
7

SIMPO: A Scalable In-Memory Persistent Object Framework

Using NVRAM for Reliable Big Data Computing

MINGZHE ZHANG, KING TIN LAM, XIN YAO, and CHO-LI WANG,

The University of Hong Kong

While CPU architectures are incorporating many more cores to meet ever-bigger workloads, advance in fault-

tolerance support is indispensable for sustaining system performance under reliability constraints. Emerging

non-volatile memory technologies are yielding fast, dense, and energy-efficient NVRAM that can dethrone

SSD drives for persisting data. Research on using NVRAM to enable fast in-memory data persistence is on-

going. In this work, we design and implement a persistent object framework, dubbed scalable in-memory

persistent object (SIMPO), which exploits NVRAM, alongside DRAM, to support efficient object persistence in

highly threaded big data applications. Based on operation logging, we propose a new programming model that

classifies functions into instant and deferrable groups. SIMPO features a streamlined execution model, which

allows lazy evaluation of deferrable functions and is well suited to big data computing workloads that would

see improved data locality and concurrency. Our log recording and checkpointing scheme is effectively opti-

mized towards NVRAM, mitigating its long write latency through write-combining and consolidated flushing

techniques. Efficient persistent object management with features including safe references and memory leak

prevention is also implemented and tailored to NVRAM. We evaluate a wide range of SIMPO-enabled appli-

cations with machine learning, high-performance computing, and database workloads on an emulated hybrid

memory architecture and a real hybrid memory machine with NVDIMM. Compared with native applications

without persistence, experimental results show that SIMPO incurs less than 5% runtime overhead on both

platforms and even gains up to 2.5× speedup and 84% increase in throughput in highly threaded situations

on the two platforms, respectively, thanks to the streamlined execution model.

CCS Concepts: • Hardware → Non-volatile memory; • Software and its engineering → Software fault

tolerance; Frameworks; Runtime environments; Memory management; • Computer systems organization

→ Multicore architectures;

Additional Key Words and Phrases: Fault tolerance, non-volatile memory, persistent objects

ACM Reference format:

Mingzhe Zhang, King Tin Lam, Xin Yao, and Cho-Li Wang. 2018. SIMPO: A Scalable In-Memory Persistent

Object Framework Using NVRAM for Reliable Big Data Computing. ACM Trans. Archit. Code Optim. 15, 1,

Article 7 (March 2018), 28 pages.

https://doi.org/10.1145/3167972

New paper, not an extension of a conference paper. This work is supported by Hong Kong RGC Grant 17210615 and an

HKU Internal Research Grant 104004131.

Authors’ addresses: M. Zhang (corresponding author), K. T. Lam, X. Yao, and C.-L. Wang, Rm 414 Department of Com-

puter Science, The University of Hong Kong, Pokfulam, Hong Kong; emails: mzzhang@connect.hku.hk, {ktlam, xyao,

clwang}@cs.hku.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1544-3566/2018/03-ART7 $15.00

https://doi.org/10.1145/3167972

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

https://doi.org/10.1145/3167972
mailto:permissions@acm.org
https://doi.org/10.1145/3167972

7:2 M. Zhang et al.

1 INTRODUCTION

While processors are moving towards many cores to support high-performance computing (HPC)
and big data workloads, reliability becomes an increasingly important concern, since a single fault
in the system could have wasted hours to days of computation. There are a plethora of solutions
adding fault tolerance to computing systems or parallel applications. They commonly employ
checkpointing or journaling mechanisms to save state snapshots in persistent storage, so the
system or application can restart from the last state in case of any failure. Depending on the
level of implementation (application, library, compiler, runtime, operating system, or hardware),
they differ in terms of transparency, granularity of persistence, and checkpointing or logging
overhead. For object-based applications, it is a common practice to use persistent object store APIs
(Biswas and Ort 2006; Butterworth et al. 1991) to achieve fine-grained or selective persistence.
However, besides burdening the programmers, the associated object serialization and disk access
overhead negates the advantages of using them for high performance. Even using modern flash
drives, the performance gap between main memory and storage is still obvious (access time of
tens of nanoseconds vs. tens of microseconds). These years, NVRAM technologies like MRAM
and 3D XPoint DIMM have started to materialize. They have strong implications for the enabling
of faster, more energy-efficient, and more reliable computing. NVRAM brings forth a persistent
memory era in which persisting objects to disk-based database or file storage is no longer a decent
solution. Research is emerging on the use of NVRAM for data persistence stores (Volos et al. 2011;
Coburn et al. 2011; Hwang et al. 2014; Kannan et al. 2016), which mainly focus on logging and
checkpointing mechanisms.

Despite growing research efforts to design persistence systems exploiting NVRAM, there are
still open challenges regarding performance. First, most persistence systems (Volos et al. 2011;
Coburn et al. 2011; Kim et al. 2016; Huang et al. 2014) are using transactional semantics to execute
programs. A transaction usually contains multiple modifications, each of which generates a log. A
general transaction system calls fsync or flush to persist every modification’s log once generated.
If a crash happens before the commit point, then the transaction aborts and the system recovers to
the last state before the transaction began. Further research on reducing the overhead of persist-
ing logs and minimizing the abort probability is necessary for tapping into the real performance
advantage of NVRAM. Second, many systems (Kim et al. 2016; Chatzistergiou et al. 2015; Huang
et al. 2014) employ a combination of modified value logging (a.k.a. ARIES-type physiological log-
ging) (Mohan et al. 1992) and checkpointing to achieve persistence. Other studies (Malviya et al.
2014; Stonebraker et al. 2007) utilize transactionally consistent command logging (a.k.a. operation
logging) and checkpointing. Although command logging can reduce the number of logs written
to NVRAM, it is challenging to use it for striking a balance between execution speed and recovery
efficiency. Third, existing work (Hwang et al. 2014; Kannan et al. 2016) largely borrows the check-
pointing schemes used in flash-based persistence systems. They either keep and synchronize a
complete data copy elsewhere as a backup snapshot all the time (i.e., double checkpointing) or em-
ploy the copy-on-write technique to make a temporary backup copy when checkpointing (i.e.,
COW checkpointing). Since writes on flash memory or even NVRAM are slower than on DRAM, it
remains a challenge to design a good checkpointing scheme with fewer persistent data writes for
NVRAM. Last, apart from DRAM-like memory management, persistence systems require further
data management to support data recovery. Most of the current work implements essential persis-
tent data management based on either native heap management or a DAX memory-mapped file
(managing the whole NVRAM as one file). Their efficiency measured is without features in a real-
life system, such as recovery of dangling pointers and prevention of memory leaks into NVRAM.

In this article, we propose a new approach to efficient, scalable object persistence using NVRAM.
To evaluate this approach, we implement a C++ application framework, dubbed Scalable In-

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:3

Memory Persistent Object (SIMPO) (pronounced “simple”). SIMPO basically employs the write-
ahead operation logging and checkpointing to achieve persistence. With SIMPO, applications are
immune to common failures such as power loss and system crashes. We propose a new program-
ming model coupled with a technique called transactionized function grouping (XFG) to streamline
the logging and execution process. This XFG-driven programming model classifies functions into
deferrable and instant functions, which can be automatically detected by our provided toolkit. De-
ferrable functions (DFs) are lazy operations defined for a persistent object (PO), which access only the
fields of the PO or local variables, and do not return any value. Instant functions (IFs) are operations
defined for a PO that involve access to variables outside the PO, or return any value. For example,
mutator methods and accessor methods of a PO are classified as DFs and IFs, respectively (assum-
ing the mutators only update the PO’s fields). For every persistent object, XFG means coalescing
a collection of functions into a transaction. The transaction can begin with a DF or an IF, but it
always ends with an IF. Depending on the classification, SIMPO can effectively optimize away the
overhead of log flushing from cache to NVRAM, which is triggered only when an IF is encoun-
tered. This can guarantee persistence while narrowing down the abort window of each transaction.
To make the best use of operation logging, SIMPO includes a deferrable execution model to run
DFs in batches. The system runs DFs with one or multiple server threads to improve data locality
and concurrency for multicore architecture. We also propose a buffered-dual-copy checkpointing
scheme tailored to hybrid memory architecture. This scheme reduces redundant operations for
checkpointing and dampens the slow write latency issue of NVRAM. We also implement efficient
PO management including recovery of dangling pointers and memory leak prevention, as befits
the nature of NVRAM.

We implement SIMPO on Linux and evaluate it with a wide range of microbenchmarks and
application benchmarks comprising machine learning, compute-intensive (Dongarra 1988) and
database workloads (Olson et al. 1999). As no real machine has NVRAM as its main memory yet,
we build an emulator based on DRAM and run SIMPO on it atop a 64-core AMD machine. We also
conduct another set of evaluations on a 6-core Intel machine with NVDIMM (non-volatile dual
in-line memory module) installed. Performance results show that SIMPO incurs negligible over-
head, mostly lower than 5%, on both platforms. For highly threaded big data applications, SIMPO
improves data locality and concurrency, thanks to the deferrable execution model. Microbench-
marking results show up to 2.5× speedup and 84% increase in throughput when compared to the
native execution without SIMPO on the two platforms respectively. For the Berkeley DB bench-
mark, performance gains of up to 88% increase and 2.03× speedup are noted over the application’s
native transactional persistence implementation on the two platforms.

