
1

Error-tolerant Resource Allocation and Payment
Minimization for Cloud System

Sheng Di, Member, IEEE, and Cho-Li Wang, Member, IEEE

Abstract—With virtual machine (VM) technology being increasingly mature, compute resources in Cloud systems can be partitioned
in fine granularity and allocated on demand. We make three contributions in this paper: (1) We formulate a deadline-driven resource
allocation problem based on the Cloud environment facilitated with VM resource isolation technology, and also propose a novel solution
with polynomial time, which could minimize users’ payment in terms of their expected deadlines. (2) By analyzing the upper bound of
task execution length based on the possibly inaccurate workload prediction, we further propose an error-tolerant method to guarantee
task’s completion within its deadline. (3) We validate its effectiveness over a real VM-facilitated cluster environment under different levels
of competition. In our experiment, by tuning algorithmic input deadline based on our derived bound, task execution length can always be
limited within its deadline in the sufficient-supply situation; the mean execution length still keeps 70% as high as user-specified deadline
under the severe competition. Under the original-deadline-based solution, about 52.5% of tasks are completed within 0.95∼1.0 as high
as their deadlines, which still conforms to the deadline-guaranteed requirement. Only 20% of tasks violate deadlines, yet most (17.5%)
are still finished within 1.05 times of deadlines.

Keywords—VM-multiplexing, Resource Allocation, Convex Optimization, Prediction Error Tolerance, Payment Minimization

F

1 INTRODUCTION

Cloud computing [1], [2] has emerged as a compelling
paradigm for the deployment of ease-of-use virtual envi-
ronment on the Internet. One typical feature of Clouds is
its pool of easily accessible virtualized resources (such as
hardware, platform or services) that can be dynamically
reconfigured to adjust to a variable load (scale). All the
resources provisioned by Cloud system are supposed to
be under a payment model [2], in order to avoid users’
over-demand of their resources against their true needs.

Each task’s workload is likely of multiple dimensions.
First, the compute resources in need may be multi-
attribute (such as CPU, disk-reading speed, network
bandwidth, etc.), resulting in multi-dimensional execu-
tion in nature. Second, even though a task just depends
on one resource type like CPU, it may also be split
to multiple sequential execution phases, each calling
for a different computing ability and various price on
demand, also leading to a potentially high-dimensional
execution scenario.

The resource allocation in Cloud computing is much
more complex than in other distributed systems like
Grid computing platform. In a Grid system [3], it is
improper to share the compute resources among the
multiple applications simultaneously running atop it
due to the inevitable mutual performance interference
among them. Whereas, Cloud systems usually do not
provision physical hosts directly to users, but leverage
virtual resources isolated by VM technology [4], [5], [6].

• S. Di is currently a post-doctor researcher at INRIA, Grenoble, France, and
C.L. Wang is with the Department of Computer Science, The University
of Hong Kong, Hong Kong.

Not only can such an elastic resource usage way adapt
to user’s specific demand, but it can also maximize
resource utilization in fine granularity and isolate the
abnormal environments for safety purpose. Some suc-
cessful platforms or cloud management tools leveraging
VM resource isolation technology include Amazon EC2
[7] and OpenNebula [8]. On the other hand, with fast
development of scientific research, users may propose
quite complicated demands. For example, users may
wish to minimize their payments when guaranteeing
their service level such that their tasks can be finished
before deadlines. Such a deadline-guaranteed resource
allocation with minimized payment is rarely studied in
literatures. Moreover, inevitable errors in predicting task
workloads will definitely make the problem harder.

Based on the elastic resource usage model, we aim
to design a resource allocation algorithm with high
prediction-error tolerance ability, also minimizing users’
payments subject to their expected deadlines.

Since the idle physical resources can be arbitrarily
partitioned and allocated to new tasks, the VM-based
divisible resource allocation could be very flexible. This
implies the feasibility of finding the optimal solution
through convex optimization strategies [9], unlike the
traditional Grid model [10] that relies on the indivisible
resources like the number of physical cores. However,
we found it is inviable to directly solve the necessary
and sufficient condition to find the optimal solution,
a.k.a., Karush-Kuhn-Tucker (KKT) conditions [9]. Our
first contribution is devising a novel approach (with only
O(n · R2) time complexity) to solve the problem, where
R denotes the number of execution dimensions and n is
the system scale (the number of compute nodes).

In literatures, traditional optimization problems are

2

often subject to the precise prediction of task’s charac-
teristic (or execution property), which is nontrivial to
realize in practice. Accordingly, as the state-of-the-art, we
further analyze our algorithm’s optimality approxima-
tion ratio given the possibly wrong predictions of tasks’
execution properties. In particular, we will try to answer
such a question: when application’s characteristic is pre-
dicted with certain levels of errors, will the application’s
final execution length (a.k.a., execution time) violate (or
surpass) its deadline? If yes, what is the ratio of the final
execution time to its deadline? These theoretical results
will be significantly valuable to the guarantee of user’s
service level in practice. In fact, by setting a relatively
stricter deadline properly based on our derived approx-
imation ratio, each task can be guaranteed to be finished
within its original deadline even though task properties
cannot be predicted accurately.

In addition to the above theoretical contribution, we
further confirm the effectiveness of our solutions by
implementing a set of advanced web services that are
based on complex matrix-operations, over a real cluster
environment with 60 virtual machines. All the theoretical
conclusions are confirmed with our experiments. Specif-
ically, in the situation with relatively sufficient resources,
the worst-case tasks under the stricter-deadline based allo-
cation only take as about 0.75 times as their deadlines to
complete, as compared to the 1.2 times of the deadlines
under the original user-predefined deadline based allocation.
We also observe that in the competitive environment,
the latter algorithm performs much more stable than
the former instead, which means that the latter tolerates
the resource competition better. We also confirm the
effectiveness of our solution via the distribution of the
number of tasks with respect to execution times and user
payments: in the competitive situation, majority of tasks
can be guaranteed to be completed within deadlines.

The rest of the paper is organized as follows: In
Section 2, we formulate our problem based on the Cloud
scenario which supports elastic divisible resource cus-
tomization. In Section 3, we first discuss the complexity
of the modeled problem in brief, and then formally
describe a novel algorithm, which can minimize user’s
payment based on task’s preset execution deadline. In
Section 4, we intensively derive the lower bound and
upper bound of execution time for the situation with
the possibly skewed predictions on tasks’ properties as
compared to the deadlines. We rigorously implement our
algorithm and analyze experimental results on a real-
cluster setting in Section 5. We discuss the related works
in Section 6 and conclude with future work in Section 7.

