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In irregular all-to-all communication, messages are exchanged between

every pair of processors. The message sizes vary from processor to processor

and are known only at run time. This is a fundamental communication

primitive in parallelizing irregularly structured scientific computations. Our

algorithm reduces the total number of message start-ups. It also reduces node

contention by smoothing out the lengths of the messages communicated. As

compared to the earlier approaches, our algorithm provides deterministic

performance and also reduces the buffer space at the nodes during message

passing. The performance of the algorithm is characterised using a simple

communication model of high-performance computing (HPC) platforms. We

show the implementation on T3D and SP2 using C and the message passing

interface standard. These can be easily ported to other HPC platforms. The

results show the effectiveness of the proposed technique as well as the interplay

among the machine size, the variance in message length, and the network

interface. # 2002 Elsevier Science (USA)
1. INTRODUCTION

Irregular structured algorithms are widely used to solve problems in scientific

computations, computer vision and database applications [7–9, 12, 25, 30, 31]. While

parallelizing these algorithms, irregular all-to-all communication arises. In irregular

all-to-all communication, each node sends a distinct message to every other node in

which the size of the message to be sent varies from node to node. This paper

proposes a portable multi-stage algorithm to perform frequent irregular all-to-all

communication on various high-performance computing (HPC) platforms. Our

initial work in designing the algorithm appears in [31]. That work was motivated by
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the need to perform irregular and data-dependent communication operations in

parallelizing intermediate and high-level vision problems.

A straightforward approach to perform irregular all-to-all communication is to

send a message to each node one by one. However, this simple approach is inefficient

due to the large start-up latency and possible node contention. Start-up latency is the

major source of overhead in message passing particularly on loosely coupled

platforms. The variance in the message size causes node contention and, thus results

in the serialization of the message start-ups.

Several algorithms have been proposed to perform all-to-all communication

[5, 16, 20, 24] motivated by particular topologies, e.g., mesh, hypercube, etc.

Besides, the variance of the message size is not considered in the design of these

algorithms. In this paper, we design and analyze an efficient algorithm for irregular

all-to-all communication. The algorithm is suitable for state-of-the-art HPC

platforms.

Our algorithm consists of four stages. The first two stages perform message

distribution, while the rest of the stages perform message collection. In each stage,

the nodes are partitioned into several groups. Within each group, an all-to-all

communication is performed. At each node, some local memory accesses are

performed to compose the messages to be communicated. The algorithm reduces the

serialization of associated message passing start-ups (or node contention) by

balancing the length of the messages communicated in each stage. It also reduces the

overall communication latency by reducing the number of message start-ups. For

comparison purpose, we estimate the performance of the algorithm based on ‘‘flat’’

communication model. This model captures the features of the interconnection

networks of HPC platforms in which the software overheads dominate the hardware

latencies [22, 30]. In this model, let Lmax denote the maximum traffic (in bytes) at a

node. Let Ts be the start-up overhead for the main processor to traverse through the

software layers to send and receive a message, td denotes the data transfer time per

byte, tc the data copy latency per byte between local memory and interface, and tm

the latency of local memory access per byte. Given P nodes, the total time to perform

the algorithm is bounded by ð4
ffiffiffiffi
P

pl m
þ 2ÞTs þ 4ð

ffiffiffiffi
P

pl
Þ

ffiffiffiffi
P

pl m
Lmax

P
ðtm þ tc þ td Þ.

Also, our algorithm significantly reduces the buffer space required at each node

during the communication. The size of each of the send buffer and the receive buffer

is
ð½

ffiffiffi
P

p
�Þ2

P
Lmax bytes.

Recently, related problems have been studied by Ranka et al. [26] and by Bader

et al. [2]. Both algorithms reduce node contention and provide deterministic

performance. In these algorithms, the number of message passing start-ups is

doubled; therefore, the start-up latency dominates the overall communication time

when the total traffic is light.

Portability has been an important consideration in implementing our algorithm.

The message passing interface (MPI/MPI-2) provides a framework for portable

algorithm design and is supported on most state-of-the-art HPC platforms. The

current version of MPI provides the functionality to perform all-to-all communica-

tion. However, there is no Specific optimizations proposed to improve the

performance when message size varies from node to node. The algorithms were
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implemented using C and the MPI point-to-point communication primitives. Our

techniques, nonetheless, can be exploited to optimize performance of MPI

primitives. They can also be exploited at the lower level (operating system and

network interface level) using machine-specific features primitives to further improve

the performance of communication primitives.

Some platforms support nonblocking communication mode. On these platforms,

message composing and message communication can be performed in a pipelined

fashion. We can, therefore, overlap communication with local memory access. The

implementation of our approach is shown using such nonblocking primitives. These

designs are advantageous in realizing throughput-oriented implementation in using

HPC technology for image and signal processing applications.

To verify the effectiveness of our approach, we compare the performance of our

algorithm against the straightforward single-stage approach (denoted as A1) and

two prior algorithms in [2, 26] (denoted as A2) and in [17] (denoted as A3). All the

algorithms were implemented on SP2 and T3D. The experimental results can be

summarized as follows: Compared with A1 and A2, our algorithm reduces the

number of messages communicated. This improves the performance when blocking

communication mode is used. Compared with A1 and A3, our algorithm reduces

node contention as well as minimizes the buffer space needed at each node.

Overlapping communication with local memory access using nonblocking commu-

nication mode further improves the performance of our algorithm on SP2.

The rest of the paper is organized as follows. Section 2 describes the latencies in

performing irregular communication. Section 3 describes the algorithms and

implementation details. Section 4 summarizes our experimental results on T3D

and SP2 and compares it with those obtained by earlier approaches. Section 5

concludes the paper.

2. IRREGULAR ALL-TO-ALL COMMUNICATION

In this section, we define a model for the cost of performing irregular all-to-all

communication on state-of-the-art HPC platforms. Section 2.1 discusses a general

communication system of HPC platforms and defines a ‘‘flat’’ communication model

for performance analysis. Section 2.2 defines blocking and nonblocking commu-

nication modes. Section 2.3 models the communication time to perform irregular

communication and identifies the latencies induced by node contention.

2.1. Communication Latencies

In the state-of-the-art HPC platforms, the communication bottleneck is usually

not the bandwidth of the network fabrics. Instead, latencies induced at the sender

and the receiver cause the bottleneck [10, 18]. These include latencies introduced by

message start-ups and memory copying. Figure 1 illustrates the steps in sending and

receiving a message in a typical state-of-the-art HPC platform. m denotes the

message size in bytes. The latency of a message passing Operation is the total time

spent by the message to traverse through the communication path from the sender to

the receiver. First, data stored in noncontiguous memory locations are coalesced to a



FIG. 1. Major steps in message passing in a typical state-of-the-art HPC platform.
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message in the local memory of the sender. The message is then copied to the

network interface buffer at the sender, transferred through the network, and copied

from the interface buffer to the local memory at the receiver. Then, the received

message is decomposed and stored into the specified locations in the local memory of

the receiver. The latencies illustrated in Fig. 1 are defined as follows.

* tm send ðtm recvÞ: message coalescing (decomposing) latency per byte. This time
is spent to perform memory copy in local memory to compose (decompose) the
message.

* Ts send ðTs recvÞ: start-up overhead incurred by the main processor to traverse
through the software layers to initiate a message passing operation at the sender
(receiver).

* tc send ðtc recvÞ: memory copy time per byte between the local memory and the
interface buffer at the sender (receiver).

