of the overall time at the very
beginning. For the TSP and Raytracer, the speedup curves show about 50% to 60%
of efficiency. Compared to the CPI program, the number of messages exchanged
between nodes in TSP has been increased because the migrated threads have to access
the shared job queue and to update the best route during the parallel execution, which
will result in flushing of working memory in the worker threads. In Raytracer the
number of messages is small, as it only needs to transfer the scene data to the worker
thread in the initial phase. The slowdown comes from the object checking in the
modified JVM as the application accesses the object fields extensively in the inner
loop to render the scene. But for the Nbody program, the speedup is only 1.5 for 8
nodes. The poor speedup is expected, which is due to the frequent communications
between the worker threads and the master thread in computing the Barnes-Hut Tree.

0

1

2

3

4

5

6

7

8

2 4 8

S
pe

ed
up

Number of nodes

Speedup

Linear
CPI
TSP

Raytracer
Nbody

Fig. 1.7 Speedup Measurement of Java applications

RELATED WORK xix

1.5 RELATED WORK

Our system was motivated by recent work on distributed JVM, particularly cJVM [3]
and JESSICA [14]. However these systems mainly base on slow Java interpreters.
Our work distinguishes itself from these projects in that we use JIT compilers for
the construction of the DJVM. Besides the relationship to the distributed JVM,
our system also relates to techniques of software Distributed Shared Memory and
computation migration. These techniques are exploited in our system in the context
of JIT compilers.

1.5.1 Software Distributed Shared Memory

The software Distributed Shared Memory (DSM) has been studied extensively during
the past decade. Orca [5] is one object-based DSM that uses a combination of
compile-time and runtime techniques to determine the placement of objects. Our
GOS differs from Orca in that we provide the shared object abstraction supports all
at runtime through the JVM JIT compiler.

TreadMarks is a page-based DSM [1] that adopts lazy release consistency protocols
and allows multiple concurrent writers on a same page. Treadmarks uses the hardware
page-faulting support, therefore it can eliminate the overheads of software checking
on object status. One of the drawbacks, however, is that the page-based DSM will
have the problem of false sharing if directly applied to an object-based language such
as Java.

1.5.2 Computation migration

The research on computation migration has been studied for many years. Process
migration can be regarded as the ancestor of thread migration. The paper [15] reviews
the field of process migration till 1999. It provides detail analysis on the benefits and
drawbacks of process migration. The systems included in the paper range from user-
level migration systems to kernel-level migration ones. Compared to the existing
computation migration techniques, we try to solve the computation migration from
the new perspective by introducing the Just-in-Time compilation.

There are systems developed to support thread migration. Arachne [10] is one of
such systems. It provides a portable user-level programming library that supports
thread migration over a heterogeneous cluster. However the thread migration is not
transparent to the user as it required that programs be written using special thread
library or APIs.

There are related systems in the mobile computing area that support the mobility
of Java threads. For example, JavaGoX [17] and and Brakes [18] all use the static
preprocessor to instrument Java bytecodes to support the migration of Java thread.
These systems do not address the distributed shared object issues.

xx

1.5.3 Distributed JVM

cJVM [3] is a cluster-aware JVM that provides SSI of a traditional JVM running on
cluster environments. The cJVM prototype was implemented by modifying the Sun
JDK1.2 interpreter. cJVM does not support thread migration. It distributes the Java
threads at the time of thread creation.

There are other DSM-based DJVM prototypes, for example, JESSICA [14] and
Java/DSM [25]. Both systems are based on interpreters. JESSICA supports thread
migration by modifying the Java interpreters. Java/DSM lacks supports for the
location transparency of Java threads. It needs programmers’ manual coding to place
the threads on different cluster nodes.

Jackal [19] and Hyperion [2] adopt the static compilation approaches to compile
the Java source code directly into native parallel code. The parallel code is linked to
some object-based DSM library packages.

1.6 SUMMARY

Java is becoming an important vehicle for writing parallel programs due to its built-in
concurrency support and high portability. To support the high-performance Java
computing on clusters, there exist three main paradigms: data parallel, message
passing and shared memory. The support for shared memory for Java inspires the
new research on distributed JVM (DJVM) which aims to extend the single-node JVM
to clusters for achieving high-performance multithreaded Java computing without
the need for introducing new APIs. The multithreaded Java programs running on
a DJVM is written in usual manners. The underlying DJVM tries to hide all the
physical machine boundaries for the Java application transparently.

This chapter focuses on the study of supporting shared memory paradigm on
clusters using DJVM. We use our prototype system JESSICA2 as an example to
discuss the design, implementation, and performance analysis of a DJVM. The
design of a DJVM needs to provide a virtually shared heap for the Java threads
inside one single application. Due to Java’s memory model constraints, the existing
consistency protocols of software Distributed Shared Memory can not match well
with that of Java. Incorporating the distributed shared object support inside DJVM
is worthy of the efforts for achieving the improved communication performance.
Another important aspect of a DJVM is the scheduling of threads. We believe that
a lightweight thread migration mechanism can help balance the workload among
cluster nodes especially for irregular multithreaded applications where the workload
can not be simply estimated and equally partitioned among the threads.