Our main contributions to technical novelty include the following:

—A simple programming model that (automatically) classifies functions into instant and
deferrable ones, and transactionizes a group of functions based on an optimized logging
scheme in which synchronization is triggered by instant functions only;

—A deferrable execution model that performs deferrable functions with one or multiple server
threads and thereby improves data locality and concurrency for a variety of applications;

—A buffered-dual-copy checkpointing scheme tailored to hybrid memory architecture, which
reduces the number of memory operations and hides NVRAM’s slow writes;

—A high-level object persistence API for efficient object management on NVRAM; our design
has avoided issues of dangling pointers and memory leaks, which take permanent effects
on non-volatile memory.

The rest of the article is structured as follows. In Section 2, we present the technical back-
ground and challenges behind this work. Section 3 details our design of runtime logging, function

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:4 M. Zhang et al.

Table 1. Characteristics of Different Types of Memory

Category
Read Latency

(ns)
Write Latency

(ns)
Endurance

(# of writes per bit)
SRAM 2-3 2-3 ∞
DRAM 25 30 1018

NVDIMM 25 30 1018

STT-RAM
PCM

20-30
50-70

60-100
150-220

1015

108-1012

Flash
HDD

25,000
3,000,000

200,000-500,000
3,000,000

105

∞

execution, checkpointing schemes, and persistent object management. Experimental evaluation is
given in Section 4. Finally, Section 5 concludes this article.

2 BACKGROUND AND CHALLENGES

2.1 Data Persistence Techniques

Current studies (Kim et al. 2016; Mohan et al. 1992; Chatzistergiou et al. 2015; Malviya et al. 2014;
Stonebraker et al. 2007) adopt logging and checkpointing to achieve persistence. Most systems
apply write-ahead logging (keeping redo or undo information) in persistent storage to guarantee
the atomicity and durability of the transactional updates being committed. Some systems (Kim
et al. 2016; Mohan et al. 1992; Chatzistergiou et al. 2015) use value logging; they store all modified
data within a transaction in persistent value logs. If the application or system crashes, then it can
apply modifications in value logs on the last checkpoint to recover the persistent data to be the
state just after the last committed transaction. Other systems (Malviya et al. 2014; Stonebraker
et al. 2007) that adopt operation logging will log the operations and context parameters in the
persistent store. If the application or system crashes, then it can re-execute the operations on the
last checkpoint to recover itself to the last transaction’s committed state.

To ensure consistency and durability, the checkpointing process periodically stores data to
persistent storage. State-of-the-art solutions employ various checkpointing techniques. Many
research studies (Dongarra et al. 2014; Ni et al. 2012; Zheng et al. 2004) apply double checkpointing.
Their checkpoints are replicated on another location to avoid a single point of failure. Kamino-
Tx (Memaripour et al. 2017) is an improved double checkpointing scheme. Kamino-Tx moves the
update of backup copy outside the critical path of a transaction through asynchronous updates
with lock protection. It reduces the NVRAM storage of double checkpointing by maintaining only
the most recently modified objects using an LRU policy. A lot of data persistence systems (Coburn
et al. 2011; Volos et al. 2011; Hwang et al. 2014; Kannan et al. 2016) adopt COW checkpointing.
When updating persistent data, they checkpoint a copy of the data on NVRAM and update the
original data in place. Consistent and durable data structures (CDDSes) (Venkataraman et al.
2011) adopt COW with multiple versions to allow atomic updates without requiring logging.

2.2 NVRAM-Based Data Persistence Solutions

2.2.1 NVRAM Technologies. We survey today’s NVRAM technologies and summarize their
characteristics in Table 1. Phase-change memory (PCM) (Kryder and Kim 2009), being the most
mature to date, has three orders of magnitude lower latency than flash memory does (Akel et al.
2011). Spin-transfer torque RAM (STT-RAM) (Chen et al. 2010) offers even lower latency than PCM
does and may replace DRAM in the future. Although current STT-RAM still has 2 to 4 times

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:5

longer write latency than DRAM (Yang et al. 2015; Coburn et al. 2011), STT-RAM is often denser,
equally fast for read access, and much more energy efficient. As new NVRAM technologies (e.g.,
STT-RAM, 3D XPoint DIMM) do not yet go into mass production, NVDIMM is today’s alternative.
NVDIMM, composed of DRAM, NAND flash and supercaps, is an industry-standard DIMM
form factor that combines DRAM’s performance with NAND flash’s non-volatility. NVRAM
technologies have great potential to enable faster and more reliable persistence systems later on.

2.2.2 Memory Management for NVRAM. NVRAM is non-volatile and byte-addressable at the
memory level, setting it apart from modern block-addressable flash drives. Exploiting NVRAM to
achieve data persistence entails providing NVRAM allocator APIs to user-level programs. Prior
proposals pivoted around mainly two methodologies as follows.

First, some studies, such as Mnemosyne (Volos et al. 2011), NVML (Rudoff 2016), BPFS (Condit
et al. 2009), and PMFS (Dulloor et al. 2014), employ the direct access (DAX) memory-mapped
NVRAM file to provide NVRAM allocator APIs. A memory-mapped file is a segment of virtual
memory that has been assigned a direct byte-for-byte correlation with the file. Kernels provide
page cache to buffer reads and writes to files. For devices that are memory-like, the page cache
would generate unnecessary copies of the original storage. Current kernels provide DAX memory
mappings. DAX removes the extra copy by performing reads and writes directly to the storage
device. Therefore, the kernel can directly map the whole NVRAM into the user space.

Second, some studies, such as HEAPO (Hwang et al. 2014) and pVM (Kannan et al. 2016), propose
native NVRAM management schemes by directly improving the operating system. Their methods
are to extend the virtual memory subsystem to reap the benefits of NVRAM. They use modified
system calls like mmap() and brk() to provide NVRAM allocator APIs.

2.3 Challenges and Our Solutions

Despite prior research efforts to design high-speed persistence systems using NVRAM, we noted
several areas in which this work can improve.

2.3.1 Runtime Logging Overhead and Abort Windows for Transactions. Traditional solutions
adopt synchronization per log in persistent storage within a transaction execution to guaran-
tee the logs’ sequence and durability. For example, Spark (Zaharia et al. 2010) saves every log
on a fault tolerant file system. As a result, persistence of every log via flush and memory fence
operations on NVRAM brings about considerable runtime overhead. NVRAM Write-Ahead Log-
ging (NVWAL) (Kim et al. 2016) proposes a transaction-aware lazy synchronization methodology
for NVRAM. It works by group-based flushing and memory fencing of the pending logs in the
transaction on commit. Then the system flushes a commit bit to mark the transaction’s commit
state. It can optimize performance as it allows logs within a transaction to flush without ordering
constraints. However, for NVWAL, the “abort window” for a transaction lasts from the beginning
to the flush of the commit bit.

Based on write-ahead operation logging, our programming model enables a novel transaction-
ized function grouping (XFG) technique, which coalesces a group of functions as a transaction. We
further divide the transaction into logging phase and execution phase. The logging phase persists
function logs to NVRAM. The execution phase runs all functions of the group in an overhead-free
manner (no more logging and aborts). This not only streamlines synchronization but also shortens
the abort window to be within the logging phase only.

2.3.2 Concurrency Management for Function Execution. Most solutions (Volos et al. 2011;
Coburn et al. 2011) integrate the persistent system with software transactional memory (STM)
systems such as DSTM (Herlihy et al. 2003) and McRT-STM (Saha et al. 2006). These systems adopt

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:6 M. Zhang et al.

write-ahead logging and checkpointing to guarantee persistence. For atomicity, they usually
include a contention manager running various policies (Scherer and Scott 2005). Many studies like
NVM-Direct (Bridge 2005) further provide failure-atomic durable transactions. SoftWrAP (Giles
et al. 2013) proposes a software framework for persistent memory providing lightweight atomicity
and durability. Besides transactions, Atlas (Chakrabarti et al. 2014) present a system with dura-
bility semantics for lock-based code. Because log recording and function execution are coupled
together in these studies, they can be further improved by the potential optimization in function
execution.

Flat-combining technique (Oyama et al. 1999; Hendler et al. 2010) is an efficient contention
management paradigm. It requires a queue to record function execution to improve data locality.
A server thread is elected to run the contending functions on behalf of other threads. Since only
one thread accesses those functions, data locality is better preserved in CPU caches. We find
that the function queue used in flat-combining is equivalent to the write-ahead operation log
list in persistent data systems using the operation logging. Therefore, the write-ahead operation
logging scheme can achieve better concurrency if well combined with the flat-combining
technique.