2 PROBLEM FORMULATION
In Cloud systems, the Cloud proxy (a.k.a., server) con-
tinually receives and responds to user requests (or tasks)
with customized requirements (or virtual machines). All
tasks will be handled based on their priorities (like
Google task scheduler [11]) or in terms of First-Come-
First-Serve (FCFS) policy when the tasks are of the same

priorities (like [12]). Each task’s execution may involve
multi-dimensional resources, such as CPU and disk I/O.
A data mining task, for example, usually needs to load
a large set of data from disk before or in the middle
of its computation. Eventually, such a task may store
its computation results onto the local disk or a public
server through network. Fig. 1 illustrates the procedure
in processing such a task (denoted ti). Suppose the task’s
execution times cost on computation and disk process-
ing are predicted as 4 hours and 3 hours respectively.
Upon receiving the request, the scheduler checks the
pre-collected availability states of all candidate nodes,
and estimates the minimal payment of running the task
within its deadline on each of them (i.e., Step 1 in the
figure). The host (Node p3 shown in Fig. 1) that requires
the lowest payment will run the task via a customized
VM instance with isolated resources (Step 2 in Fig. 1).
Specifically, the VM will be customized with such a CPU
rate (e.g., 0.4 Gflops) and disk I/O rate (e.g., 0.3 Gbps)
that the task can be finished within its deadline (D(ti)=1
hour in the example) and its user payment can also be
minimized meanwhile. Finally (Step 3), its computation
results (or feedbacks) will be returned to users.

i

Tasks
Cloud Server

1

3

Cloud Node p3

User

Task Cloud server

Virtual machinePhysical node

Allocated resource Available resource

CPU IO-BW

CPU

CPU

Cloud Node p1

Cloud Node p2

Task’s deadline: D(ti)=1hour

Task ti’s workload ratio

l(ti)= {l1:l2=4:3}

CPU=1.2Gflops
a(p1)=

b(p1)=

IO=0.5Gbps

IO-BW

IO-BW

CPU=0.5$/Gflops/hr

IO=0.1$/Gb/hour

1.2 0.5

CPU=1.5Gflops
a(p2)=

b(p2)=
CPU=0.2$/Gflops/hr
IO=0.2$/Gb/hour

IO=0.8Gbps

CPU=1.0Gflopsa(p3)=

b(p3)=
CPU=0.1$/Gflops/hr
IO=0.2$/Gb/hour

IO=1.1Gbps

t1 t2

t3 t4

t5 t6 ti

2

New VM with split
resource vector for ti

r(ti)
0.4 Gflops

0.3 Gbps
=

CPU=2.2Gflopsc(p3)=
IO=2.2Gbps

CPU=2.4Gflopsc(p1)=
IO=1Gbps

CPU=3.0 Gflopsc(p2)=
IO=1.2 Gbps

Return the solution such that

task ti’s payment is minimized

Fig. 1: Resource Allocation in Cloud System

Suppose there are n compute nodes (denoted by pi,
where 1≤i≤n). Since all the resources are managed
centrally, the availability state of each resource within
any recent or later period can be predicted prior, for
executing any given task with multiple execution di-
mensions. For any particular task with R execution
dimensions, we use Π to denote the whole set of
dimensions and c(pi)=(c1(pi) , c2(pi) ,· · ·, cR(pi))T as
node pi’s capacity vector on these dimensions (In the
paper, we use bold-type to indicate a vector). In Fig.
1, for example, node p1’s physical capacity vector is
c(p1)={CPU=2.4Gflops,disk IO=1Gbps}.

Any user’s task is denoted as ti, where 1≤i≤m,
and m refers to the total number of submitted tasks.
Each task has a multi-dimensional workload vector, de-
noted by l(ti)=(l1(ti),l2(ti),· · ·, lR(ti))T , which needs to
be finished before the task’s deadline. We denote the
resource vector allocated to ti as r(ti) = (r1(ti), r2(ti),
· · · , rR(ti))T , where rk(ti) (k=1,2,· · ·,R) refers to the
resource amount on kth execution dimension isolated

3

by hypervisor/virtual machine monitor(VMM) for the
task’s execution. Node pi’s availability vector (denoted
a(pi)) along the multiple dimensions is calculated by
c(pj) −

∑
ti running on pj

r(ti). For example, node p1 in
Fig. 1 is running two VMs that are allocated with half
of the total physical resources, so its availability vector
a(p1)={CPU=1.2Gflops,disk IO=0.5Gbps}. If there are no
workloads being executed simultaneously for a particu-
lar task, its total execution time will be the sum of the
individual processing times on different dimensions. If
the execution of the workloads overlap, however, the
task’s completion time would be shorter. Accordingly,
ti’s final execution time (denoted as T (ti)) is definitely
confined within such a range [max(lk

rk
),
∑R

k=1
lk
rk

]. For
simplicity, we denote task ti’s execution time as Equation
(1) (affine transformation of

∑R
i=1

lk
rk

), where θ denotes a
constant coefficient. Such a definition specifies a defacto
broad set of applications each with multiple execution
dimensions. The typical example is a single job with
multiple sequentially interdependent tasks or some pro-
gram with distinct execution phases each relying on
independent compute resources (where θ = 1).

T (ti) = θ
∑R

k=1

lk(ti)

rk(ti)
, where θ ∈ [

max(lk
rk
)∑R

k=1
lk
rk

, 1] (1)

For any Cloud system, the resources provisioned are
usually set with a price vector denoted as b(pi)=(b1(pi),
b2(pi), · · · , bR(pi))T along R dimensions. bk(pi) (1 ≤ k
≤ R) denotes the per-time-unit price that the consumers
need to pay for the consumption of the kth dimension
on pi. Each task ti is set with a deadline (denoted D(ti))
for its execution and the payment is expected to be
minimized under our algorithm.