* td : data transfer time per byte from the interface buffer at the sender, through
the network to the interface buffer at the receiver.

For the sake of convenience, we define Ts ¼ Ts send þ Ts recv; tc ¼ tc send þ tc recv,

and tm ¼ tm send þ tm recv.

In our definition, Ts send and Ts recv are independent of the message size. These

parameters depend on the architectural features of the platform as well as the

network protocol used. Generally, these start-up overheads consist of the transfer

request and acknowledgment latencies, context switching latency, and the time to

generate the header of the message to be sent, tc send and tc recv are the unit data copy

time between the user memory and the interface buffer at the sender and the receiver

respectively. Some network protocols first copy the data from the user memory to

the system space and then copy the data from the system space to the interface

buffer. The additional memory copy cause larger tc send and tc recv. td is the inverse of

the transfer rate between the interface buffers of the sender and the receiver. We

assume that the network is lightly loaded with a low probability of channel

contention at the intermediate nodes or the network switches. This assumption is

reasonable in state-of-the-art HPC platforms in which the start-up overhead is in the

range of tens of micro-seconds and the switch latencies are in the range of tens of

nano-seconds. Besides, since modern HPC platforms use techniques such as worm-

hole routing and virtual channels to achieve a constant data transfer rate, td is
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independent of the number of hops the message traverses. Thus, as a first-level

approximation, td is not affected by the network topology.

The overall latency to send a message can be modeled by two components: the

message size invariant part ðTsÞ and the message size dependent part

ðm � ðtm þ tc þ td ÞÞ. This model is referred as a ‘‘flat’’ communication model

throughout the paper. Note that this model is used to estimate the performance of

the communication algorithms described in this paper for comparison purposes. The

exact communication times are shown based on the experimental results (see Section

4). The flat model is widely used in analyzing communication time on state-of-the-art

HPC platforms [3, 15, 21, 22, 30]. Note that, when a collection of messages is

transferred between a pair of nodes, the throughput can be increased by pipelining

the communication steps.

On some platforms such as CM5, the processors at the sender and the receiver

participate in the entire message passing operation; the processor at the sender

injects the packets from the local memory into the network, and the processor at the

receiver extracts the packets into the local memory. Overlapping of message passing

steps is impossible. On some other platforms such as T3D, SP2, and Myrinet-based

multicomputers [13], part of the message passing operations are off-loaded from the

main processor. This is achieved by using a message passing processor (usually a

micro-processor along with some customized circuitry embedded in the network

interface). SP2 and Myrinet also provide direct memory access (DMA) engines to

copy the data from the local memory to the interface buffer or vice versa. These

further reduce the time the main processor is engaged in message passing.

The communication features of state-of-the-art HPC platforms, typical values of

the latencies, and transfer rates are shown in Table 1. The table Is based on [10, 11,

18, 29] and our own measurements. It should be noted that the numbers vary

depending on the version of the software environment used for message passing.

2.2. Blocking and Nonblocking Communication Mode

To utilize the various architectural features of state-of-the-art HPC platforms,

MPI standard [14] defines several communication modes. We briefly define the
TABLE 1

Communication Features of HPC Platforms

Platform DMA

engine

Message

passing

processor

Program

interface

Td ðmsÞ tc þ td

ðms=byteÞ

CM5 No Main processor CMMD 85 0.12

SP2 Yes Co-processor MPICH 44 0.035

T3D Yes Support circuitry MPICH 38 0.043

T3E Yes Support circuitry MPI-EPCC 28 0.006

Sparc station + Yes Microprocessor Myrinet 68 0.027

Myrinet + LANai in LANai board API

interface
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blocking and nonblocking communication modes. Additional details can be found

in [14].

As defined in MPI [14], in blocking send operation, the main processor of the

sender is not free until the message data are safely stored in the interface buffer of the

sender so that the send buffer in the local memory is available, if needed. In blocking

receive, the main processor of the receiver is not free after the receive command is

posted and until the receive buffer contains the message.

Nonblocking communication permits overlap of communication with computa-

tion [14]. In nonblocking send, the main processor at the sender starts the

communication and resumes the user computation as early as possible. In

nonblocking receive, the main processor is free after it posts the receive command.

A corresponding waiting command is required to complete the nonblocking send or

receive. It indicates when the send or receive buffer is available for further

computation. For consecutive message passing operations, the main processor can

be used to perform message coalescing or decomposing concurrently with the

message copy operation performed by the DMA engine and the message transfer

performed by the message passing processor.

2.3. Latencies in Performing Irregular All-to-All Communication

In this section, we analyze the latencies in performing irregular all-to-all

communication using the parameters introduced in Section 2.1 and using the

communication modes introduced in Section 2.2. In addition, we introduce an

aggregate node contention factor. This framework motivates the design of our

algorithm as well as analyzes the performance of various algorithms. These are

discussed in Section 3.

We first estimate the time to perform an all-to-all communication among P nodes.

The size of each message is m bytes. We assume that the P messages to be

communicated are composed first. A barrier synchronization is performed after

message composition, followed by the communication. For the sake of modeling the

algorithms developed in Section 3, the received messages are not decomposed.

Therefore, tm recv ¼ 0. Using a simple model of blocking and nonblocking modes, the

performance can be analyzed as follows:

(1) Using blocking mode. The communication is performed in P steps. In each

step, a node sends a message and then receives a message. Each step of message

passing takes Ts þ mðtc þ tdÞ time. The send command in the next step cannot be

issued until the completion of receive in the current step. The composition of

messages takes Pmtm time. So, the total execution time can be estimated as

Tblock ¼ P½Ts þ mðtc þ tm þ td Þ�: ð1Þ

(2) Using nonblocking mode. Nonblocking communication mode permits

pipelined operations in message passing. To simplify the analysis, each node sends

the p outgoing messages first and then receives the p incoming messages. We assume

that, at each node, the main processor spends PTs, time to send and receive the

messages, the DMA engine spends Pmtc time to copy data between the local memory

and interface buffer, and the message passing processor spends Pmtd time to transfer
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the messages between the interface buffers of the sender and the receivers. We also

assume that the largest latency among these three hides the latencies introduced by

the operations in the other stages of the pipeline. A simple approximation to the total

communication time is

Tnonblock ¼ ðPmtmÞ þ P MaxðTs;mtc;mtdÞ: ð2Þ

When irregular all-to-all communication is performed, additional communication

latencies occur due to node contention [18, 19, 23, 27, 28]. Node contention occurs

when message compete for the buffer space and the input/output ports. This scenario

causes serialization of communication operations at the node. Figure 2 illustrates a

scenario depicting node contention in irregular communication.

At time T1, nodes P0;P1;P2;P3 start sending a message to P1;P2;P3;P0

respectively. Assume that P0 completes its transfer at time T2 and starts sending

its next message to P2. At this time, there is a potential node contention at P2.

Similarly, at time T3, another potential node contention occurs at P0 since both P2

and P3 concurrently attempt to send messages to P0.

Figure 3 illustrates the time line for irregular communication using blocking mode.

There is a node contention at P2 since P0 and P1 send messages to P2 at the same

time. Possible delays due to node contention are:

1. The incoming messages R02 and R12 pass through the limited bandwidth of
the input port(s) at the receiver. Thus, td ’s for R02 and R12 increase. These cause the
delays d1 and d2 respectively.

2. Since the completion of sending S12 is delayed, P1 postpones the send of the
next outgoing message S13. This causes delay d3 at P3.
FIG. 2. A scenario depicting possible node contentions in performing irregular communication.