To apply flat-combining, we propose a deferrable execution model with XFG. The design in-
cludes space-efficient function-level logging and flat-combining across cooperative threads. By
analyzing a group of deferrable functions of the same persistent object, SIMPO can improve data
locality and concurrency of function execution. Therefore, SIMPO is more than a classical persis-
tent solution that only degrades the runtime performance; rather, it can lead to speedup.

2.3.3 Redundant Operations for Checkpointing on NVRAM. NVRAM is of higher speed than
persistent storage like SSD and is byte addressable. In Section 3.2, we point out that both double
checkpointing and COW checkpointing have redundant operations on NVRAM, requiring addi-
tional overhead. We propose a buffered-dual-copy checkpointing scheme that incurs less overhead
for hybrid memory and mitigates slow writes of NVRAM by using DRAM portions as a big write-
combine buffer. We also reduce the storage overhead of buffered-dual-copy checkpointing using
the LRU policy to store only the most recently modified objects on NVRAM.

2.3.4 Easy-to-Use NVRAM-Based Persistent Object Management. We understand that existing
NVRAM-based persistence solutions are mostly at a prototyping stage. In a practical system,
we identify two potential problems, namely dangling objects and memory leaks, that should be
addressed by the runtime system. Supporting features that handle them could somehow affect
the overall performance, but is necessary to give a real performance picture on a real system
nonetheless. So, we design and implement a robust, easy-to-use persistent object management
that can avoid subtle problems of dangling pointers and memory leaks into non-volatile memory.

3 SIMPO PERSISTENCE METHODOLOGY

As presented in Section 1, SIMPO is an efficient, scalable object persistence framework. The full
architecture of SIMPO is depicted in Figure 1. It consists of three major parts: (1) the programming
and execution model with function classification; (2) a buffered-dual-copy checkpointing scheme;
(3) persistent object management. We tailor the design of SIMPO to hybrid main memory
architecture which is also adopted by many research studies (Wu and Zwaenepoel 1994; Saito and
Oikawa 2012; Bailey et al. 2011). While NVRAM candidates like STT-RAM have the potential to
completely replace DRAM, a volatile area of main memory is still desirable for program execution
(particularly considering 2–4× higher write latency in current STT-RAM technologies for in-
stance). For a quick comparison between SIMPO and current studies, we summarize a number of
features in Table 2. SIMPO excels in nearly every facet (at a cost of buffering one more data copy

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:7

Fig. 1. SIMPO architecture: User library and underlying persistent object management on hybrid memory

hardware.

Table 2. Comparison of SIMPO with Previous Work

Mnemosyne NVheap CDDS HEAPO NVWAL pVM SIMPO Native†
Solution to memory leaks � � �
Checkpointing method‡ COW COW COW-M COW COW COW BDC None

Data copy 1 or 2 1 or 2 n 1 or 2 1 or 2 1 or 2 3 1

NVRAM slow write optimization �
Optimize cache flushing
overhead

� �

Reduce the abort window �
Optimized logged function
execution

�

†Native system with no persistence support.

‡COW-M: COW with Multiple versions; BDC: Buffered-Dual-Copy.

on DRAM). We show the resulted efficiency via experiments based on a variety of applications in
Section 4.

3.1 Runtime Logging and Function Execution

3.1.1 Transactionized Function Grouping. When NVRAM is used to replace block device
storage, modified data must be explicitly persisted to NVRAM by a flush function to guarantee
persistence. Otherwise, the data may remain in cache without durability. Our applied flush func-
tion consists of CLFLUSHOPT operation for each cache line of the data and SFENCE to ensure
the flush operations have completed. We first describe prior methods to guarantee memory per-
sistence of transactions. These methods mainly rely on user-defined transactions, generally using
explicit programming interfaces like transaction_begin() and transaction_end(). SIMPO proposes
a function-wise programming model with transactionized function grouping (XFG) that can au-
tomatically group a collection of classified functions into a transaction. Therefore, transactions in
SIMPO are automatically defined by the system; users need not use APIs to define a transaction. We
implement an easy-to-use toolkit to make the XFG-driven programming model useful and handy.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:8 M. Zhang et al.

Fig. 2. Comparison between various memory persistence guarantees.

Prior Methods for Memory Persistence Guarantee. Figure 2(a) illustrates a basic implemen-
tation of a user-defined transaction. To enforce ordering of operations on persistent data, each
operation executes the flush function after logging. This method guarantees all logs and the
commit mark are flushing in order. Since flush operations are expensive, NVWAL (Kim et al. 2016)
propose a transaction-aware memory persistence guarantee, shown in Figure 2(b). A log-commit
operation of the transaction consists of two phases: (1) logging: writing a sequence of logs to
NVRAM, and (2) commit: putting the commit mark to NVRAM to perpetuate the logs. They
enforce the ordering and persistence guarantee requirement only between the two phases by
calling the expensive flush function. If a system crashes before the transaction flushes the commit
mark, then dirty pages written by the aborted transaction are ignored by the recovery process. The
system can recover to the last state by checking the commit mark and redoing the write-ahead logs
from the checkpoint. However, for these methods, the abort window is almost the whole process
of a transaction from transaction beginning to the flush function of the commit mark. The prob-
ability of aborting a transaction is quite high if a crash happens. We propose a new XFG-driven
programming model for the data persistence system to shorten the abort window by optimized log
recording.

Programming Model with Transactionized Function Grouping. Inspired by lazy evaluation
in functional languages (Henderson and Morris Jr 1976), we design a programming model based
on operation logging that classifies functions into deferrable and instant execution types against
an object-oriented background.

Deferrable functions (DFs): Lazy operations defined for a PO, which access only the fields of the
PO or local variables, and do not return any value.

Instant functions (IFs): Operations defined for a PO that involve access to variables outside the
PO, or return any value.

Based on these definitions, we show a classification example in Table 3 by analyzing six common
data structures and their major functions. The DFs like enQueue do not return error codes. If the
error handling is necessary, then programmers have two choices. The first one is to ensure success
with IFs like isFull. The second one is to write IFs to return error code like enQueueWithReturn.
DFs can be commonly found in big data computing workloads. Table 4 shows DF survey from a

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:9

Table 3. Common Data Structures Implemented with SIMPO

Data Structure Common API PF Type Data Structure Common API PF Type

Array

increaseAll deferrable

Stack

push deferrable

zero deferrable pop instant

printAll instant peek instant

Queue

clearQueue deferrable isEmpty instant

enQueue deferrable

Tree

insertElement deferrable

deQueue instant balance deferrable

isEmpty instant deleteElement deferrable

isFull instant searchElement instant

Heap

enHeap deferrable

Graph

joinwt deferrable

deHeap instant removewt deferrable

getNumElements instant adjacent instant

printAll instant

Table 4. DF and IF Survey in BigDataBench Benchmark Suite

Big Data

Bench

Search Engine Social Network E-commerce

WordCount Sort Grep PageRank Kmeans
Connected

Components

Naive

Bayes

Collaborate

Filtering

DF:IF 4:1 3:1 2:1 5:1 4:3 2:1 7:3 7:4

The ratio comes from the number of times each application executes DFs and IFs.

well-known big data benchmark suite (Wang et al. 2014). Because the runtime execution time or
invocation ratio of persistent functions in each application depends on the input data size or many
other configurations, we perform static code analysis and show the invocation ratio within the
persistent functions. The ratio comes from the number of times each application executes DFs and
IFs. Each application in Table 4 has only one persistent object. The main part of the application
is the execution of the persistent object’s functions, occupying more than 90% of the execution
time. Take the Spark version of PageRank in the BigDataBench suite for example. In PageRank,
the program calls these functions in each iteration: join, flatmap, map, reducebykey, mapvalue, and
persist. If the program adopts SIMPO, then join, flatmap, map, reducebykey, and mapvalue will be
classified by our toolkit as DFs, whereas persist of the pangrank persistent object gets classified as
an IF. The ratio can reflect the general application analysis.

SIMPO proposes XFG, in contrast to user-defined transactions in prior studies. For every
persistent object, XFG coalesces a collection of functions as a transaction as shown in Figure 2(c).
The transaction begins with a DF or an IF. An IF always ends the current transaction. The
transaction is automatically generated by SIMPO, and is different from a user-defined transaction.
We divide the transaction into logging phase and execution phase, and employ an IF-triggered
synchronization mechanism. In the logging phase, DFs are logged without immediate execution.
When hitting a call to an IF f , SIMPO first flushes all deferrable logs in the current transaction and
then flushes the last log (the instant log) with the NEW state (see Figure 3) as the commit mark.
Then the transaction enters the execution phase. SIMPO executes all the pending DFs and the IF

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:10 M. Zhang et al.