In our Cloud model, any task will be executed on
one or more virtual machines with user-reserved re-
sources and the payment is calculated based on the cus-
tomized resource (a.k.a., pay-by-reserve policy). Adopt-
ing such a pricing policy is driven by three reasons.
Firstly, the efficiencies of many applications usually rely
on multiple resources but it is non-trivial to precisely
evaluate the exact amount of their consumption sep-
arately on individual resources. Secondly, quite a few
users prefer to reserving resources for tolerating us-
age burst and guaranteeing their service levels. Lastly,
the alternative pricing policy, pay-as-you-consume, is
rather simple because its payment is always fixed (=
θ
∑R

k=1(bk(ps)·rk(ti)
lk(ti)
rk(ti)

)=θ
∑R

k=1bk(ps)·lk(ti)) regardless
of the resource allocation.

Based on the pay-by-reserve policy, task ti’s total
payment will be calculated via Equation (2), where
ps refers to ti’s execution node. The mean price (i.e.,
1
Rb(ps)T ·r(ti)) will be used as the pricing unit over time,
for computing user’s payment. Such a design can be con-
sistent with our pay-by-reserve model, and also prevent
users from feeling too costly when their applications’
execution cannot overlap at different dimensions.

P (r(ti)) =
1

R
b(ps)T · r(ti) · T (ti) (2)

In this paper, we might omit the notations ti and pi
if thus would not cause ambiguity. For instance, lk(ti),
r(ti), bk(pi), a(pi) and D(ti) may be substituted by lk, r,
bk, a, and D respectively, in the following text.

Our research could be briefly summarized as the
following convex optimization format: for any task ti
with its workload vector l(ti), given a set of candidate
execution nodes (ps, s=1,2,· · ·,n), how to select ps and
split resources such that ti’s payment (i.e., Equation (2))
is minimized, subject to the constraints (3) and (4).

Min P (r(ti))
s.t.

T (ti) ≤ D(ti) (3)
r(ti) ≼ a(ps) (4)

3 OPTIMAL RESOURCE ALLOCATION

In this section, we will first analyze the problem men-
tioned above, and then propose our optimal solution.

By combining Equation (1) and Equation (2), it is easy
to verify that ∀ rk, ∂2P (r(ti))

∂r2k
= θ

R (− 2bklk
r2k

+ 2lk
r3k

∑R
i=1 biri)>0,

thus the target function P (r(ti)) is convex, which means
that there must exist a minimal extreme point.

Based on the convex optimization theory [9], the La-
grangian function of the problem could be formulated as
Equation (5), where λ and µ1, µ2, · · ·, µR are correspond-
ing Lagrangian multipliers. Note that θ is a constant
defined in Equation (1) and r is the abbreviation of r(ti)
as stated above.

F1(r)= 1
R (

R∑
k=1

bkrk)(θ
R∑

k=1

lk
rk
)+λ(θ

R∑
k=1

lk
rk
−D)+

R∑
k=1

µk(rk−ak) (5)

Accordingly, we could get the Karush-Kuhn-Tucker
(KKT) conditions [9] (i.e., the necessary and sufficient
condition of the optimization) as below:

λ ≥ 0, µk ≥ 0, k = 1, 2 · · · , R
R∑
i=1

θ li
ri

≤ D

λ(θ
R∑
i=1

li
ri

−D) = 0

rk ≤ ak(ps), k = 1, 2, · · · , R; s = 1, 2, · · · , n
µk(rk − ak(ps)) = 0, k=1, 2, · · · , R; s=1, 2, · · · , n
∂F1

∂rk
= 1

R

((
R∑
i=1

biri

)
·−lk
r2k

+bk·
R∑
i=1

li
ri
+−λlk

r2k
+µk

)
= 0,

k = 1, 2, · · · , R

(6)

In other words, as long as we can find such an
allocation case (r=(r1, r2, · · · , rR)T) to satisfy the above
conditions simultaneously, we can set it as the opti-
mal solution of the deadline-driven payment-minimized
problem. However, it is non-trivial to do that, because
the last condition (∂F1

∂rk
=0) cannot be directly solved.

Whereas, we exploit a novel algorithm with polynomial
time complexity (n·R2) to allocate resource, which can
be proved to satisfy the KKT condition listed above.

Our algorithm is designed based on such a discovery:
if we do not consider the limit of resource capacities
(i.e condition (4)), the problem can be directly solved
using Lagrangian multiplier method. As follows, we will

4

first derive the optimal solution to the problem with
unbounded capacities (i.e., without the condition (4)) in
Theorem 1. And then, we will describe our algorithm
by recursively using Theorem 1 to search the resource
allocation case that satisfies the whole KKT condition
(6), in polynomial time.

Theorem 1: For a specific task ti, in order to minimize
P (r(ti)) subject to the constraint (3), the optimal resource
vector r(∗)(ti) is Equation (7), where k=1, 2, · · ·, R. (Note
that r(∗)(ti) is not subject to Inequality (4), unlike the
notation r∗(ti) that takes into account this inequality.)

r
(∗)
k (ti) =

(
θ
D

∑R
j=1

√
ljbj

)√
lk
bk

(7)

Proof: As mentioned previously, the target function
is convex, thus there must exist the minimal extreme
point. In order to simplify the target function (i.e., Equa-
tion (2)), we fix the task’s execution time to be T (≤D),
which also satisfies the problem’s conditions. Then, the
target function could be converted to Equation (8).

P (r) = T
R ·
∑R

k=1 bkrk, where T ≤ D (8)

The corresponding Lagrangian function is shown be-
low:

F2(r) = T
R ·
∑R

k=1 bkrk + λ(θ
∑R

k=1
lk
rk

−D) (9)

Based on the Lagrangian multiplier method, ∂F2

∂rk
= 0

(where k=1,2,· · ·,R) constructs a set of necessary condi-
tions for getting the optimal solution (i.e., Equation (10)
must hold, where λ is a constant).

λθR/T = bkr
2
k/lk (10)

According to Equation (10), we can easily get Equation
(11), ∀j, k (1≤j ̸=k≤R).

r2kbk/lk = r2j bj/lj (11)

That is, Equation (12) is the sufficient and necessary
condition of the optimal solution, s.t. a given deadline.

r1 : r2 : · · · rR =
√
l1/b1 :

√
l2/b2 : · · · :

√
lR/bR (12)

In order to save the resource utilized by the current
task as much as possible, the optimal allocation should
make

∑R
i=1

li
ri

equal to D. In fact, for any resource
allocation r(ti) meeting Equation (12) while

∑R
i=1

li
ri

<
D, there must exist another solution with lower resource
allocation r(ti)′ (i.e., r′(ti)≼r(ti)) such that it also satisfies
Equation (12). Hence, the task ti’s optimal resource al-
location should make

∑R
k=1

lk
rk

= D, then, by combining
this equation, we can calculate the the optimal resource
vector to be allocated as Equation (7).