FIG. 3. A possible scenario illustrating latencies in performing an irregular all-to-all communication

among four nodes.
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Using the parameters introduced in Section 2.1, a simple approximation to the

total time to perform all-to-all communication among P nodes is

* blocking mode:

Tblock ¼ PTs send þ Lmaxðtc þ tm þ fnc btd Þ; ð3Þ
* nonblocking mode:

Tnonblock ¼ Lmaxtm þ MaxðPTs;Lmaxtc;Lmaxfnc nbtdÞ; ð4Þ

where Lmax is the maximum traffic to be communicated at a node. fnc b and fnc nb are
the aggregate node contention factors in blocking and nonblocking communications
respectively. fnc b and fnc nb are generally greater than 1. They are equal to 1 if there is
no node contention. As shown in Fig. 3, node contention delays the following input
or output, and causes serialization of communication operations at a node.

Note that the above estimate is an approximation to the actual time. The above
equations, even though simplistic, illustrate two problems that can arise in
performing irregular all-to-all communication: latencies due to message start-ups
and node contention. Equations (1)–(4) can be used to understand the performance
of known algorithms as well in deriving the proposed solution. Indeed, the
performance of the proposed algorithms can be fairly accurately predicted by using
the parameters defined in this section.

3. ALGORITHMS AND THEIR PERFORMANCE ANALYSIS

In this section, we develop a four-stage algorithm to perform irregular all-to-all

communication and compare its performance with those of three earlier algorithms

based on the model discussed in Section 2.3.
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The algorithms are denoted A1–A4. A1 is a straightforward algorithm. A2 is the

algorithm proposed by Ranka [26] and Bader [2]. A3 is a well-known algorithm

motivated by the two-dimensional mesh architecture. A3 and its implementation was

proposed in [16, 20]. A4 is our four-stage algorithm.

Our goal is to develop an efficient algorithm that is portable onto various state-of-

the-art HPC platforms. As discussed later in this section, the algorithm is designed to

suit an arbitrary number of processors. The previous approaches assume that the

number of nodes required to satisfy a particular property (e.g., a perfect square, a

power of 2, etc.) matches the specific architectural configuration and network

topology. Our approach does not make this assumption. This makes it attractive

particularly on some platforms, such as networks of workstations (NOWs) and

switch-based multicomputers that allow a variety of system configurations. These

systems consist of an arbitrary number of nodes embedded on a platform. Also, in

solving many problems, the nodes on HPC platforms are partitioned into groups.

Each group is assigned to perform a particular task. The size of a group depends on

the computational power required and the degree of parallelism of the task being

performed.

The nodes participating in communication are numbered 0 through P � 1. The

size of the messages to be communicated is represented using a P � P matrix M (see

Fig. 4). At each node, the data to be communicated are initially stored in an

arbitrary order. We assume that all the nodes are synchronized at the beginning of

the communication.

In Fig. 4, Mij denotes the size of the message to be sent from node i to node j. Let

Mmax be the size of the longest message, Louti and Linj the total outgoing traffic at

node i and the total incoming traffic at node j respectively. We define Lmax to be the

maximum of all the incoming and outgoing traffic among the P processors. Thus,

Mmax ¼ max
04i;j5P

Mij ;

Louti ¼
XP�1

k¼0

Mik;

Linj ¼
XP�1

k¼0

Mkj ;

Lmax ¼ max
04i;j5P

ðLouti;LinjÞ:

To simplify the explanation, we assume that each processor sends a message to

itself from its send buffer to its receive buffer.

3.1. Previous Algorithms

For the sake of completeness, we describe A1–A3 before describing A4.
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3.1.1. Algorithm A1. A straightforward algorithm is a one-stage algorithm. Each

node sorts its data by their destination to compose P messages and routes the

messages to their destinations in P steps. A simple communication schedule is used:

during the ith step, 14i4P, node j sends the message destined for node

ði þ jÞ%P; 04j5P, where % denotes the modulo operator. As discussed in Section

2.3, the communication schedule alone does not solve the node contention problem.

3.1.2. Algorithm A2. Ranka et al. proposed a two-stage algorithm to reduce

node contention [26]. The algorithm decomposes many-to-many communication

with a high message size variance into two many-to-many communication stages

with low message size variance.

At each Pi; 04i5P, the elements to be sent to the receiver Pj ; 04j5P, are

evenly divided into P slices. At each node, for each j, the P slices destined for Pj are

distributed to P outgoing messages.

Then, an all-to-all communication is performed among the P nodes. In the second

stage, an all-to-all communication is performed to send the data to their destination.

The variance of the message size is reduced in both the stages. This algorithm was

implemented on CM5 using Active Message. Hence the portability of the code is

limited.

To perform the algorithm, the data need to be sorted by destination. After the sort

operation, the messages to be communicated are generated by first marking the start

and the length of each slice of sorted data. Then, the data are copied slice by slice to

compose the messages. It takes OðP2Þ time to mark the slices in each stage.

A similar algorithm was proposed by Bader et al. [2] and was implemented using

SPLIT-C on a variety of platforms. However, they assume that, initially, the data are

stored in a buffer in an arbitrary order. They developed an algorithm to scan the

buffer and evenly distribute the data elements to be sent to the same destination into

P outgoing messages. The elements are moved to the send buffers one by one during

the scan operation. Compared with the approach in [26], this algorithm reduces the
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overall communication latency by avoiding sort of the data and identifying the slices

before composing the messages. This algorithm also reduces the buffer space as

compared to the approach in [26].

In some applications, data to be transferred are initially available in a sorted order

by destination. If a platform provides a fast mechanism for block transfer, the

approach to move data slice by slice may be more efficient than the one to scan the

data and move data element by element to compose the outgoing messages. Marked

slices of data can be exploited using MPI. MPI supports pack (unpack) primitives

and derived data-type constructors. These primitives allow the users to specify the

patterns to compose (decompose) a message from (to) noncontiguous location.

However, we have observed that the current implementation of these primitives is

inefficient. Thus, the scan-based composition of messages leads to faster

implementation.

3.1.3. Algorithm A3. A3 [16] is a two-stage communication algorithm that

combines messages to reduce the overall number of messages transferred. It is

motivated by the use of mesh interconnected parallel machines. The algorithm

combines the actual messages to form longer messages and redistributes the elements

before sending them to their final destination. Hambrusch et al. [16] have

implemented this algorithm for all-to-all communication. Their goal is to achieve

better performance for short messages.

In this algorithm, the nodes are assumed to be arranged in a square mesh of sizeffiffiffiffi
P

p
�

ffiffiffiffi
P

p
. Note that P is assumed to be a perfect square. Pij ; 05i; j5

ffiffiffiffi
P

p
, denotes

the node at the ith row and the, jth column. The message to be sent from node Pi1j1 to

Pi2j2 is delivered to an intermediate node Pi1j2 . It is then combined with other

messages sent from Pi1;j ; 04j5
ffiffiffiffi
P

p
; j=j2, and then sent to the final destination

Pi2j2 . Since each node only communicates with the nodes in its own row in Stage 1

and in its own column in Stage 2, the total number of messages sent by any node is

2
ffiffiffiffi
P

p
.

Since the algorithm does not balance the traffic during an irregular all-to-all

communication, the network bandwidth may not be fully utilized. Also, the algorithm

may result in hot spots; each message is buffered in a pre-determined intermediate

node. These nodes can become bottlenecks. This scenario not only increases the

overall communication time but also results in poor utilization of buffer space.