Fig. 3. Cyclic log array with four cursors. Each log records five attributes. Blue represents NEW state logs;

Red represents DONE state logs; Green represents RESILIENT state logs.

Table 5. API Constructs of SIMPO User Library

Components Description

Class POBase

Base class of SIMPO.

POBase includes a memory address range of DRAM,

and a memory address range of NVRAM.

DRAM stores the buffered copy of PO.

NVRAM stores two checkpoint copies, a log list and other metadata.

poroot: a pointer to the virtual address of the DRAM copy.

Constructor: has an integer parameter size,

calls pocreate to init a persistent object with the size and

assigns the virtual address of object’s DRAM copy to poroot.

Destructor: calls pofree to free a persistent object

sync: an empty IF

Directives

#begin defer

#end

The #begin and #end directives are used to wrap the declarations

of those functions which are classified as deferrable functions

#begin inst

#end

The #begin and #end directives are used to wrap the declarations

of those functions which are classified as instant functions

Function

int pthread_create_simpo(

pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg, int potid)

A wrapper function of pthread_create.

First, the parent thread creates a new thread.

Second, the new thread records potid as a thread local variable.

If potid is null, then the new thread generates a value with its stack information.

Finally, the new thread calls start_routine function.

f via a deferrable execution model (Section 3.1.2). Finally, SIMPO updates the instant log to be the
DONE state without the flush function for checkpointing usage (Section 3.3). With IF-triggered
synchronization, SIMPO can reduce the overhead of flush operations of all DFs’ logging. SIMPO
guarantees that the corresponding operation logs are persistent before performing data updates.
All committed updates can be recovered from the logs, guaranteeing the same atomicity and
durability as prior work did (Kim et al. 2016). To compare SIMPO with prior work, we first suppose
the user-defined transaction in Figure 2(b) is composed of several deferrable operations and one
instant operation, which is equivalent to the one in Figure 2(c). The abort window of a transaction
gets much smaller in SIMPO, since function logging is normally faster than function execution.
If the user-defined transaction in Figure 2(b) does not include any instant operation, then
SIMPO users can add an empty IF sync() (see Table 5) to end the transaction. If the user-defined
transaction in Figure 2(b) contains multiple instant operations, then users can write a new IF
combining the operations between the first instant operation and the last operation. Therefore,
SIMPO maintains the compatibility to transfer any user-defined transaction into the one shown in
Figure 2(c).

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:11

Listing. 1 : Example of TwoDimIntArray : programmer’s code. TwoDimIntArray initializes

with poroot pointer.

Listing. 2 : Example of TwoDimIntArray : classified code. SIMPO adds directives to

functions.

User Toolkit of XFG-Driven Programming Model. We provide a user toolkit consisting of a
C++ library with the POBase class, an automatic DF/IF classification tool, and a code refactoring
tool. The library provides users with easy-to-use interfaces listed in Table 5. The poroot points to
the virtual address of the PO’s DRAM-buffered copy, which is discussed in Section 3.2.3. To use
the toolkit, a programmer need to know two points: (1) how to write a persistent object and (2)
how to utilize it. We will illustrate these two points with example code snippets below.

There is only one rule on writing a C++ class for making persistent objects. All data should be
allocated in the contiguous virtual memory referred by the poroot pointer, which is inherited from
POBase (see Listing 1 line 2). Programmers can then use our tools to generate their own classes for
creating persistent objects. First, the automatic DF/IF classification tool adds directives to declare
persistent functions (see Listing 2). It analyzes codes following DF and IF definitions and checks
whether a function accesses only data of the persistent object or its own local variables without
returning values. For any function call in a persistent function, the tool tries to find the source code
of the called function. If the source code is not available, then the persistent function is treated as
an IF by default. Otherwise, the tool goes on the classification by recursively checking whether
all code along the function call hierarchy is deferrable. The tool also outputs which lines make a
function instant, as a code optimization suggestion for the programmer. Second, our code refac-
toring tool handles preprocessing of all the added directives and generates a new source file like
Listing 3; it generates user interfaces with the function prefix simpo (lines 13–29). The interfaces
allocate the generated context structure on NVRAM and then call the persistent functions via the
defer and inst functions in class POBase, providing programmers with an optional parameter dhint
to specify dependency hints. Functions without the dhint parameter use the default value ALL (-1)
(lines 26–29).

Listing 4 illustrates how to utilize the refactored persistent objects in a multithreaded environ-
ment. The only rule is to call the generated user interfaces (with the simpo prefix) to access the
data of a persistent object. If isolation is needed, then users should apply locking techniques to
protect critical persistent functions. SIMPO provides a wrapped function pthread_create_simpo for
thread creation based on the pthread library to record the persistent thread ID (potid), which allows
threads to find their corresponding logs during recovery.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:12 M. Zhang et al.

Listing. 3 : Example of TwoDimIntArray : refactored code. SIMPO generates persistent

functions and provides wrapped user interfaces with prefix simpo
calling internal defer or inst functions.

3.1.2 Deferrable Execution Model. As discussed in Section 2.3.2, we design a deferrable execu-
tion model to make the best use of operation logging. Each operation log is space efficient (shown
in Figure 3). Programmers usually protect shared data in every function, e.g., by lock-based code.
Through executing a group of DFs of the same persistent object, SIMPO improves both data
locality and concurrency while maintaining the necessary execution order. Therefore, SIMPO
can reduce thread contention and shorten the run time of native execution. SIMPO includes
two execution methodologies: combining and concurrency boosting. Programmers’ hints, i.e., the
dependency information such as lock types given, can be channeled to SIMPO via the optional
parameter dhint. This can help SIMPO further improve performance without runtime overhead.

Combining Methodology. When executing pending DFs, SIMPO assigns contending functions
to the same server thread. Each server thread maintains a queue to record functions and combines
their execution, thereby increasing the data locality and reducing the contention on shared data.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:13

Fig. 4. Execution of SIMPO defer and inst functions.

Listing. 4 : Example of TwoDimIntArray : a multi − thread use case.

Concurrency Boosting Methodology. For functions accessing independent data streams,
SIMPO assigns them to different server threads to achieve higher concurrency. SIMPO provides
users with a special flag ALL (shown in Figure 3) for functions that modify many parts of shared
data. For a function with dhint set as All, SIMPO assigns it to the main server thread and inserts a
global barrier blocking other server threads from entry until its execution finishes. This guarantees
the execution order.

Execution Model Implementation. As shown in Listing 3 (lines 16 and 21), the execution
of persistent functions is encapsulated in defer and inst functions. Figure 4 details defer and inst
functions.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:14 M. Zhang et al.

Fig. 5. A possible runtime execution example of the multithreaded program in Listing 4.

As shown in Figure 4(b), logging of DFs is lock-free, as it only requires a primitive
sync_fetch_and_add to get index. If the number of pending functions exceeds a threshold, then
the system will call an internal empty IF sync (as shown in Table 5) to commit the current XFG-
generated transaction and conduct BDC checkpointing (Section. 3.2).

Figure 4(c) shows the inst function and Figure 5 is a possible execution flow of the example in
Listing 4. In step � of Figure 4(c), SIMPO first collectively flushes all logs in the XFG-generated
transaction. In step �, SIMPO iterates all pending functions and assigns them to server threads
based on dhint. Applications with high contention would see higher locality for shared data access
and lower overhead of managing contention. As functions are executed with maximal concurrency,
SIMPO also benefits applications with high concurrency. In steps �-�, the system checks whether
to conduct BDC checkpointing. In step �, it confirms that all instant logs are in DONE state before
checkpointing. The lock is released after checkpointing. In step �, because the LogDone cursor (as
shown in Figure 3) is updated in step �, the system releases the lock first and then executes the IF.
After executing the IF, it stores the return value via the context pointer in the redo log. Therefore,
when the application recovers, it can get the results without double execution.

3.2 Buffered-Dual-Copy Checkpointing

3.2.1 Overhead Analysis of Existing Solutions. Currently, double checkpointing and COW
checkpointing are two major schemes to make data persistent. All NVRAM write operations
during checkpointing are combined with the flush function to guarantee memory persistence.
Double checkpointing (see Figure 6 (2)) requires one checkpoint operation (step 2) and one copy

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:15

Fig. 6. Comparison of dual-copy checkpointing (used in SIMPO), double checkpointing, and COW

checkpointing.

operation (step 3). Kamino-Tx (Memaripour et al. 2017) improves on double checkpointing by
conducting the copy operation (step 3) asynchronously. COW checkpointing (see Figure 6 (3))
incurs even more overhead than double checkpointing does. It requires a pair of alloc and free
operations, one copy and one checkpoint operations. Below we introduce our checkpointing
scheme which results in less runtime overhead than these counterparts.