Remark: With unbounded resource availabilities, there
will be no any constraint to the problem of minimizing
the target function P (r). Based on the above analysis,
there are infinite number of optimal stationary points,
whose sufficient and necessary conditions are Equation
(12). For vivid illustration, we show the graph of a
simple case in Fig. 2, where b=(1, 1)T and l=(1, 1)T .
From this figure, we can observe that these exist the
minimal extreme points and the number of them is
infinitive, along the line {r1=r2 and P (r)=4}. This result
is consistent with the Equation (12).

(0,0)

r1

r2

P(r)=(r1+r2)(1/r1+1/r2)

Fig. 2: The function Graph of A Simple Case

Formula (7) presents the resource share vector r(∗)

gained by ti such that its payment and the resource
utilization can be both minimized within its execution
deadline (i.e., Formula (3)). Considering the constraint
(4), r(∗) is right the optimal solution as long as r(∗)≼a(ps).
However, if r(∗) does not fully satisfy the constraint
(4) (i.e., ∃ k: r(∗)k >ak(ps)), r(∗) should not be a feasible
solution. As one contribution, we propose an efficient
algorithm (Algorithm 1) to determine the optimal solu-
tion subject to the constraint (4) with the provable time
complexity O(n ·R2).

Definition 1: For any task ti, based on a subset Γ(⊆Π),
CO-STEP(Γ, C) is defined as the procedure of computing
the optimal solution of minimizing P (rΓ(ti)) subject to
the constraint (13) by using convex optimization (similar
to the proof of Theorem 1), where C denotes a deadline
and rΓ(ti)(=(r1, r2, · · · , rR)T) denotes the resource shares
gained by ti on the execution dimension set Γ.

θ
∑R

i=1

li
ri

≤ C (13)

We devise Algorithm 1 for minimizing P (r(ti)) subject
to the constraints (3) and (4), as shown below.

Algorithm 1 OPTIMAL ALLOCATION ALGORITHM

Input: D(ti); Output: execution node ps, r∗(ti)
1: for (each candidate node ps) do
2: Γ = Π, C = D(ti), r∗ = Φ (empty set);
3: repeat
4: r(∗)Γ (ti, ps) = CO-STEP(Γ,C); /*Compute optimal r on Γ*/
5: Ω = {dk|dk∈ Γ & r

(∗)
k (ti, ps)>ak(ps)}; /*select elements

violating constraint (4)*/
6: Γ = Γ\Ω; /*Γ takes away Ω*/
7: C = C − θ

∑
dk∈Ω

lk
ak

; /*Update C*/
8: r∗(ti, ps) = r∗(ti, ps)∪{r∗k = ak(ps) | dk∈Ω & ak(ps) is dk’s

upper bound};
9: until (Ω = Φ);

10: r∗(ti, ps) = r∗(ti, ps) ∪ r(∗)Γ (ti, ps);
11: end for
12: Select the smallest P (ti) by traversing the candidate solution set;
13: Output the selected node ps and resource allocation r∗(ti, ps);

In this algorithm, line 4 executes CO-STEP(Γ,C) in
order to find the optimal r(∗)Γ (ti, ps), under the assump-
tion without constraint (4). If r(∗)Γ (ti, ps) completely sat-
isfies the constraint (4) (i.e., Ω=Φ), then r(∗)Γ (ti, ps) is
the local optimal resource allocation for ti to be run
on ps; otherwise, let the resource shares (rk(ti),where
k=1,2,· · ·,R) that violate the constraint (4) equal to its

5

upper bound (i.e., ak(ps)) and take the corresponding
execution dimensions (i.e., Ω) away from Γ, then, C
= C − θ

∑
dk∈Ω

lk
ak

for the remaining dimensions. The
process will go on until the computed optimal resource
shares on the remaining dimensions satisfy the con-
straint (4). Since the time complexity of CO-STEP(Γ,C)
is O(|Γ|), the number of computation steps of line 2∼10
in Algorithm 1 in the worst case is

∑R−1
i=0 (R− i), thus

the total time complexity of Algorithm 1=O(n ·R2).
Based on the Algorithm 1, it is obvious that the local

optimal resource allocation for ti to be executed on a
specified node ps is the most crucial part. In fact, the
final outputted resource allocation solution of the whole
algorithm will be globally optimal around the whole
system as long as each local process on a specified node
(line 2∼10) can be proved as optimal resource alloca-
tion. Consequently, we will intensively discuss the local
divisible-resource allocation by specifying a particular
execution node, in the following text.

Theorem 2: Given a submitted task ti with its load
vector l(ti) and a deadline D(ti) and a particular node
ps with its resource price vector b(ps), then the output
after running the line 2∼10 of Algorithm 1 (i.e., r∗(ti, ps)
is optimal for minimizing ti’s payment (i.e., P (r(ti))),
subject to the constraints (3) and (4).

Main idea: We will prove that the r∗(ti, ps) satisfies KKT
conditions (i.e., Formula (6)).

Proof:
At the beginning, the algorithm executes the CO-

STEP(Π,D(ti)) and the output is denoted r(∗)Π . Since r(∗)Π

is derived from Definition 1 and Theorem 1, r(∗)Π must
satisfy Equation (12) and θ

∑R
i=1

li
ri

=D, then if we let
µk=0 for any k, there must exist an assignment such that
all the conditions in Formula (6) hold except for r(∗)k ≤ak.
Accordingly, r∗=r(∗)Π as long as r(∗)k ≤ak for all r(∗)k s in r(∗)Π .