Furthermore, when P is a not perfect square, the algorithm in its current plan does

not work. Some intermediate nodes do not exist. In this case, some messages cannot

be sent to their final destination. Straightforward extensions can lead to additional

hot spots.

3.2. A Four-Stage Algorithm

We develop a four-stage algorithm to perform irregular all-to-all communication

on a system having an arbitrary number of nodes. The algorithm balances the traffic

by reducing the variance of the message size. It also reduces the number of messages

communicated by each node by sending them to a smaller number of intermediate

nodes.
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To explain the algorithm, the nodes are assumed to be arranged in a two-

dimensional array as shown in Fig. 5. Row-major ordering is used throughout the

paper. C ¼
ffiffiffiffi
P

pl m
denotes the number of columns and R ¼ Pffiffiffi

P

p� �
& ’

denotes the

number of rows. When C divides P, each column is defined to be a complete column.

When C does not divide P, let r ¼ P%
ffiffiffiffi
P

pl m
. We define the first r columns to be

complete columns while the last C � r columns are defined to be incomplete

columns. We also define the first R � 1 rows to be complete rows. The last row is

defined as incomplete row if C does not divide P.

At each node, the send buffer, denoted sBUF , is partitioned into several buckets.

Data stored in each bucket are sent to a receiver. The receiver stores the received

data in its receive buffer, denoted rBUF . At each node, the data to be communicated

are initially stored in rBUF in an arbitrary order.

3.2.1. Overview of the four-stage algorithm. The first two stages perform message

distribution, while the rest of the two stages perform message collection. To

introduce the key ideas of the algorithm, we first consider the, case when P is

divisible by C. The general case when P is an arbitrary integer is discussed in Section

3.2.2. Our four-stage algorithm is described as follows.

* Stages I and II}message distribution. The node array is partitioned into sets.
In Stage I (II), all the nodes in a row (column) belong to the same set. Let N denote
the number of nodes in each set; N equals C (R) in Stage I (II). Each node classifies
its local data into P groups based on their destinations. It evenly divides each group
into N segments, and collects segment i from each group into bucket i. There are N

buckets in sBUF. The nodes in each set perform an all-to-all communication to
exchange the corresponding data in the buckets.

During the first two stages, the variance of the message size is reduced. This
reduces potential node contention. At the end of Stage II, the total data to be sent to
the same destination are evenly distributed among all the P nodes.

* Stages III and IV}message collection. In Stage III, the node array is
partitioned such that all the nodes in a row belong to a set. sBUF in each node is
FIG. 5. Logical view of the nodes as a two-dimensional node array.
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partitioned into C buckets. In each node, the data destined for the same column are
stored in a bucket. An all-to-all communication is performed in each row. During
the communication, the message in a bucket is sent to its destination column along
its row. In Stage IV, the node array is partitioned such that all the nodes in a column
belong to the same set. Data elements are classified according to their destination
and stored into R buckets. Each column performs an all-to-all communication so
that each datum is sent to its final destination. Since the data to be sent to the same
destination are evenly distributed at the end of Stage II, the variance of the message
size communicated in each step in Stages III and IV is reduced.

We develop an efficient algorithm to compose the messages to be communicated in
each stage. It avoids sorting of elements at the beginning of each stage. The
algorithm is presented in Section 3.2.2.

The communication in each stage can be scheduled so that each node receives
exactly one message in any step. Figure 6 shows these schedules. C-Schedule is used
to schedule the communication in each row in Stages I and III, and R-Schedule is
used in each column in Stages II and IV. Note that the total number of
communication steps performed is 2R þ 2C.

Figure 7 illustrates the message distribution and message collection between a pair
of nodes. In Fig. 7(a), each message is sliced and evenly distributed into two buckets.
Then, the communication step is performed to exchange the data such that the data
FIG. 7. Illustration of message distribution and message collection. (a) Data are evenly distributed to

P0 and P1. (b) Data are collected to the final destination.
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destined for each node are evenly distributed between the nodes. In Fig. 7(b),
the data destined for the same node are collected and sent to their final
destination.

3.2.2. Generalization of the algorithm.. As discussed at the beginning of Section

3, there can be an arbitrary number of nodes in a platform, or, a subset of the array

participating in an irregular communication. In general, if P is not divisible by C, the

algorithm introduced in Section 3.2.1 is incomplete; those nodes in the incomplete

row cannot communicate with the nodes in the incomplete column(s).

A brute-force solution is to choose r nodes in a complete row and move all the

data from each node in the incomplete row to a chosen node. The ðR � 1ÞC node

array, then, performs the four-stage algorithm as discussed in Section 3.2.1. After the

four-stage communication, the data destined for the nodes in the incomplete row are

transferred using an additional communication step. In the worst case, this approach

doubles the maximum traffic (Lmax). This not only degrades the performance but

also increases the buffer size at each node. In addition, two extra steps of

communication are required. In each of these steps, r messages are sent in parallel.

These messages can be as long as Lmax.

In this section, we generalize our algorithm by modifying Stages I and III. As

compared to the brute-force approach, our algorithm is efficient and saves buffer

space.

We modify Stages I and III by introducing additional communication steps. These

communication steps are performed in concert with the all-to-all communication in

each row so that the incomplete row can communicate with the incomplete

column(s). In Stages II and IV, an all-to-all communication is performed among the

R nodes in each complete column and among the R � 1 nodes in each incomplete

column.

Note that the node array is rearranged if needed to ensure that the number of

nodes in the incomplete row ðrÞ is less than or equal to the number of complete rows

ðR � 1Þ. To perform the additional communication without node contention, we

design a priority communication schedule so that only
ffiffiffiffi
P

pl m
þ 1 communication

steps are required in each of Stages I and III. Also, we balance the load to reduce the

variance of the message size. The details of the generalized algorithm are shown

below:

(A) Additional messages for all-to-all communication in an incomplete array. We

define C � r pseudo-nodes to fill the incomplete row of the node array. While

performing all-to-all communication among the r nodes in Stages I and III, each

node in the incomplete row sends a distinct message to each pseudo-node. The

additional messages destined for each pseudo-node, however, are distributed to the

nodes in the complete rows of an incomplete column. A total of rðC � rÞ additional

messages are communicated.

For each node in the incomplete row, the message sent from the node in the ith

column, 04i5r, to the pseudo-node in the jth column, r4j5C, is delivered to the

node located in the ith row and the jth column. These additional messages and the

mapping onto the incomplete columns are illustrated in Fig. 8 for the case of P ¼ 18.



FIG. 8. Additional messages communicated when P is not divisible by C.
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We need at least r complete rows to receive these additional messages, i.e.,

R � 15r. Since r4
ffiffiffiffi
P

pl m
� 1 and R � 1 ¼ Pffiffiffi

P

p� �
& ’

� 15
ffiffiffiffi
P

pl m
� 2, this condition

is not valid when P ¼
ffiffiffiffi
P

pl m
b

ffiffiffiffi
P

p
c � 1. In this case, r ¼

ffiffiffiffi
P

pl m
� 1 and R � 1 ¼ffiffiffiffi

P
pl m

� 2. We rearrange the array by defining C to be b
ffiffiffiffi
P

p
c. This yields r ¼

b
ffiffiffiffi
P

p
c � 1 and R � 1 ¼

ffiffiffiffi
P

pl m
� 1. Thus, there are sufficient number of complete

rows to receive the additional messages.