3.2.2 Dual-Copy Checkpointing. SIMPO adopts a different scheme: dual-copy checkpoint-
ing (see Figure 6 (1)). Each persistent object maintains two copies of data on NVRAM. One copy
pointed by the PO’s resilient index (an 8-bit integer) is the current resilient copy. The system
conducts new checkpointing on the other copy. Every checkpointing process involves one
checkpoint operation and one resilient index update. SIMPO requires one less copy operation
than double checkpointing and Kamino-Tx, and no additional operations like (alloc and free) as in
COW checkpointing.

For more details, SIMPO uses the resilient index with a log-resilient mask (value 8) to ensure
recovery correctness (see Figure 6). After the checkpoint operation finishes, SIMPO updates re-
silient index with the mask. Then, SIMPO updates the last instant log as resilient state and updates
the LogCkpt cursor (shown in Figure 3). Finally, SIMPO updates resilient index without the mask.

Although our dual-copy checkpointing is efficient, it should also be practical. To make it so, we
must tackle three issues. First, as the resilient index switches between two NVRAM data copies,
the address from the programmer’s view changes as well, making it hard to program correctly.
Second, when SIMPO checkpoints using the backup copy, it should be aware of modifications on
the current resilient copy. Third, considering NVRAM’s 2–4× longer write latency than DRAM, it
is inefficient to write small chunks to NVRAM frequently. To solve these problems, we design the
buffered-dual-copy (BDC) checkpointing scheme.

3.2.3 Buffered-Dual-Copy Checkpointing with Group-Based Persistence. BDC checkpointing
uses DRAM as a write-combining buffer, as illustrated in Figure 7. The scheme provides program-
mers with a stable pointer, namely poroot, which is the DRAM buffer copy’s address instead of the
NVRAM one. All XFG-generated transactions only perform on the DRAM buffer copy with oper-
ation logging. After a certain number of PFs, SIMPO groups the updates and conducts checkpoint-
ing. It first executes an internal empty IF sync (in Table 5) to commit the current XFG-generated
transaction. Then, as shown in Figure 7 (2), the system persists the entire DRAM copy to the
NVRAM copy it mirrors. Through DRAM buffer copy, BDC checkpointing solves the three issues
of dual-copy checkpointing. We show that BDC checkpointing has up to 54% increase in through-
put, compared with COW checkpointing in experiments.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:16 M. Zhang et al.

Fig. 7. Illustrating buffered-dual-copy checkpointing (the granularity of group-based persistence is 2).

3.3 SIMPO Runtime Execution Flow and Recovery Flow

SIMPO implements an efficient lockless consumer-producer circular log array (Lamport 1977) to
record operation logs on NVRAM for persistence, as shown in Figure 3. The log entry, consisting of
two pointers and three variables, is space efficient. When the program starts, persistent functions
are located on NVRAM. Context is copied to NVRAM by persistent functions, as shown in Listing 3
(lines 14 and 19). The log entry includes pointers to the function and its context.

3.3.1 Execution Flow. When the program executes, SIMPO records logs in the log array. The
log array has four cursors to indicate the logs’ states. When logs in non-resilient states exceed a
threshold, SIMPO conducts BDC checkpointing. When logs in resilient state exceed a threshold,
SIMPO truncates the resilient logs, compresses and copies them to the underlying storage like SSD.
The system will delete all resilient logs on SSD when the program frees the persistent object. The
thresholds are predefined experimentally to suit most cases.

Figure 8 shows an example execution flow of a program with the persistent object in Listing 3.
In this example, when the count of non-resilient logs reaches six, SIMPO will execute BDC check-
pointing. In T1, SIMPO starts a transaction via XFG for persistent object A. In T1 and T2, the
transaction is in the logging phase. The system records two DF logs. In T3, SIMPO commits the
logging phase of the transaction and then executes logged functions in the execution phase. In T4,
T5, and T6, SIMPO starts another transaction and records three new DF logs. In T6, the system de-
tects that persistent object A has six non-resilient logs. SIMPO conducts BDC checkpointing. When
the program deletes the persistent object (T9), the system frees all data copies and corresponding
metadata.

3.3.2 Recovery Flow. SIMPO provides two levels of recovery: persistent objects and the applica-
tion. Many frameworks, such as MapReduce (Dean and Ghemawat 2008) and Spark (Zaharia et al.
2012), use recomputation for persistent data within a job and require user code to be deterministic.
We provide the application recovery under the same deterministic assumption. If only persistent
objects need to be recovered, then SIMPO can support both deterministic and nondeterministic
applications.

Recovery of Persistent Objects. To recover a persistent object, SIMPO first checks the resilient
index value. If the value is masked, then the system will directly recover the DRAM copy from

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:17

Fig. 8. Execution/recovery flow of SIMPO. The granularity of group-based persistence is 6. Suppose D3 is

init function of TwoDimIntArray. Blue represents NEW state logs; Red represents DONE state logs; Green

represents RESILIENT state logs.

the corresponding NVRAM copy, change the last instant log as the RESILIENT state, and unmask
resilient index. The recovery is finished in this case. If the value is not masked, then we first recover
the DRAM copy from the corresponding NVRAM copy. Then SIMPO will check the log array from
the LogCkpt cursor to execute all non-resilient state logs. Due to the XFG-driven programming
model, all persistent objects are guaranteed to recover to the last states before the aborted
XFG-generated transaction. As shown in Figure 8, SIMPO recovers object A from the NVRAM
copy.

Recovery of a Deterministic Application. A crashed deterministic application can easily re-
cover through restart. The recovery time is largely reduced, as Figure 8 illustrates. The application

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:18 M. Zhang et al.

Fig. 9. Management of persistent objects in SIMPO and steps for creating or sharing a persistent object.

Table 6. APIs for Persistent Object Management

Interfaces Descriptions

pocreate(poid, size)

Allocate the given size of NVRAM with poid. If poid is null, then generate one from stack information.

Update the Persistent Object Table. Create a new entry if poid does not exist.

Update the reference counter and PID list if poid exists.

porealloc(poid, size)
Extend/reduce NVRAM allocation of existing persistent object.

Update the corresponding entry in Persistent Object Table.

pofree(poid)
Update reference counter and PID list. If PID list is empty, then free the

entry in Persistent Object Table and NVRAM allocation of the persistent object.

re-executes from the beginning to set up the process information. For persistent functions, each
thread checks only the logs in the log array with its own potid. If the functions are recorded and
in the RESILIENT state, then SIMPO skips the execution (T1–T6). If the program needs to return
values of resilient IFs, then SIMPO gets the values from logs’ context ptr. The program recovery
finishes when threads check all RESILIENT state logs before T6. It then continues execution as
shown in T7–T9.

3.3.3 Validation. To validate SIMPO, we adopt the same method presented in HEAPO (Hwang
et al. 2014) on an AMD machine. We ran a set of stress tests (including microbenchmarks and appli-
cations) thousands of times with up to 60 threads to check the memory safety and the correctness
of the execution. To test the recovery, we ran tests and killed the program at random intervals.
We observed no fault and error during execution. The recoveries and consistency checks all
succeeded.

3.4 Persistent Object Management

As discussed in Section 2.2.2, prior studies apply mainly two methodologies to provide NVRAM
allocator APIs. We implement Persistent Object Management (see Figure 1) depending on these
APIs to support recovery, avoid memory leaks and provide an NVRAM swap policy. All persistent
data are defined as objects. Each PO has an identifier (poid), data copies for checkpointing and
a log array, which is used in our execution model. To support recovery, SIMPO maintains a
global persistent object table (POT) with metadata of POs. We illustrate the overview of per-
sistent object management in Figure 9. SIMPO provides easy-to-use object-level interfaces in
Table 6.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:19

3.4.1 Persistent Object Table. To achieve consistency and durability, SIMPO maintains the
metadata of POs in a POT. Each table entry consists of the poid, object size, a pid list of the
processes sharing the PO, and NV address, which points to an extensible one-level NVRAM page
table. We store the POT in a reserved extensible zone of NVRAM and keep its start address
as a constant. POT is the most frequently accessed data structure in SIMPO, which requires
considering NVRAM’s wear management. Therefore, SIMPO needs to move POT to write
NVRAM evenly. SIMPO first allocates and reserves another range of NVRAM and then copies
the POT data. After a successful copy, SIMPO updates the start address of POT as the new
constant. This wear management only needs to be executed after a relatively long time (e.g., every
month).

Creating, sharing, and expanding a persistent object entails access to the POT. We illustrate
steps for creating or sharing a persistent object in Figure 9. To guarantee all-or-nothing semantics
for POT, the update of pid list is the commit point. The pocreate (detailed in Figure 9) and porealloc
functions update the pid list in the end. However, pofree first deletes the corresponding pid in the
list and also checks the existence of other processes in the pid list. pofree also deletes invalid pids
in the list. The constructor of the POBase (in Section 3.1.1) class internally calls pocreate to create
or recover a PO with the poid. Furthermore, with the same poid, SIMPO allows multiple processes
to get access to the same PO. And the destructor of the POBase class invokes pofree. If a fault like a
system crash occurs during POT updates, then SIMPO relies on our PO manager (in Section 3.4.3)
to free the entry left behind and thereby avoids memory leaks.