If r(∗)Π cannot satisfy all the R inequalities (r∗k≤ak,
where k=1, 2, · · · , R), we need to further adjust the
solution r(∗)Π to find the one completely satisfying the
condition (6). In Algorithm 1, at this moment, all the r

(∗)
k s

such that r(∗)k >ak will be selected and set to ak. Without
loss of generality, assuming there are h1 such resource
shares and they are denoted as r1, r2, · · ·, rh1 . Obviously,
each selected rk must satisfy µk · (rk − ak)= 0 because
rk=ak. On the other hand, Algorithm 1 will continue
to execute CO-STEP(Γ,C) on the rest R−h1 dimensions,
where C=D(ti)−θ

∑h1

k=1
lk
rk

. Likewise, all the R−h1 new
resource shares (each denoted by rk, k=h1+1, · · ·, R) must
also satisfy rh1+1 : rh1+2 : · · · : rR =

√
lh1+1

bh1+1
:
√

lh1+2

bh1+2
:

· · · :
√

lR
bR

, and
∑R

i=1
li
ri

=D, thus if each of them meets
the condition rk≤ak, the R − h1 new resource shares
and the previously selected h1 will together compose
the solution satisfying the condition (6). If there are still
h2 (0<h2≤R − h1) new resource shares violating rk≤ak
in this round, Algorithm 1 will continue the adjustment
until the Hth round such that either all the R−

∑H
i=1 hi

remaining resource shares can satisfy rk≤ak or there are

no remaining resource dimensions in Γ. In the former
case, we can easily verify that all the R resource shares
satisfy the condition (6) simultaneously, composing an
optimal solution; for the latter case, we could conclude
that θ

∑R
i=1

li
ai

≥ D, then there does not exist a feasible
resource allocation to run the task within the specified
deadline. In this situation, r∗=a=(a1, a2, · · · , aR)T will get
the execution time closest to the deadline, and it will
serve as the final solution.

Although Algorithm 1 is proved optimal for minimiz-
ing the payment cost within user-defined deadline for
his/her task, the deadline still may not be guaranteed
due to two factors, either bounded available resources
or inaccurate workload vector information about the
task. We propose the following lemma, which provides
a necessary and sufficient condition of guaranteeing the
task’s deadline given accurate prediction and relatively
sufficient resources. In next section, we will discuss
how to guarantee task’s deadline when performing the
Algorithm 1 with even inaccurate workload vector.

Lemma 1: Given a task ti’s workload vector l(ti) = (l1,
l2, · · · , lR)

T and its deadline D(ti), and a candidate
execution node ps, then ti can be executed within D(ti)
if and only if (i.e., ⇔) Inequality (14) holds.∑R

j=1

lj(ti)

aj(ps)
≤ D(ti) (14)

Proof:
To prove ⇐: If Inequality (14) holds, it is obvious

there must exist a viable resource allocation r(ti)(≼a(ps)),
such that

∑R
j=1

lj(ti)
aj(ps)

= D(ti). Hence, ti can be executed
within D(ti).

To prove ⇒: If ti can be executed within D(ti), there
must exist a viable resource allocation r(ti) such that∑R

j=1
lj
rj

≤ D(ti) and r(ti) ≼ a(ps). Assuming Inequality

(14) does not hold at the moment, i.e.,
∑R

j=1
lj(ti)
aj(ps)

>

D(ti), then, we could derive Inequality (15).∑R

j=1

lj(ri)

rj(ps)
<
∑R

j=1

lj(ti)

aj(ps)
(15)

Accordingly, we can derive that there must exist a
dimension for example dk such that rk(ti) ≥ a(ps), which
contradicts to the previous assumption that r(ti) is a
viable solution (r(ti) ≼ a(ps)).

4 OPTIMALITY ANALYSIS WITH INACCURATE
INFORMATION

In this section, we focus on such a question: what is the
final upper bound of task execution length as compared
to its predefined deadline D, when running it using
the resource vector allocated under Algorithm 1 with
inaccurately predicted workload information?

4.1 Problem Description
Although Algorithm 1’s output is proved optimal, such
a result relies on a strong condition, i.e., accurate task’s
workload vector. That is, each user needs to precisely

6

predict the execution property (i.e., workload ratio) for
his/her task, before constructing the resource alloca-
tion with minimized payment for its execution under
a user-specified deadline. In some cases, the execution
property could be easily estimated accurately. For in-
stance, we can decide the workload ratio between the
data to be read/written from/to disk and those to
be downloaded/uploaded via network by comparing
their data sizes. In many other cases, however, the
execution property cannot be accurately estimated, such
as computation-intensive applications whose execution
times highly depends on the CPU-cycles to consume.

Definition 2: Suppose a task ti’s real workload vector
is l(ti), while its workload vector used by our algorithm
is l′(ti) subject to the Inequality (16), where α and β are
the lower bound and upper bound for the estimation
ratio specified by user based on experiences or particular
workload prediction methods such as [13], [14], [15].

α ≤ l′k(ti)

lk(ti)
≤ β, k = 1, 2, · · ·R (16)

To illustrate the above definition, an example is given.
Assuming the task ti’s real workload ratios range in
[0.125, 1], and the workload vector l′(ti) used by Algo-
rithm 1 will be set based on the task’s historical execution
records. Suppose each element l′k(ti) (k = 1, 2, · · ·R) will
be set to 0.25 if the corresponding true workload fluctu-
ates in [0.125, 0.5] and set to 0.75 if the true workload
ranges within (0.5, 1]. Then, we could get Inequality (17)
below, where α= 0.125

0.25 =0.5 and β= 0.5
0.25=2.

0.5 ≤ l′k(ti)
lk(ti)

≤ 2, k = 1, 2, · · ·R (17)

Using the inaccurate prediction l′(ti) to perform the
Algorithm 1, it is obvious that ti’s real execution time
may surpass the expected execution deadline D(ti).
Hence, one question is what the worst performance will
get when using l′(ti) instead of l(ti), compared to the
expected deadline D(ti).

4.2 Deadline Extension Ratio with Skewed Estima-
tion of Execution Property
For simplicity of description, we denote r∗E (=(r∗E1, r∗E2,
· · ·, r∗ER)T) and T ∗

E (=θ
∑R

k=1
lk
r∗Ek

) as the output of Al-
gorithm 1 with the skewed workload prediction and
the corresponding execution time, respectively (E here
implies “Estimation with error”). Similarly, we denote
r∗I (=(r∗I1, r∗I2, · · ·, r∗IR)T) and T ∗

I (=D=θ
∑R

k=1
lk
r∗Ik

) as the
output with real workload vector and the correspond-
ing execution time, respectively (I here indicates “Ideal
case”). Hence, our objective is to determine the upper
bound of T∗

E

T∗
I

, a.k.a., deadline extension ratio.
We partition the situation that Algorithm 1 would

face to two categories, where r(∗)E refers to the optimal
resource allocation with the constraint (4) (unlike the
notation r∗E):

• r∗E(ti) = r(∗)E (ti).