(B) Priority scheduling. The rðC � rÞ additional messages discussed above interfere

with the all-to-all communication in each row performed in Stages I and III,

resulting in node contention.

Figure 9 shows the communication schedule for the third row of the node array

when P ¼ 61 ðR ¼ 8; C ¼ 8; r ¼ 5Þ. The nodes in the third row of the array

perform an all-to-all communication, also node 58 sends additional message to each

of the nodes 21, 22 and 23. The shaded area indicates the node contention. In the

worst case (when r ¼ 1), node contention occurs during C � 1 steps (in each of

Stages I and III). To avoid this node contention, we can perform the all-to-all

communication in each row first and then perform the additional communication.

However, this causes C � 1 more steps in the worst case in each of Stages I and III.

We reschedule the communication steps using a priority schedule. The additional

messages sent from the incomplete row have a higher priority. Figure 10 illustrates

such a priority schedule.

In Fig. 10, we schedule the communication so that each node receives at most one

message in a step. The additional messages to be sent from node 58 are scheduled

first. Then, the communication from node 18 is scheduled. Nodes 18 and 58 send

messages to node 21 in Step 3. The contention at node 18 is avoided by stalling the

send in Step 3. Stalling the data from node 18 causes secondary contention at node

17. The contention at node 17 is eliminated by stalling the send in Step 4. A chain of

contentions occurs among the rest of the nodes with lower priorities. These nodes are

scheduled to eliminate the contention as shown in Fig. 10. The communication

schedule is defined as follows:



FIG. 9. Communication schedule illustrating node contention.
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Revised R-Schedule

. C � r pseudo-nodes are defined to fill the incomplete row. R-Schedule shown

in Fig. 6 is used to schedule each row. Note that the pseudo-nodes do not send any

message.

. The messages destined for each pseudo-node are distributed to some nodes

in the complete rows as discussed in (A).

. In the mth complete row, 04m5r, for 04k4C � r þ m, the node ranked

ðm þ C � kÞ%C in that row inserts a stall in Step ðr � m þ 1 þ kÞ.

The above schedule results in an additional communication step in Stages I and

III. However, no node contention occurs. Thus, Stages I and III are each completed

in
ffiffiffiffi
P

pl m
þ 1 steps.
FIG. 10. Revised communication schedule.
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(C) Load balancing. Associated with the modification in (A), we need to balance

the load at the end of Stage II so that the variance of the message size can be reduced

in the last two stages.

It should be noted that the complete columns have R nodes each, while each

incomplete column has R � 1 nodes. In Stage I, in each node, R
P

of the data destined

for node j; 04j5P, is distributed to each node in its row in the complete column

and R�1
P

of this data is distributed to each node in its row in the incomplete columns.

Then the messages in the nodes are evenly distributed along each column in Stage II

to balance the load.

This distribution can be implemented by using a scan-based algorithm. This

algorithm takes OðLmaxÞ time. It composes the messages to be communicated on the

fly as the elements are scanned and avoids sorting of the elements before balancing

the load. A similar algorithm was performed in [2]. That algorithm, however, was

developed to evenly distribute the load to each bucket.

The distribution primitive, R-Distribute, used in Stage I is defined in Fig. 11. In

each node, data are distributed from rBUF to sBUF . sBUF at each node is

partitioned into C buckets. We define a counter array, count½:�, with P entries. The

jth entry is used to count the number of elements destined for node j during the scan

operation. F ðxÞ ¼ ðx%PÞ%C is a distribution function that specifies the bucket

number to be used.

R-Distribute ensures that, in each node, for every P elements to be sent to node

j; R of them are stored in each of the first r buckets, and R � 1 of them are stored in

each of the last C � r buckets. The entries of the counter array are initialized to 0

through C � 1. Thus, the first element destined for node j is stored in bucket j%C.

The purpose of the initialization of the counter array is to smooth out the message

size in the buckets. The effectiveness of the initialization is proven in [2].

The distribution primitive, C-Distribute used in Stage II can be similarly defined.

At each node in the complete (incomplete) columns, sBUF is partitioned into

RðR � 1Þ buckets. The message stored in each bucket is sent to a node in its column,

count[i], 04i5R ð04i5ðR � 1ÞÞ, is set to i%R ði%ðR � 1ÞÞ. The elements in each

node are evenly distributed to the RðR � 1Þ buckets by using the distribution

function F ðxÞ. F ðxÞ ¼ x%R ðF ðxÞ ¼ x%ðR � 1ÞÞ.

3.2.3. The complete four-stage algorithm. To describe the complete algorithm,

we first define all-to-all communication primitives, C-Comm and R-Comm, and

collection primitives, C-Collect and R-Collect.
FIG. 11. Message distribution in Stage I.
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C-Comm. The nodes are partitioned such that all the nodes in a column belong

to a set. An all-to-all communication among the nodes in each column is performed.

This all-to-all communication is performed in parallel for all the columns. C-Schedule

shown in Fig. 6 is used to schedule the communication in each column.

R-Comm. The nodes are partitioned such.that all the nodes in a row belong to

a set. An all-to-all communication with the nodes in each row along with the

additional communication due to pseudo-nodes is performed in parallel for all the

rows. Revised R-Schedule is used to schedule the communication.

C-Collect. In each node, sBUF is partitioned into C buckets. In each node, the

elements to be sent to the kth column are collected into the kth bucket, 04k5C.

R-Collect. In each node in a complete (an incomplete) column, sBUF is

partitioned into RðR � 1Þ buckets. The elements to be sent to the kth row are

collected into the kth bucket, 04k5R ð04k5R � 1Þ.
Based on the primitives introduced in Section 3.2.2 and in this section, the four-

stage algorithm is shown in Fig. 12. A barrier synchronization is performed at the

beginning of each stage.

3.2.4. Performance analysis. We analyze first the number of messages received at

each node and the maximum length of the messages communicated in each stage,

then the buffer space requirements. An expression for the execution time is also

derived based on the model described in Section 2.

We consider the case when r > 0. To simplify the presentation of our proofs, we

assume that Mij is divisible by P; 04i; j5P.

Lemma 1. Any node in a complete column receives at most
ffiffiffiffi
P

pl m
messages in each

stage. Any node in an incomplete column receives at most
ffiffiffiffi
P

pl m
þ 1 messages in

Stages I and III and at most
ffiffiffiffi
P

pl m
� 1 messages in Stages II and IV.
FIG. 12. The complete version of the four-stage algorithm.
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Proof. Note that the messages are communicated when C-Comm or R-Comm is

performed. The other steps are local operations.

When C-Comm is performed in Stages II and IV, there are at most
ffiffiffiffi
P

pl m
nodes in

each column. So, any node in a complete column receives at most
ffiffiffiffi
P

pl m
messages

including a message from itself.. There are at most
ffiffiffiffi
P

pl m
� 1 nodes in an incomplete

column. So, any node in an incomplete column receives at most
ffiffiffiffi
P

pl m
� 1 messages.

When R-Comm is performed in Stages I and III, any node receives at most
ffiffiffiffi
P

pl m
messages from the nodes in its row. In addition, a node in an incomplete column

receives an additional message if the node is in one of the first r rows. Therefore, a

node in an incomplete column receives at most
ffiffiffiffi
P

pl m
þ 1 messages. ]

Now, we show bounds on the length of the messages communicated during the

execution of the algorithm. First, we show the property of data distribution at the

end of Stage II in Lemma 2. This is used to derive the maximum length of the

messages communicated in the last two stages.