3.4.2 Recovery of Dangling Persistent Objects. Dangling pointers are a critical problem when
using NVRAM. For example, when an application crashes, its page table will be lost and its POs
will dangle, i.e., existent but cannot be found. An OS crash may result in even more dangling
effects. In SIMPO, users can easily recover a PO by calling the constructor function with its poid.
SIMPO searches the POT by the poid and maps the PO from NVRAM to the user space, as shown
in Figure 9 the pocreate function.

3.4.3 Persistent Object Manager. SIMPO needs to avoid memory leaks, which are more per-
nicious in a non-volatile setting. Once a region of NVRAM storage leaks away, it is difficult to
reclaim the region. We design a PO manager to solve the problem. Moreover, since BDC check-
pointing requires more space to improve efficiency, we propose an NVRAM PO swap policy in the
PO manager.

If NVRAM is not enough when executing pocreate or porealloc, then the PO manager first
checks the POT to clean up entries with empty PID lists. These entries crash in a fault discussed in
Section 3.4.1 and cause memory leaks. If NVRAM is still not enough, then the PO manager applies
the swap policy. It swaps out POs according to an LRU policy. It writes the NVRAM data of
selected victim to next-level storage like SSD as a file. Then it updates the victim’s NV address in
the POT entry to refer to the file. Finally, the PO manager frees the NVRAM of the victim. When a
swapped-out PO is accessed again, SIMPO loads it from non-volatile storage onto NVRAM. There-
fore, SIMPO avoids memory leaks and maintains critical POs on NVRAM to solve the space usage
problem.

4 EVALUATION

Our methodologies can be divided into buffered-dual-copy checkpointing, the execution model
and the programming model. To analyze every facet of our system, we implement several variants
with different mechanisms summarized in Table 7. To show the performance of buffered-dual-copy
checkpointing, we implement a data persistence mechanism with COW checkpointing (cow). We
also port the native transaction-based data persistence mechanism used in Berkeley DB (BDB-FT)

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:20 M. Zhang et al.

Table 7. Summary of Mechanisms in Microbenchmark Experiments

Mechanisms
BDC

Checkpointing
NVRAM

Usage
Group-based Persistence

DRAM to NVRAM
Flat

Combining
Multiple
Servers

Transactionized
Function Grouping

NVRAM Log
Synchronization

Checkpointing

cow � � Every 1000 PFs
ssd � Every 1000 PFs

nvram � � Every 1000 PFs
hybrid � � � Every 1000 PFs

Execution
fc � � � � Every 1000 PFs

Model
m-server

(simpo-no)
� � � � � Every 1000 PFs

Programming
simpo-all � � � � � � Every PF

Model
simpo

(simpo-group)
� � � � � � IF-triggered

Table 8. Hardware Characteristics of Our Testbeds

Name AMD Interlagos Intel Haswell-EP
Processors 8 × Opteron 6274 Intel Xeon E5-2609 v3

cores 64 6
Clock rate 2.2 GHz 1.90GHz
L1 Cache 64/16 KiB I/D 32/32 KiB I/D
L2 Cache 2048 KiB 256 KiB

Last-level Cache 2 × 8 MiB (shared) 15360 KiB (shared)

Interconnect
6.4 GT/s HyperTransport

(HT) 3.0
6.4 GT/s QuickPath
Interconnect (QPI)

Memory
#Channels / #Nodes

128 GiB Sync DIMM
4 per socket / 8

32 GiB Sync DIMM
16GiB Sync NVDIMM

Software
environment

Linux 4.0.2, Ubuntu 12.04
gcc 4.8.0, glibc 2.19

Linux 4.8.8, Centos 7
gcc 4.8.5, glibc 2.17

to the NVRAM environment. We conduct a series of experiments using microbenchmarks, data
structure benchmarks, HPC applications and Berkeley DB. We compare SIMPO with all the
variants and the NVRAM-based BDB-FT through their achieved throughput. All benchmark
programs are multithreaded and using the pthread library. When assigning threads to cores,
we adopt the common proximity-first policy: A thread will not be placed on another NUMA
node until the current node becomes full. All experimental data are reported as averages of five
runs.

Our experiments are conducted on two platforms: a 64-core AMD machine and a 6-core Intel
machine whose specifications are listed in Table 8. The AMD machine is used to run an emulated
platform. We develop an emulator based on DRAM to emulate NVRAM access latency (see
Table 1) for running the experiments in a multicore environment with both DRAM and emulated
NVRAM. Similar to related work (Volos et al. 2011), we limit our emulation to write operations
only and assume NVRAM has twice the write latency of DRAM. We also implement a flush
function composed of CLFLUSHOPT operation for each cache line of the data and SFENCE to
ensure the flush operations have completed, as is the case in other studies (Volos et al. 2011;
Bhandari et al. 2012; Rudoff 2016). For non-cacheable writes to NVRAM, we add proper delays
after every flush function. We record the delay time from the beginning of NVRAM modification
to the end of the flush macro based on the processor’s timestamp counter. The Intel machine has a
16GiB NVDIMM (an NVRAM alternative with DRAM access latency) with which we can validate
SIMPO through a power failure. We conduct evaluations on the Intel machine directly.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:21

Fig. 10. Throughput of microbenchmark on

AMD machine. Threads repeatedly execute the

allInc function.

Fig. 11. Throughput of microbenchmark on In-

tel machine. Threads repeatedly execute the

allInc function.

4.1 Microbenchmarking

We design a microbenchmark to compare the native program without persistence support (native)
against the settings in Table 7. All variants except simpo and simpo-all execute flush every
1,000 functions. simpo-all flushes every operation logs into NVRAM. simpo applies IF-triggered
synchronization. The microbenchmark includes a TwoDimIntArray object of 500 elements and
a master thread that dynamically creates a team of slave threads. After all worker threads have
terminated, the master thread aggregates the throughput results. To study scalability, we vary the
core count from 1 to 60 and 6, respectively.

4.1.1 Runtime Performance.

Buffered-Dual-Copy Checkpointing. For the evaluation of checkpointing, we design slave
threads to repeatedly execute the allInc function. We evaluate variants ssd, nvram, cow and hy-
brid in Table 7. ssd performs every operation instantly and checkpoints updates to persistent data
copies on SSD for every modification. nvram improves ssd by storing persistent data copies on
NVRAM. hybrid enhances nvram with group-based persistence and thus conducts checkpointing
every certain number of operations. cow also has a DRAM copy to apply group-based persistence,
but the checkpointing process uses the copy-on-write scheme. Figure 10 and Figure 11 show the
throughput results of the microbenchmark. ssd has the worst performance due to long access la-
tency. Using NVRAM, nvram performs up to 4.4× and 2.6× better than ssd on AMD and Intel
machines, respectively. hybrid is further up to 2.2× and 2.1× faster than nvram on the two plat-
forms. hybrid, compared with native, shows about 9% overhead on both platforms. The overhead
emerges from log recording and checkpointing. Compared with cow, hybrid shows up to 51% and
54% throughput increase, as we mentioned in Section 3.2. For the sake of analysis, we evaluate the
last-level data cache miss rate. hybrid runs with up to 29% fewer cache misses than cow does.

Deferrable Execution Model. Figure 10 and Figure 11 show the performance comparison be-
tween native and SIMPO with deferrable execution model optimization. With flat-combining to
improve data locality and reduce multicore contention, simpo shows 2.5× speedup and 84% in-
crease in throughput, compared with native, on the two platforms respectively. For analysis sake,
we evaluate the last-level data cache miss rate. SIMPO runs with up to 56% fewer cache misses
than native does.

To evaluate the concurrency boosting methodology, we design a pattern of slave threads to
execute the rowInc function on two different rows with different locks. We evaluate variants fc and

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:22 M. Zhang et al.

Fig. 12. Throughput of microbenchmark on

AMD machine. Threads conduct the rowInc

function for two rows independently.

Fig. 13. Throughput of microbenchmark on In-

tel machine. Threads conduct the rowInc func-

tion for two rows independently.

Fig. 14. Throughput of microbenchmark on

AMD machine. Threads repeatedly execute the

allInc function.

Fig. 15. Throughput of microbenchmark on In-

tel machine. Threads repeatedly execute the

allInc function.

m-server in Table 7. fc improves hybrid with the flat-combining technique. fc executes persistent
functions by one server thread to achieve higher data locality than hybrid. m-server further
enhances fc, exploiting the dhint parameter to maximize the concurrency. Figure 12 and Figure 13
show the throughput results of the microbenchmark. fc shows up to 47% and 42% increase in
throughput compared to native. With our concurrency boosting methodology, m-server shows
up to 2.17× speedup and 76% throughput increase over native on the AMD and Intel machines
respectively. m-server is more efficient, because it achieves higher concurrency by exploiting data
dependency to diminish potential false serialization.