• r∗E(ti) ̸= r(∗)E (ti).
The first situation indicates that in terms of the skewed

estimation of workload ratios, all the resource shares
calculated by the initial CO-STEP in Algorithm 1 are
always no greater than the corresponding capacities.
That is, it is equal to the situation with the assumption
that Inequality (18) holds.

r(∗)E (ti) ≼ a(ps) (18)

In contrast, the second one means that the initial CO-
STEP cannot fulfill the above condition, and the optimal
allocation cannot be found unless a few more adjustment
steps (line 5∼8 of Algorithm 1).

As follows, we will first derive task ti’s execution time
upper bound for the first category (i.e., Theorem 3), and
then discuss the upper bound (i.e., Theorem 4) for the
more generic case including the second category.

Theorem 3: Given a submitted task ti with a prede-
fined deadline D(ti), a candidate execution node ps with
unbounded resource capacity and a resource price vector
(denoted b(ps)), and a skewed workload vector l′(ti)
subject to Inequality (16), then the bound of execution
time must satisfy Inequality (19), under the resource
allocation r(∗)E .

1

β
·D(ti) ≤ T

(∗)
E (ti) ≤

1

α
·D(ti) (19)

Proof:

T
(∗)
E = θ

R∑
k=1

lk
r
(∗)
Ek

= θ
R∑

k=1

lk(
θ
D

R∑
i=1

√
l′ibi

)√
l′
k

bk

=

 D
R∑

i=1

√
l′ibi

 R∑
k=1

lk
√
bk√
l′k

≤ D√
α
· 1√

α
·

R∑
k=1

√
lkbk

R∑
i=1

√
libi

= D
α

The key of the above proof is based on the Inequality
(16). Similarly, According to Inequality (16), we can also
derive T

(∗)
E ≥ D

β .
Accordingly, Inequality (19) holds. It is easy to see that

Inequality (19)’s bound is tight. Considering such a case:
∀k, l′k(ti)=αlk(ti), then T

(∗)
E will be equal to D

α .
Theorem 4: Given a submitted task ti with a prede-

fined deadline D(ti), a candidate execution node ps
with a limited available resource vector (a(ps)) and price
vector b(ps), and a skewed workload vector l′(ti) subject
to Inequality (16), if Inequality (14) holds, then under the
resource allocation r∗E , the bound of execution time must
conform to Inequality (20).

1

β
·D(ti) ≤ T ∗

E(ti) ≤
1

α
·D(ti) (20)

Proof: Without loss of generality, we denote Ω to be
the set of resource dimensions accumulated by Line 5 of
Algorithm 1, and the corresponding dimensions’ indexes
are 1, 2, · · ·, |Ω|. That is, r∗1=a1, r∗2=a2, · · ·, r∗|Ω|=a|Ω|,
while r|Ω|+1<a|Ω|+1, · · ·, rR<aR. Hence, we can get the
following equation.

T ∗
E = θ(

∑|Ω|

i=1

li
ai

+
∑R

i=|Ω|+1

li
r∗Ei

) (21)

We could further prove the Inequality (20) as follows.

7

T ∗
E = θ

|Ω|∑
i=1

li
ai

+ θ
R∑

k=|Ω|+1

lk
r∗Ek

= θ
|Ω|∑
i=1

li
ai

+ θ
R∑

k=|Ω|+1

lk

√
bk
l′
k

θ

D−θ
|Ω|∑
i=1

l′
i

ai

R∑
i=|Ω|+1

√
l′ibi

= θ
|Ω|∑
i=1

li
ai

+
R∑

k=|Ω|+1

(
D−θ

|Ω|∑
i=1

l′i
ai

)
·lk
√

bk
l′
k

R∑
i=|Ω|+1

√
l′ibi

≤ θ
|Ω|∑
i=1

li
ai

+

(
D − θ

|Ω|∑
i=1

l′i
ai

)
R∑

k=|Ω|+1

lk

√
bk
αlk

R∑
i=|Ω|+1

√
αlibi

= θ
|Ω|∑
i=1

li
ai

+ 1
α

(
D − θ

|Ω|∑
i=1

l′i
ai

)
≤ D

α + θ
|Ω|∑
i=1

li
ai
− θ

α

|Ω|∑
i=1

αli
ai

= D
α

The key of the above proof is based on the Inequality
(16). Similarly, According to Inequality (16), we can also
derive T ∗

E ≥ D
β . Hence, Inequality (20) holds.

When Ω is empty, the lower bound & upper bound
of Inequality (20) can be reached as the upper bound &
lower bound of Inequality (16) are met respectively.

Remark: Let us review the Theorem 4 and discuss
its significance. Inequality (20) implies that task ti’s
execution time based on the optimal resource allocation
of Algorithm 1 under inaccurate workload ratios has an
upper bound, which is only determined by the lower
bound of the inaccurate ratio α. In principle, by lever-
aging this theoretical result, we can always provide the
strict guarantee for user-preset deadline even with the
wrong prediction of task’s property, as long as there are
relatively sufficient resources. In fact, what we need to
do is just setting a stricter deadline D′ according to the
Formula (22) and preforming the Algorithm 1 based on
D′ instead of D. Then, the user task’s deadline will be
strictly limited under its expected value D even though
the workload ratio information is inaccurate (s.t. Inequal-
ity (16)). On the other hand, existing workload prediction
work can be used to support how to determine the value
of α. For example, the polynomial regression method
[16] can bound the prediction error in 10% (i.e., α=0.1).

D′ = α ·D (22)

5 PERFORMANCE EVALUATION

5.1 Experimental Setting

We implement a web service based prototype that can
compute a set of combined matrix-operations. Each ma-
trix operation is called by some user task through a
web service API and each task is executed in a VM
container. Our algorithm is evaluated on such a real
cluster environment. There are 10 physical nodes in
the cluster, each owning 2 quad-core Xeon CPU E5540
(i.e., 8 processors per node) and 16G of memory. There
are 60 VM-images (centos 5.2) kept by Network File
System (NFS), so 60 VM-instances will be created at the
bootstrap before our experiment. XEN 3.1 [17] serves

as the hypervisor/VMM on each node and dynamically
allocates various CPU speeds (or capabilities) to the VM-
instances at run-time using credit scheduler.