Lemma 2. At the end of Stage II, the data elements to be sent to the same

destination are evenly distributed among the P nodes.

Proof. Consider the distribution of data elements destined for an arbitrary node

j; 04j5P, at the end of Stage II.

Let ej be the data destined for node j. At any node k; 04k5P, after R-Distribute

is performed in Stage I, each of the first r buckets has R
P
Mkj of ej. Each of the last

C � r buckets has R�1
P

Mkj of ej. After R-Comm is performed:

(1) Any node is in a complete column has

.
Pðrcþ1ÞC�1

i¼rcC
R
P

Mij of ej, if the node is in a complete row rc, for 04rc5R � 1.

.
PP�1

i¼ðR�1ÞC
R
P

Mij of ej, if the node is in the incomplete row.

(2) Any node in an incomplete column has

.
Pðricþ1ÞC�1

i¼ricC
R�1

P
Mij þ R�1

P
Msj of ej, if the node is in row ric for 04ric5r. The

second term is due to the additional message received from node s, where s is the ricth

node in the incomplete row.

.
Pðricþ1ÞC�1

i¼ricC
R�1

P
Mij of ej, if the node is in row ric, for r4ric5R � 1. At the

end of Stage I, each complete column has

XR�2

rc¼0

Xðrcþ1ÞC�1

i¼rcC

R
P

Mij þ
XP�1

i¼ðR�1ÞC

R
P

Mij ¼
XP�1

i¼0

R
P

Mijofej :

Each incomplete column has

XR�2

ric¼0

Xðricþ1ÞC�1

i¼ricC

R�1
P

Mij þ
XP�1

i¼ðR�1ÞC

R�1
P

Mij ¼
XP�1

i¼0

R�1
P

Mijofej :
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There are R nodes in a complete column and R � 1 nodes in an incomplete column.

Since the elements are evenly distributed along each column in Stage II, at the end of

Stage II, each node has
PP�1

i¼0
Mij

P
elements destined for node j; 04j5P � 1. Thus, at

the end of Stage II, the data elements to be sent to the same destination are evenly

distributed among the P nodes. ]

Lemma 3. The length of any message received by a node in a complete column is

bounded by
ffiffiffiffi
P

pl m
Lmax

P
. The length of any message received by a node in an incomplete

column is bounded by ð
ffiffiffiffi
P

pl m
þ 1Þ Lmax

P
in Stages II and IV and ð

ffiffiffiffi
P

pl m
� 1Þ Lmax

P
in

Stages I and III.

Proof. Let node AðBÞ be an arbitrary node in a complete (an incomplete)

column. In Stage I, the total length of the messages sent from any node i to node

AðBÞ is
PP�1

j¼0
R
P

Mijð
PP�1

j¼0
R�1

P
MijÞ, which is less than or equal to R Lmax

P
ððR � 1Þ Lmax

P
Þ.

Node AðBÞ receives at most CðC þ 1Þ messages in Stage I. In Stage II, the received

data in node AðBÞ are evenly distributed to RðR � 1Þ buckets. So the length of the

messages transferred along a complete (an incomplete) column is bounded by C
Lmax

P
ððC þ 1Þ Lmax

P
Þ in Stage II.

As proven in Lemma 2, each node contains
PP�1

i¼0

PP�1
i¼0

Mij

P
elements at the end of

Stage II. In Stage III, the message sent from each node to a column is
P

j

PP�1
i¼0

Mij

P

in length, for every node j in that column. Since there are RðR � 1Þ nodes in each

complete (incomplete) column; the length of the messages received by node AðBÞ is

bounded by the maximum of R
PP�1

i¼0
Mij

P
ððR � 1Þ

PP�1
i¼0

Mij

P
Þ, 04j5P, which is less

than or equal to R Lmax

P
ððR � 1Þ Lmax

P
Þ.

In Stage IV, at node AðBÞ, elements destined for the same node are collected into

RðR � 1Þ buckets. Since there are at most CðC þ 1Þ messages received by node AðBÞ,
each bucket has C

PP�1
i¼0

Mij

P
ððC þ 1Þ

PP�1
i¼0

Mij

P
Þ elements to be sent to node j. So the

length of the messages sent from node AðBÞ is bounded by C Lmax

P
ððC þ 1Þ Lmax

P
Þ.

Since R4
ffiffiffiffi
P

pl m
and C ¼

ffiffiffiffi
P

pl m
, the length of the messages received by any node

in a complete column is bounded by
ffiffiffiffi
P

pl m
Lmax

P
. The length of the messages received

by any node in an incomplete column is bounded by ð
ffiffiffiffi
P

pl m
þ 1Þ Lmax

P
in Stages II and

IV and ð
ffiffiffiffi
P

pl m
� 1Þ Lmax

P
in Stages I and III. ]

Table 2 summarizes the message distribution in the system.

Based on Lemmas 1 and 3, we show a bound on the buffer space requirement in

the following theorem.

Theorem 1. The total size of the buffer needed at any node is bounded by

2ð
ffiffiffiffi
P

pl m2
Lmax

P
Þ.

Proof. From Lemmas 1 and 3, any node in a complete column receives at mostffiffiffiffi
P

pl m
messages, and the length of each is bounded by

ffiffiffiffi
P

pl m
Lmax

P
.



TABLE 2

Number of Messages Received at a Node and the Size of the Longest Message

Stage Node in a complete column Node in a incomplete column

No. of messages Longest message No. of messages Longest messages

I
ffiffiffiffi
P

pl m ffiffiffi
P

p� �
P

Lmax

ffiffiffiffi
P

pl m
þ 1

ffiffiffi
P

p� �
�1

P
Lmax

II
ffiffiffiffi
P

pl m ffiffiffi
P

p� �
P

Lmax

ffiffiffiffi
P

pl m
� 1

ffiffiffi
P

p� �
þ1

P
Lmax

III
ffiffiffiffi
P

pl m ffiffiffi
P

p� �
P

Lmax

ffiffiffiffi
P

pl m
þ 1

ffiffiffi
P

p� �
�1

P
Lmax

IV
ffiffiffiffi
P

pl m ffiffiffi
P

p� �
P

Lmax

ffiffiffiffi
P

pl m
� 1

ffiffiffi
P

p� �
þ1

P
Lmax
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On the other hand, in Stages II and IV, any node in an incomplete column receives

at most
ffiffiffiffi
P

pl m
þ 1 messages. The length of each message is bounded by b

ffiffiffiffi
P

p
c Lmax

P
. In

Stages I and III, each of these nodes receives at most
ffiffiffiffi
P

pl m
� 1 messages. The length

of each message is bounded by ð
ffiffiffiffi
P

pl m
þ 1Þ Lmax

P
.

Since ð
ffiffiffiffi
P

pl
Þð

ffiffiffiffi
P

pl m
þ 1Þ5

ffiffiffiffi
P

pl m2

, the size of rBUF is bounded by
ffiffiffiffi
P

pl m2
Lmax

P
.

The data in rBUF are copied to sBUF in each stage. Thus, the size of sBUF is

bounded by
ffiffiffiffi
P

pl m2
Lmax

P
. Therefore, the total buffer size at any node is bounded by

2ð
ffiffiffiffi
P

pl m2
Lmax

P
Þ. ]

Based on the model introduced in Section 2, we derive an expression for the total

execution time of the algorithm in terms of the start-up latency ðTdÞ and the latency

proportional to the traffic size ðtm þ tc þ tdÞ.