XFG-Driven Programming Model. To analyze the influence of the XFG-driven programming
model, we test simpo-no, simpo-all and simpo-group in Table 7 with slave threads to repeatedly
execute the allInc function. simpo-no executes the flush function every 1,000 functions. And
simpo-all uses the flush function to ensure every operation log is persistent on NVRAM, which
guarantees the logs to flush in order as shown in Figure 2(a). simpo-group applies our IF-triggered
synchronization as shown in Figure 2(c). Figure 14 and Figure 15 show the throughput results
of the microbenchmark. simpo-no and simpo-group show similar performance that proves that
the IF-triggered synchronization successfully reduces the flush overhead. From simpo-all, we
conclude that the flush function causes 20% overhead on both platforms. With the IF-triggered

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:23

Fig. 16. Recovery time of direct re-execution

and SIMPO in microbenchmark on AMD ma-

chine. Fault injected when the program finishes

640,000 operations.

Fig. 17. Throughput results of experiments on

SIMPO persistent object manager on AMD

machine.

synchronization, the performance of simpo-group should lie between simpo-no and simpo-all and
varies with the DF:IF ratio.

4.1.2 Recovery Time. We run the microbenchmark with each slave thread calling the allInc
function on the AMD machine. We inject a fault that causes the program to crash when the sum
of finished operations among threads reaches 640,000. The recovery includes two parts: recovery
of persistent objects (data) and recovery of the application to continue execution (app). Figure 16
illustrates the recovery time against an increasing thread count. Without any data persistence
mechanisms, directly rerunning the application (re) takes a similar amount of time as the native
program execution (native). With SIMPO, recovery of persistent objects is fast, taking 0.8–3% (less
than 40ms) of the native program execution time. Following the recovery flow in Section 3.3.2,
SIMPO takes 4–10% to recover the program and continue the execution.

4.1.3 Persistent Object Manager. To verify the effectiveness of our persistent object manager,
we design another microbenchmark that includes many persistent objects. The microbenchmark
creates 6GiB of TwoDimIntArray objects. Every object is 4MiB large. poid’s of all objects come from
an id pool. All slave threads share and access TwoDimIntArray objects with poid’s randomly taken
from the id pool. Due to our checkpointing mechanism, the amount of NVRAM required is more
than 12GiB. To contrast the situations with and without enough NVRAM, we emulate 8GiB and
16GiB NVRAM, respectively, on the AMD machine.

Figure 17 shows the results. Both settings without persistence support (native) and with enough
NVRAM (nvramall) show a linearly increasing throughput with the core count. nvramall shows
41–73% increase in throughput, compared with native. When the data size is larger than the
available NVRAM, the setting lacking NVRAM (nvram-disk) runs 4–20× slower than nvramall.
The overhead comes from swapping persistent objects between NVRAM and SSD, and depends on
the bandwidth (around 500MB/s for our SSD) of the underlying storage. These results suggest that
the overhead of SIMPO when lacking NVRAM becomes non-negligible, however, this effect will
not occur in normal cases, in which programmers have strong control over their working set size.

4.2 Data Structure Library

We implement a library of six common data structures with the same interfaces as in the C++ stan-
dard library. Table 3 shows the common APIs and their classifications. These structures normally
can be implemented with an array or linked list. SIMPO is designed to harbor large size persis-
tent objects, such as an in-memory key-value store (Chu 2008). It is not suited for maintaining
small size objects, for example, i-node or socket. Therefore, we apply array-based implementa-
tion to these data structures. For every data structure, we run the microbenchmark with each

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:24 M. Zhang et al.

Fig. 18. Execution time of data structures run-

ning with 60 threads on AMD machine.

Fig. 19. Execution time of data structures run-

ning with six threads on Intel machine.

Fig. 20. Execution time of high-performance

computing applications running with 60 threads

on AMD machine.

Fig. 21. Execution time of high-performance

computing applications running with six

threads on Intel machine.

slave thread, randomly calling APIs. Figure 18 and Figure 19 show the execution time of SIMPO,
hybrid, normalized to native. We find that SIMPO incurs a certain amount of overhead for short
IFs, like those in instant-intensive structures (Queue or Stack). However, for functions in Tree or
Graph, SIMPO shows negligible overhead. The reason is that SIMPO has constant overhead, e.g.,
log recording and checkpointing, for each persistent function. Therefore, the overhead ratio of
execution depends on the length of persistent functions. In this sense, SIMPO favors big data and
HPC applications using defer-intensive classes Tree or Graph.

4.3 High-Performance Computing Applications

We modify and evaluate four widely used applications with machine learning and HPC workloads
on two platforms. Figure 20 and Figure 21 show the performance results. native represents the
official version of HPC applications without fault tolerance and running with only DRAM memory.

4.3.1 Machine Learning. We implement three training algorithms of machine learning models:
Logistic Regression, Auto Encoders, and Restricted Boltzmann Machines (RBM). We treat the
training data as persistent objects and define the Train function as a DF for every iteration. The
barrier synchronization is an IF. As these algorithms show similar results, we only present the RBM
results.

4.3.2 Linpack. We select the matrix multiplication in the Linpack benchmark (Dongarra 1988)
to represent the class of HPC workloads. We treat the matrix as a persistent object and define the
multiplication as an IF.

4.3.3 Pbzip2. We select Pbzip2 (Pankratius et al. 2009) to represent I/O-intensive workloads.
We modify the queue that records the zip or unzip progress, making it a persistent object using
our data structure library.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:25

Fig. 22. Recovery time of HPC applications and Berkeley DB running with six threads on Intel machine.

4.3.4 Graph Computing. The Floyd-Warshall algorithm, which finds the shortest path in a
weighted graph with edge weights, represents a classical graph computing workload. We build
the graph using our data structure library and encapsulate weight computation as an IF.

The evaluated HPC applications highly parallel with little lock contention, and most operations
in them are IFs. From the results, we can conclude that persistence support using SIMPO shows
little runtime overhead for common applications.

We also evaluate the recovery time of these applications on the Intel machines with six cores as
shown in Figure 22. We randomly crash the application at any time and restart the application again
with SIMPO recovery to finish the execution. simpo-recovery is the sum time of the application
execution time before the crash, the recovery time and the execution time till application finishes.
From Figure 22, we can conclude that the recovery time is less than 3% of the total execution time.

4.4 Berkeley DB

Berkeley DB (BDB) (Olson et al. 1999) is a software library that provides a high-performance em-
bedded database for key/value data. We modify the core data in BDB, “DB” and “DBEnv,” as persis-
tent objects. BDB provides a native data persistence mechanism via transaction-based checkpoint/
redo logs. We improve the native persistent mechanism to store logs and checkpoints in emulated
NVRAM on AMD machine and in NVDIMM on Intel machine using RAM-disk (BDB-FT). We com-
pare three versions of BDB: (1) native BDB without persistence (native); (2) BDB-FT: ported from
the native transaction system in BDB to save transaction logs and checkpoints on a RAM-disk
instead of hard disk, with NVDIMM or emulated slow NVRAM write latency; and (3) BDB with
SIMPO support that is not based on any existent transactional systems.

We evaluate performance using the well-known TPC-C benchmark (Fedorova et al. 2007). The
TPC-C benchmark generates transactions with random keys and values. It is a non-deterministic
program. We configure TPC-C benchmark to execute its StockLevel transactions with 100% get
or 100% put. For SIMPO, get function is an IF and put is a DF. We show results in Figure 23 and
Figure 24.

In Figure 23(a) and Figure 24(a), for IFs, SIMPO shows little overhead (2% and 5% on AMD and
Intel platforms) compared to native. BDB-FT is 21% and 29% slower than native. NVHeaps (Coburn
et al. 2011) reports around 5% overhead over native. Although SIMPO takes no advantage of multi-
server flat-combining for IFs, it still shows a better performance than NVHeaps.

In Figure 23(b) and Figure 24(b), for the deferrable-intensive case, SIMPO shows 33% (up to
88%) and 73% (up to 103%) throughput increase over native on the AMD and Intel platforms. The

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

7:26 M. Zhang et al.

Fig. 23. Throughput of BerkeleyDB/Stock Level on AMD machine. Native application’s performance as the

baseline.

Fig. 24. Throughput of BerkeleyDB/Stock Level on Intel machine. Native application’s performance as the

baseline.

speedup of SIMPO for the put transactions is due to our programming and execution model, which
agrees with our microbenchmark.

We also evaluate the recovery time of the StockLevel transactions on the Intel machines with 6
cores. Because the TPC-C benchmark is a non-deterministic program, SIMPO recovers the database
persistent objects to continue running Berkeley DB when a crash happens. The results are shown
in Figure 22. We can conclude that the recovery time is less than 0.2% of the total execution time.