Users can submit their computation request by editing
their mathematical formulas. In our experiment, we
make use of ParallelColt [18] to perform math com-
putations, each consisting of a partially-ordered set
of operations. ParallelColt [18] is such a library that
can effectively calculate complex matrix-operations like
matrix-matrix multiply, in parallel via multiple threads.
Here is an example computation request, which is sub-
mitted as Solve((Am×n·An×m)k,Bm×m). Such a compu-
tation task can be split into three steps (or subtasks)
of different matrix-operations: (1) matrix-multiplication:
Cm×m=Am×n·An×m; (2) matrix-power: Dm×m = Ck

m×m;
(3) Least squares solution of D·X=B based on QR-
Decomposition: Solve(Dm×m, Bm×m). In our benchmark,
we simulate a large number of user requests, each
of which is composed of 3∼15 sub-tasks. Each sub-
task is constructed of three typical matrix-operations
(i.e., matrix-multiply, matrix-power, and QR-matrix-
solving(least-square)) with various parameters assigned.
That is, each request contains many subtasks that are
randomly selected from the above three types. We eval-
uate our algorithm under different competitive situation
with different number (1∼40) of tasks submitted simul-
taneously, thus there are 40 cases for each experiment
which has 820 submitted tasks in total as observed.

In our system, each matrix-operation’s workload is
estimated based on the historical tracing records. The
workload prediction formula is shown in Equation (23),
where j denotes the number of processors and T (opi,j)
indicates the execution time of running the matrix oper-
ation (denoted opi) on j cores.

li =
1

8

∑8

j=1
(j · T (opi, j)) (23)

Each user request (denoted as task ti) is assigned with
a deadline, which is a random value in [18 ·T1(ti),T1(ti)],
where T1(ti) means the estimated execution time when
running the task ti on a particular core. Based on our
experiment, the three matrix operations on one core
will cost from 1 second to 1206 seconds as shown in
Table 1, which implies a quite heterogenous nature.
In Table 1, M , N , P refers to the matrix scale in the
matrix-matrix-multiply and QR-Decomposition Solving,
and m indicates the value of exponent in the matrix-
power computation. Users’ prices of running the three
individual matrix-operations are set to 1,2,3 respectively.

TABLE 1: Workload of Typical Matrix Operations (seconds/core)
Matrix-Matrix-Multiply QR-Decom. Solving Matrix-Power

M N P load M N P load M m load
500 500 500 1.08 500 500 500 1.39 500 10 3.65
1000 1000 1000 13.7 1000 1000 1000 6.1 500 20 4.2
1500 1500 1000 31 1500 1500 1000 10.5 1000 10 55
2000 1500 1000 40.2 2000 1500 1000 14.1 1000 20 67.2
2000 2000 2000 118 2000 2000 2000 27.9 2000 10 457.7
2500 2500 2500 242 2500 2500 2500 51 2500 20 1206

8

5.2 Experimental Results
We first present the prediction effect over the historical
records of the three matrix operations (as shown in
Fig. 3), in that the approximation ratio of our optimal
algorithm is based on the inaccuracy of the workload
predicted, according to the analysis in Section 4. From
this figure, we can clearly observe that the prediction
method we used can make sure that the lower bound of
the workload predicted (i.e., α’s value will be set close
to 0.7, where α is defined in Definition 2 and used in
Theorem 3 and 4) is always lower than the real workload
that is calculated after its execution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700 800

L
o

w
e

r
B

o
u

n
d

 V
a

lu
e

Task ID

Real Lower bound
Predicted Lower bound

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800

U
p

p
e

r
B

o
u

n
d

 V
a

lu
e

Task ID

Real Upper bound
Predicted Upper bound

Fig. 3: Workload Prediction. (a) Lower Bound. (b) Upper Bound.

We evaluate our designed algorithm with and without
the prediction-error-tolerant support. That is, the system
will test the Algorithm 1 with the tuned stricter deadline
(D′) or the original one (D). We use Deadline Extension
Ratio (DER) (defined as the ratio of task’s final execution
time to its deadline) to evaluate the statistical task exe-
cution lengths compared to their expected deadlines. We
run 40 separate cases each with different number (1∼40)
of tasks, and show the lowest/average/highest level of
DER for each case.

Fig. 4: Deadline Extension Ratio (DER). (a) D′ = D. (b) D′ = α ·D.

We first show the experimental result by using the
original deadline D (i.e., D′=D) in the algorithm. From
Fig. 4 (a), we see that the tasks’ execution times cannot be
always guaranteed to be executed within their deadlines
in the worst case, no matter how many tasks (1∼40) are
submitted. Specifically, even though the system avail-
ability is relatively high (e.g., there are only several
tasks submitted), the average value of deadline extension
ratio is nearly to 1 and its highest value in the worst
case is up to 1.2. This is mainly due to the inaccurate
workload prediction with about 30% margin of errors
as shown in Fig. 3. In comparison, Fig. 4 (b) shows the
deadline extension ratio when the deadline D′ is set to
a stricter deadline (α·D). When the number (denoted

by m) of tasks submitted scales up to 30, all tasks’
execution times can be kept nearly to about only 0.7
times as high as their preset deadlines (D) at the worst
situation (i.e., the highest level shown in the figure). With
further increasing number of the submitted tasks, tasks’
execution times cannot be always guaranteed because
of the limited resource capacities (or the higher level of
competitions on resources), but the mean level is still
kept remarkably lower than 1, which means that most
of the tasks can still meet the QoS (i.e., large majority
can be finished before deadlines). Note that there are
only 10 physical machines in our experiment but much
more than 10 tasks can be processed with guaranteed
deadlines, which indicates a remarkably high level on
service consolidation. This also implies a great potential
in improving resource utilization by taking advantage of
VM-multiplexing feature.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4

P

ro
b

a
b

ili
ty

 D
is

tr
ib

u
ti
o
n

(P
e
rc

e
n

ti
le

 o
f

#
 o

f
ta

s
k
s
)

Deadline Extension Ratio

Stricter-deadline-based Algorithm (D’=αD)

Original-deadline-based Algorithm (D’=D)

0.35

0.525

0.225
0.175

0.125

1.1
0

 0.2

 0.4

 0.6

 0.8

1

Fig. 5: Distribution of DER (the number of Tasks)

Fig. 5 presents the distribution of the deadline ex-
tension ratio (DER), in a competitive situation where
there are 40tasks submitted. We observe that the stricter-
deadline-based algorithm can more effectively limit the
majority tasks’ execution times to about 0.7 times as high
as the user-specified deadlines (i.e., the original ones),
but it may suffer from higher DER at the worst case.
In comparison, the majority of tasks (about 52.5%) un-
der the original-deadline-based algorithm are completed
within 0.95∼1.0 times of their deadlines, which still
conforms to the deadline-guaranteed requirement; there
are about 20% of tasks that would violate deadlines,
most of which (17.5%) are still finished within 1.05 times
of deadlines.