Theorem 2. The total execution time of the four-stage algorithm is

ð4
ffiffiffiffi
P

pl m
þ 2ÞTd þ 4ð

ffiffiffiffi
P

pl m
þ 1Þ

ffiffiffiffi
P

pl m
Lmax

P
ðtm þ tc þ tdÞ.

Proof. Note that a barrier synchronization is performed at the beginning of each

stage. Thus, we can derive the execution time for each stage and sum up these times.

The algorithm employs a conflict-free schedule in each stage. The execution time of a

stage is bounded by the product of the number of communication steps and the time

taken by in the longest communication step in the stage. As shown in Table 2, in

each of Stages I and III, the length of the longest message is
ffiffiffiffi
P

pl m
Lmax

P
. There are at

most
ffiffiffiffi
P

pl
steps as discussed in Section 3.2.2(B). Similarly, in each of Stages II and

IV, the length of the longest message is ð
ffiffiffiffi
P

pl m
þ 1Þ Lmax

P
. There are at most

ffiffiffiffi
P

pl m



TABLE 3

Communication Characteristics of the Algorithms

Algo- Number of Total traffic Reduction Reduction Comments

rithm start-ups of number

of messages

of message

irregularity

A1 P Lmax No No Node contention occurs

A2 2P 2Lmax No Yes 2P messages are commu-

nicated

A3 2
ffiffiffiffi
P

p
2Lmax Yes No P is restricted to be a

perfect

square. Node contention

and hot

spots occur

A4 4
ffiffiffiffi
P

pl m
þ 2 4

ffiffiffi
P

p� � ffiffiffi
P

p�� �
P

Lmax Yes Yes }
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communication steps. Thus, there are
ffiffiffiffi
P

pl m
þ 2 start-ups and the total traffic at

each node is bounded by 4ð
ffiffiffiffi
P

pl m
þ 1Þ

ffiffiffiffi
P

pl m
Lmax

P
Thus, the total time to execute the

algorithm is ð4
ffiffiffiffi
P

pl m
þ 2ÞTd þ 4ð

ffiffiffiffi
P

pl m
þ 1Þ

ffiffiffiffi
P

pl m
Lmax

P
ðtm þ tc þ tdÞ. ]

3.3. Comparison of the Algorithms

Table 3 summarizes the techniques employed by the four algorithms and their

communication complexities. Table 4 lists the buffer requirements of the algorithms.

The algorithms are compared in the following:

* Based on Table 3, our algorithm requires Oð
ffiffiffiffi
P

p
Þ number of message start-

ups, while A1 and A2 require OðPÞ number of start-ups. Thus, our algorithm is
scalable over a wide range of processors compared with A1 and A2.

* As shown in Table 3, our algorithm is suitable for an arbitrary number of
processors. However, A3 is restricted since it is only suitable for a perfect square
number of processors.
TABLE 4

Send/Receive Buffer Requirements of the Algorithms

A1 A2 A3 A4

sBUF MmaxP Lmax MmaxP

ffiffiffi
P

p� �2

P
Lmax

rBUF Lmax Lmax MmaxP

ffiffiffi
P

p� �2

P
Lmax

Mmax ¼ max04i;j5P Mij ,

Lmax ¼ max04i;j5P ð
PP�1

m¼0 Mim;
PP�1

k¼0 MkjÞ.
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* As proven in Theorem 2 in Section 3.2.4 and shown in Table 4, the size of the

buffer needed at each node is 2ð
ffiffiffiffi
P

pl m2
Lmax

P
Þ. Compared with A1 and A3, A4 results

in significant savings in buffer space. For instance, if Mmax ¼ Lmax, then A3 needs P

times the buffer space required by A4. The extremely large buffer size requirement at
some nodes restricts the feasibility of A1 and A3.

* Our algorithm reduces the variance of size of the messages. Therefore, node
contention is reduced. Node contention causes performance degradation in the case
of A1 and A3.

3.4. A Nonblocking Version of the Four-Stage Algorithm

When nonblocking communication mode is used, the algorithms can be performed

in a pipelined fashion to reduce the overall communication time. Figure 13 depicts

the communication in Stages I and II of the four-stage algorithm. In Fig. 13(a),

blocking mode is used. Overlap of the communication steps is not possible. In

Fig. 13(b), nonblocking mode is used. The communication steps can be partially

overlapped as discussed in Section 2. In Fig. 13(b), Stage II cannot start until the last

send in Stage I is initiated. If Stage II starts before the initiation of any outgoing

message in Stage I, C-Distribute moves the received data to the buckets of sBUF.

However, some of these buckets still contain the outgoing messages to be transferred

in Stage I.

The communication steps in the consecutive stages can be further overlapped if

dual send buffers are available in each node. In Fig. 13(c), the data are first

distributed from rBUF to one send buffer. Then R-Comm is performed and the

messages are received in rBUF. Whenever a messages received, the data in that
FIG. 13. Implementation of A4 using blocking and nonblocking communication modes.
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message can be scanned and distributed immediately into the buckets of the other

send buffer. The dual buffers can be used alternately during the stages to further

improve the performance. The performance gain achieved by using dual send buffers

is shown in Section 4.

4. EXPERIMENTAL RESULTS

A4, the proposed algorithm, as well as A1–A3 were implemented in C using the

MPI primitives, MPI Send( ), and MPI Recv( ) for blocking communication,

MPI Isend( ), MPI Irecv( ), and MPI Wait( ) for nonblocking communication.

The, algorithms were implemented on the CRAY T3D and the IBM SP2. Two

communication patterns Pattern1 and Pattern2 were used in the experiments, and

are defined in Fig. 14. Additional communication patterns and corresponding

experimental results can be found in [23]. In these experiments, the number of data

elements sent from a node to another node is bounded by Mmax. An element is 48

bytes on T3D and 22 bytes on SP2. The experiments were conducted varying five

parameters: (1) the number of nodes (P), (2) the longest message from a node to

another node ðMmaxÞ, (3) the communication pattern, (4) the communication mode,

and (5) the use of single or dual send buffer (s).

We first compare the performance of A4 with those of A1 and A2 in Section 4.1.

Comparison between A4 and A3 is shown in Section 4.2.

4.1. Comparison of A4 with A1 and A2

Figures 15 and 17 show the results of the experiments conducted on T3D and SP2.

We assume Mmax ¼ 1024 and varied P. Figures 16 and 18 show the results when

P ¼ 64 and Mmax is varied.

When blocking communication mode is used, A4 results in lower latency than that

of A1 and A2. These results are shown in Figs. 15(a), 16, 17(a) and 18. Our algorithm

saves a significant number of message start-ups and therefore, reduces the software

overheads.

When nonblocking communication mode is used, there are two factors that

contribute to performance gains:

1. Message start-up serialization due to node contention can be reduced.

2. Message start-up and message composing (e.g., R-Distribute or C-Collect)
can be overlapped with actual data transfer.
FIG. 14. Pseudo-code illustrating the communication patterns.



FIG. 15. Comparison of A4 with A1 and A2 on T3D. (a) Blocking mode, Pattern1, Mmax ¼ 1024.