4.5 Summary of Evaluation

As for data structures, RBM, Linpack, Pbzip2, Floyd, and get transactions for BDB, SIMPO shows
negligible overhead (mostly lower than 5%) for instant-intensive cases. The overhead comes from
logging, checkpointing and PO management. These are well optimized in SIMPO with a highly
scalable design. From microbenchmark and put transactions for BDB, we conclude that SIMPO
is scalable for multithreaded execution in deferrable-intensive cases. SIMPO can run faster than
state-of-the-art persistence solutions and even the baseline execution without persistence support.
For recovery, SIMPO spends 7.5ms on checking every million resilient logs.

5 CONCLUSION

In this article, we have presented the design and implementation of SIMPO, a scalable in-memory
object persistence framework, and its programming and execution model. SIMPO provides pro-
grammers with a toolkit to exploit NVRAM for fast persistence in a user-transparent manner,

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

SIMPO: A Scalable In-Memory Persistent Object Framework Using NVRAM 7:27

thanks to our management of persistent objects and other metadata. Our programming model
works with a transactionized function grouping mechanism to support memory persistence with
streamlined logging at instant function boundaries only. Our execution model for running de-
ferrable functions in groups can maximize data locality and concurrency. Persistent objects are
made durable through a buffered-dual-copy checkpointing mechanism that effectively masks the
slow writes of NVRAM. Experimental evaluations on both emulated and real-life hybrid memory
machines confirm that our persistence framework induces runtime overhead of up to 5% only, and
helps high-concurrency applications run twice as fast.

REFERENCES

Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson. 2011. Onyx: A protoype phase

change memory storage array. In Proc. HotStorage.

Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy. 2011. Operating system implications of fast, cheap, non-

volatile memory. In Proc. USENIX.

Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2012. Implications of CPU caching on byte-addressable

non-volatile memory programming. Technical Report HPL (2012).

Rahul Biswas and Ed Ort. 2006. The Java persistence API - a simpler programming model for entity persistence. Retrieved

from http://www.oracle.com/technetwork/articles/java/jpa-137156.html.

Bill Bridge. 2005. NVM-direct library. Retrieved from https://github.com/oracle/NVM-Direct.

Paul Butterworth, Allen Otis, and Jacob Stein. 1991. The gemstone object database management system. Commun. ACM

34, 10 (Oct. 1991).

Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas: Leveraging locks for non-volatile memory con-

sistency. SIGPLAN Not. 49, 10 (Oct. 2014), 433–452. DOI:http://dx.doi.org/10.1145/2714064.2660224

Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015. REWIND: Recovery write-ahead system for in-

memory non-volatile data-structures. Proc. VLDB Endow. 8, 5 (Jan. 2015), 497–508. DOI:http://dx.doi.org/10.14778/

2735479.2735483

E. Chen, D. Lottis, A. Driskill-Smith, D. Druist, V. Nikitin, S. Watts, X. Tang, and D. Apalkov. 2010. Non-volatile spin-transfer

torque RAM (STT-RAM). In Proc. DRC. 249–252.

S. Chu. 2008. Memcachedb. Retrieved from http://memcachedb.org.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011.

NV-heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. In Proc. ASPLOS.

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee.

2009. Better I/O through byte-addressable, persistent memory. In Proc. SOSP.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Commun. ACM 51, 1

(Jan. 2008), 107–113. DOI:http://dx.doi.org/10.1145/1327452.1327492

Jack Dongarra. 1988. The LINPACK benchmark: An explanation. In Proc. ICS.

Jack Dongarra, Thomas Hrault, and Yves Robert. 2014. Performance and reliability trade-offs for the double checkpointing

algorithm. Int. J. Netw. Comput. 4, 1 (2014), 23–41.

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff

Jackson. 2014. System software for persistent memory. In Proc. EuroSys.

Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. 2007. Improving performance isolation on chip multiprocessors

via an operating system scheduler. In Proc. PACT.

Ellis Giles, Kshitij Doshi, and Peter Varman. 2013. Software support for atomicity and persistence in non-volatile memory.

In Proc. MeaoW.

Peter Henderson and James H. Morris Jr. 1976. A lazy evaluator. In Proc. POPL.

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat combining and the synchronization-parallelism tradeoff.

In Proc. SPAA.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. 2003. Software transactional memory for

dynamic-sized data structures. In Proc. PODC.

Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2014. NVRAM-aware logging in transaction systems. Proc. VLDB

Endow. 8, 4 (Dec. 2014), 389–400. DOI:http://dx.doi.org/10.14778/2735496.2735502

Taeho Hwang, Jaemin Jung, and Youjip Won. 2014. HEAPO: Heap-based persistent object store. Trans. Stor. 11, 1 (Dec.

2014), Article 3, 21 pages. DOI:http://dx.doi.org/10.1145/2629619

Sudarsun Kannan, Ada Gavrilovska, and Karsten Schwan. 2016. pVM: Persistent virtual memory for efficient capacity

scaling and object storage. In Proc. EuroSys.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

http://www.oracle.com/technetwork/articles/java/jpa-137156.html
https://github.com/oracle/NVM-Direct
http://dx.doi.org/10.1145/2714064.2660224
http://dx.doi.org/10.14778/2735479.2735483
http://memcachedb.org
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.14778/2735496.2735502
http://dx.doi.org/10.1145/2629619

7:28 M. Zhang et al.

Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip Won. 2016. NVWAL: Exploiting NVRAM in

write-ahead logging. SIGOPS Oper. Syst. Rev. 50, 2 (Mar. 2016), 385–398. DOI:http://dx.doi.org/10.1145/2954680.2872392

M. H. Kryder and C. S. Kim. 2009. After hard drives?What comes next?IEEE Trans. Magn. 45, 10 (Oct 2009), 3406–3413.

DOI:http://dx.doi.org/10.1109/TMAG.2009.2024163

L. Lamport. 1977. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3, 2 (Mar. 1977), 125–143.

DOI:http://dx.doi.org/10.1109/TSE.1977.229904

N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. 2014. Rethinking main memory OLTP recovery. In Proc. ICDE.

Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin Strauss, and

Steven Swanson. 2017. Atomic in-place updates for non-volatile main memories with kamino-Tx. In Proc. EuroSys.

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. 1992. ARIES: A transaction recovery method

supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Trans. Database Syst. 17, 1

(Mar. 1992), 94–162. DOI:http://dx.doi.org/10.1145/128765.128770

X. Ni, E. Meneses, and L. V. Kal. 2012. Hiding checkpoint overhead in HPC applications with a semi-blocking algorithm. In

Proc. CLUSTER.

Michael A. Olson, Keith Bostic, and Margo I. Seltzer. 1999. Berkeley DB. In Proc. USENIX ATC.

Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. 1999. Executing parallel programs with synchronization bottle-

necks efficiently. In Proc. PDSIA.

Victor Pankratius, Ali Jannesari, and Walter F. Tichy. 2009. Parallelizing bzip2: A case study in multicore software engi-

neering. In IEEE Software 26, 6 (2009), 70–77. DOI:10.1109/MS.2009.183

Andy Rudoff. 2016. pmem.io: Persistent Memory Programming. Retrieved from http://pmem.io/nvml/.

Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin Hertzberg. 2006. McRT-STM: A high

performance software transactional memory system for a multi-core runtime. In Proc. PPoPP.

Shogo Saito and Shuichi Oikawa. 2012. Exploration of non-volatile memory management in the OS kernel. In Proc. ICCCNT.

William N. Scherer, III and Michael L. Scott. 2005. Advanced contention management for dynamic software transactional

memory. In Proc. PODC.

Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem, and Pat Helland. 2007. The

end of an architectural era: (It’s time for a complete rewrite). In Proc. VLDB.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy H. Campbell, and others. 2011. Consistent and

durable data structures for non-volatile byte-addressable memory. In Proc. FAST.

Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight persistent memory. In Proc. ASPLOS.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu.

2014. BigDataBench: A big data benchmark suite from internet services. In Proc. HPCA.

Michael Wu and Willy Zwaenepoel. 1994. eNVy: A non-volatile, main memory storage system. In ACM SigPlan Notices.

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bingsheng He. 2015. NV-tree: Reducing

consistency cost for NVM-based single level systems. In Proc. FAST.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proc. USENIX.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing

with working sets. In Proc. HotCloud.

Gengbin Zheng, Lixia Shi, and L. V. Kale. 2004. FTC-charm++: An in-memory checkpoint-based fault tolerant runtime for

charm++ and MPI. In Proc. CLUSTER.

Received April 2017; revised October 2017; accepted November 2017

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 7. Publication date: March 2018.

http://dx.doi.org/10.1145/2954680.2872392
http://dx.doi.org/10.1109/TMAG.2009.2024163
http://dx.doi.org/10.1109/TSE.1977.229904
http://dx.doi.org/10.1145/128765.128770
10.1109/MS.2009.183
http://pmem.io/nvml/