References

1. C. Amza, A. L. Cox, S.Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. Treadmarks: Shared Memory Computing on Networks of
Workstations.IEEE Computer, 29(2):18–28, February 1996.

2. Gabriel Antoniu et al. The Hyperion System: Compiling Multi-threaded Java
Bytecode for distributed execution.Parallel Computing, 27(10):1279–1297,
2001.

3. Yariv Aridor, Michael Factor, and Avi Teperman. cJVM: a Single System Image
of a JVM on a Cluster. InInternational Conference on Parallel Processing,
pages 4–11, 1999.

4. M. Baker, B. Carpenter, G. Fox, and S. H. Koo. mpiJava: An Object-Oriented
Java interface to MPI. InWorkshop on Java for Parallel and Distributed Com-
puting, IPPS/SPDP, 1999.

5. Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langen-
doen, Tim R̈uhl, and M. Frans Kaashoek. Performance Evaluation of the Orca
Shared-Object System.ACM Transactions on Computer Systems, 16(1):1–40,
1998.

6. R. Blumofe and C. Leiserson. Scheduling multithreaded computations by work
stealing. InProceedings of the 35th Annual Symposium on Foundations of
Computer Science, pages 356–368, November 1994.

7. Fabian Breg, Shridhar Diwan, Juan Villacis, Jayashree Balasubramanian, Esra
Akman, and Dennis Gannon. Java RMI performance and object model interoper-
ability: experiments with Java/HPC++.Concurrency: Practice and Experience,
10(11–13):941–955, 1998.

8. Bryan Carpenter, Guansong Zhang, Geoffrey Fox, Xinying Li, and Yuhong
Wen. HPJava: Data parallel extensions to Java.Concurrency: Practice and
Experience, pages 873–877, 1998.

9. The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
http://www.spec.org/org/jvm98, 1998.

xxi

xxii REFERENCES

10. B. Dimitrov and V. Rego. Arachne: A Portable Threads System Supporting
Migrant Threads on Heterogeneous Network Farms.IEEE Transactions on
Parallel and Distributed Systems, 9(5), 1998.

11. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language
Specification Second Edition. Addison-Wesley, Boston, Mass., 2000.

12. T. Lindholm and F. Yellin.The Java(tm) Virtual Machine Specification. Addison
Wesley, second edition, 1999.

13. Snir M., Otto S.W., Huss-Lederman S., Walker D.W., and Dongarra J.MPI –The
Complete Reference. The MIT Press, 1996.

14. Matchy J. M. Ma, Cho-Li Wang, and Francis C. M. Lau. JESSICA: Java-Enabled
Single-System-Image Computing Architecture.Parallel and Distributed Com-
puting, 60(10):1194–1222, October 2000.

15. Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard Wheeler, and
Songnian Zhou. Process migration.ACM Comput. Surv., 32(3):241–299, 2000.

16. Robert Orfali and Dan Harkey.Client/Server Programming with JAVA and
CORBA. John Wiley And Sons Inc., 2nd edition edition, 1998.

17. Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa. Bytecode
Transformation for Portable Thread Migration in Java. InJoint Symposium on
Agent Systems and Applications / Mobile Agents, pages 16–28, 2000.

18. Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen, and
Pierre Verbaeten. Portable Support for Transparent Thread Migration in Java. In
Joint Symposium on Agent Systems and Applications / Mobile Agents (ASA/MA),
pages 29–43, 2000.

19. Ronald Veldema, Rutger F. H. Hofman, Raoul Bhoedjang, and Henri E. Bal.
Runtime optimizations for a Java DSM implementation. InJava Grande, pages
153–162, 2001.

20. Weijian Fang, Cho-Li Wang, and Francis C.M. Lau. Efficient Global Object
Space Support for Distributed JVM on Cluster. InThe 2002 International Con-
ference on Parallel Processing (ICPP-2002), pages 371–378, British Columbia,
Canada, August 2002.

21. Weijian Fang, Cho-Li Wang, and Francis C.M. Lau. On the Design of Global
Object Space for Efficient Multi-threading Java Computing on Clusters. In
Parallel Computing, Vol.29, pp. 1563-1587, 2003.

22. Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau. JESSICA2: A Dis-
tributed Java Virtual Machine with Transparent Thread Migration Support. In
IEEE Fourth International Conference on Cluster Computing, Chicago, USA,
September 2002.

REFERENCES xxiii

23. Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau. Lightweight Transparent
Java Thread Migration for Distributed JVM. InInternational Conference on
Parallel Processing, pages 465–472, Kaohsiung, Taiwan, October 2003.

24. T. Wilkinson. Kaffe - A Free Virtual Machine to run Java Code.
http://www.kaffe.org/, 1998.

25. Weimin Yu and Alan L. Cox. Java/DSM: A Platform for Heterogeneous Com-
puting. Concurrency - Practice and Experience, 9(11):1213–1224, 1997.

26. Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar,
and Samuel P. Midkiff. Escape Analysis for Java. Proceedings of the Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), 1999.