(b) Nonblocking mode, Pattern1, Mmax ¼ 1024.
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On T3D, as shown in Fig. 15, A1 results in a large performance gain when

nonblocking mode is used. But when A2 and A4 are performed using nonblocking

communication, the gains are relatively small. Since A2 and A4 reduce the variance

of the size of the messages, the performance gain using nonblocking mode by

reducing node contention is limited. The performance of nonblocking version of A2

or A4 is slightly better as compared to the corresponding blocking version. This

implies that overlapping of message start-up and message composing with actual

data transfer is not effective on T3D. The performance gain achieved by using the

nonblocking version of A1 is mainly due to the reduction in start-up serialization.

On T3D, the message queue at each node is located in a reserved portion of the

local memory. While the main processor performs message composition and the

message passing processor performs actual data transfer, they use the same physical

path to access the memory. It is not effective to overlap start-up and message

composing latency with actual data transfer on T3D due to the limited memory

bandwidth at each node.

On SP2, as shown in Fig. 17, the performance of the nonblocking version of A1

shows the effectiveness of reducing node contention. In Figs. 17 and 18, A2 and A4



FIG. 16. Comparison of A4 with A1 and A2 on T3D. (a) Pattern1, P ¼ 64. (b) Pattern2, P ¼ 64.
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achieve significant performance gain when nonblocking mode is used. This shows the

effectiveness in overlapping the message composition with communication on SP2.

4.2. Comparison of A4 with A3

As shown in Table 3, among the four algorithms, A3 transfers fewest number of

messages. This section compares A4 with A3 and shows the effectiveness of our

algorithm in reducing the variance of the message size.

Figures 19 and 20 show the experimental results on T3D. Figures 21 and 22 show

the experimental results on SP2. In addition to the blocking version, a nonblocking

version of A3 with a single send buffer was implemented. Nonblocking versions of

A4 with single and dual buffers were also implemented. Various latencies in

performing A3 and A4 are shown in Figs. 20 and 22 to illustrate the time spent in

message distribution (R-Distribute and C-Distribute), message collection (R-Collect

and C-Collect), and communication (R-Comm and C-Comm).

On T3D, when 64 processors are used and Mmax41k, A3 performs better than A4

for both Pattern1 and Pattern2. However, the communication time of A3 increases

faster than that of A4 as the message size increases in Pattern2 (see Fig. 19(b)). As

shown in Figs. 19(a) and 19(b), the implementation with dual buffers does not



FIG. 17. Comparison of A4 with A1 and A2 on SP2. (a) Blocking, Pattern1, Mmax ¼ 1024.

(b) Nonblocking, Pattern1, Mmax ¼ 1024.

IRREGULAR ALL-TO-ALL COMMUNICATION 1519
improve significantly the performance due to. limited memory bandwidth available

at each node of T3D.

To further compare the performance of A4 with that of A3, we conduct the results

for Pattern2, when Mmax51k. Blocking communication mode was used. The results

are shown in Fig. 20.

Although A4 requires two more stages, it has superior performance as compared

to A3. The hot-spots encountered in A3 cause heavy traffic at the diagonal nodes and

as well as node contention which result in much larger latencies when C-Comm or

R-Comm is performed.

Experimental results on SP2 are shown in Figs. 21 and 22. A3-b, A3-n1, A4-b,A4-

n1, A4-n2 denote various implementations of A3 and A4, where ‘‘b’’ denotes

blocking, ‘‘n1’’ and ‘‘n2’’ denote nonblocking mode with single buffer and dual

buffers, respectively. As discussed in Section 3.4, the operations between consecutive

stages are partially overlapped in A4-n2, e.g., R-Comm in Stage I can be overlapped

with C-Distribute in Stage II. In Fig. 22, each component defined in the second

column of the legend represents the latency in performing a pair of overlapped

operations.



FIG. 18. Comparison of A4 with A1 and A2 on SP2. (a) Pattern1, P ¼ 64. (b) Pattern2, P ¼ 64.

LIU, WANG, AND PRASANNA1520
As shown in Fig. 21 and 22, A3-n1 has superior performance for Pattern1, while

A4-n2 has superior performance for Pattern2 as compared to the other algorithms.

Nonblocking communication mode results in significant performance gains. The

nonblocking version using dual end buffers performs better than that using a single

send buffer as shown in Fig. 22. This shows the effectiveness of dual buffers in

overlapping consecutive communication stages and hide the message start-up, the

message coalescing, and decomposing latencies.

Fig. 23 shows the comparison of A4-n2 and A3-n1 when P varies from 25 to 100.

Note that P needs to be a perfect square. Otherwise, A3 is not applicable. In this

figure, A4-n2 is always superior to A3-n1. This experiment, again, shows the

effectiveness of the balance of message sizes used in A4 when various number of

processors are involved in irregular all-to-all communication.

5. CONCLUDING REMARKS

In this paper, we have shown an efficient algorithm for irregular all-to-all

communication. This algorithm is suitable for state-of-the-art HPC platforms whose



FIG. 19. Comparison of A4 with A3 on T3D when Mmax41k. (a) Pattern1, P ¼ 64. (b) Pattern2, P ¼ 64.

FIG. 20. Comparison of A4 and A3 on T3D when Mmax51k.
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FIG. 21. Comparison of A4 and A3 on SP2 when Mmax41k.
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communication network can be modeled as a ‘‘flat’’ network in which the software

overheads dominate the hardware latencies. As shown in Table 1, currently, the ratio

of Ts

tcþtd
is in the range of 1000. Note that tc þ td depends on the processor speed as

well as the network transfer rate. Thus, increase in processor and network
FIG. 22. Comparison of A4 and A3 on SP2 when Mmax51k.



FIG. 23. Comparison of A4-n2 and A3-n1 on SP2 when P varies from 25 to 100 and Mmax ¼ 4k.
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performance will improve tc þ td . Since reducing the software overhead in

communication seems to be relatively difficult as compared to reducing the network

hardware latencies, this ratio is likely to increase. Our algorithmic techniques will

become even more useful with the increase in this ratio in the future.

Our algorithm is suitable for performing all-to-all communication with high

variance in message size, and is particularly attractive as the number of nodes

increases. The communication time is reduced by reducing the number of message

start-ups and by smoothing out the variance of the message size. The performance

can be further improved by overlapping the message composition with actual data

transfer if message passing activity is partially off-loaded from the main processor.

In addition, our algorithm is superior to the previous algorithms with respect to

buffer space requirement.

Our algorithm can be generalized to perform other collective communication

primitives such as multiple multi-casting [17, 19]. It can also be modified to perform

all-to-all communication when senders and receivers belong to distinct groups and

the number of senders is different from the number of receivers. When the number of

nodes participating in the communication increases, the number of messages can be

further reduced by increasing the number of stages. In each stage, all-to-all

communication is performed in each group with a smaller number of nodes. There is,

however, a penalty because more data rearrangement is required, resulting in the

increase of the total traffic.

The overheads due to local memory accesses adversely affect our algorithm and it

masks the potential performance gains. As shown in Section 3, non blocking message

passing primitives can only partially reduce the latency on SP2 and T3D. The key to

reduce the latency induced by memory accesses is to reduce the memory copy times

encountered in the end-to-end communication path. On some HPC platforms,
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message decomposing and coalescing can be performed directly between the local

memory and the interface buffer. If such feature is available, then the message

rearrangement in the local memory can be skipped.

Our algorithm was implemented using MPI. Thus, the code is portable to other

platforms. We employed the MPI point-to-point communication primitives only.

Therefore, the performance of the implementation is independent of the efficiency of

the current MPI collective communication primitives. Our algorithm can be easily

ported onto, other distributed systems such as NOWs and Myrinet-based

multicomputers [13] that are being developed for embedded signal processing

applications.
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