Finally, we evaluate the fairness of task processing in
the two cases, confirming the stability. Based on Jain’s
work [19], fairness index (higher value means higher
fairness) is defined as Equation (24) whose value ranges
in [0,1], where xi refers to the DER of task ti.

F (x) = (
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

(24)

We present the experimental results about the fairness
index of the DER in Fig. 6. As observed, the fairness
index is always kept over 0.99 for both cases under
the relatively uncompetitive situation (e.g., m≤30), and
still kept about 0.95 in the case with higher competition
(i.e., when m>30). Recall that there are only 10 physical
machines used for resource provisioning in our exper-
iment, which implies our solution’s allocation effect is

9

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

F
a

ir
n

e
s
s
 o

f
D

E
R

Number of Tasks

D’=αD

D’=D

Fig. 6: Fairness Index of DER

confirmed to be quite stable to any task’s execution
under such a dense server consolidation. In addition, the
main reason for the degradation of the fairness of DER in
the competitive situation is that the tasks with higher pri-
orities or the ones arriving earlier would be treated with
higher service level in our experiment, which would
definitely impact other lower-priority tasks’ execution
in the short-supply situation. In fact, guaranteeing the
higher-priority tasks’s QoS by sacrificing lower-priority
tasks’ benefit may also be considered a fairer treatment
in many scenarios. Hence, for different applications, we
can easily maximize the fairness level among all tasks
by assigning the adaptive values for α, which will be
further studied in our future work.

6 RELATED WORK

Traditional job scheduling [20] is often formulated as a
kind of combinatorial optimization problem (or queue-
based multi-processor scheduling problem [21], [22],
[12]), due to the non-guaranteed performance isolation
for multiple tasks running on the same machines. That
is, most of the existing deadline-driven task schedul-
ing solutions (from single cluster environment confined
in LAN [23], [24] to the Grid computing environment
suitable for WAN [25], [26]) are also strictly subject to
the queueing model under which a single machine’s
multiple resources cannot be further split to smaller frac-
tions at will. This will eventually cause the raw-grained
resource allocation, relatively low resource utilization
and sub-optimal task execution efficiency.

With the VM resource isolation technology being ma-
ture recently, it is viable to design more efficient re-
source allocation due to the fledged performance iso-
lation among VMs running on the same machines. X.
Meng et al. [27] proposed a VM multiplexing based
resource allocation approach, which can successfully
analyze the compatibility of any two different VMs (each
with an application running atop it) on the same physical
machines, and reschedule the combination of the VMs
to improve the overall performance. However, it cannot
guarantee high compatibility among more than two VMs
on the same machine. Q-Clouds [28] is another well-
known system which can realize high consolidation of
multiple VM-hosted applications, focusing on how to
prevent inevitable performance interference among VMs
from degrading user’s QoS or enhancing corresponding
users’ payment unexpectedly.

Compared to the above existing works about VM-
multiplexing resource allocation, our work aims to not
only confine tasks’ execution to be within their dead-
lines, but also minimize the payments for their users.
This work will definitely benefit and motivate many
Cloud users or service providers, who wish to minimize
the infrastructure cost with the guaranteed QoS, actually
already endeavored by many researchers. L. Wu et al.
[29], for example, proposed a SLA-based resource allo-
cation method, which is compatible to the heterogeneity
of infrastructure and adaptable to the dynamic change
of customer requests. It can maximize the profit of SaaS
providers by minimizing the humber of SLA violations
and the cost by reusing VMs. S. Chaisiri et al. [30]
also aim to minimize the provisioning cost incurred to
users by taking into account stochastic programming,
robust optimization, and sample-average approximation
together. M. Mao et al. [31], [32] present a Cloud auto-
scaling mechanism to automatically scale computing
instances based on workload information and perfor-
mance desire, also aiming to guarantee task’s deadline
with less payment. In comparison, our approach can be
fundamentally proved optimal via the convex optimiza-
tion theory, which we believe is a huge step forward
especially from the perspective of theoretical analysis.

Most of the existing theoretical researches on Cloud
computing [33], [34], [35] mainly focused on the rel-
atively ideal scenarios by assuming tasks’ workloads
can be accurately predicted, simplifying the resource
allocation problem. For example, J. Weinman [33] an-
alyzed the penalty functions working in the workload
aggregation and relative statistical effects, given a set
of fixed task workloads to be used, while V. Petrucci
et al. [34] proposed an optimization VM-based model
to minimize the power and management cost by as-
suming that application’s consumption can be predicted
precisely by monitoring system. Unlike these works, we
theoretically analyze the upper bound of task’s execution
time compared to its deadline and that of user-specified
payment to the precise-prediction based result. By taking
advantage of the derived bounds and approximation
ratio, we can more effectively guarantee user tasks’ QoS
in terms of their demands. To the best of our knowledge,
this is the first attempt to study how to minimize the
payment cost in the cloud system, which can also tolerate
the prediction errors of tasks’ properties.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel resource alloca-
tion algorithm for Cloud system that supports VM-
multiplexing technology, aiming to minimize user’s pay-
ment on his/her task and also endeavor to guarantee
its execution deadline meanwhile. We can prove that
the output of our algorithm is optimal based on the
KKT condition, which means any other solutions would
definitely cause larger payment cost. In addition, we ana-
lyze the approximation ratio for the expanded execution

10

time generated by our algorithm to the user-expected
deadline, under the possibly inaccurate task property
prediction. When the resources provisioned are relatively
sufficient, we can guarantee task’s execution time always
within its deadline even under the wrong prediction
about task’s workload characteristic. In the future, we
plan to integrate our algorithms with stricter/orignal
deadlines into some excellent management tools like
OpenNebula, for maximizing the system-wide perfor-
mance. Some queuing policies like earliest deadline first
(EDF) will be studied to further reduce user payment
especially in the short-supply situation. More complex
scheduling constraints like the compatibility and security
issue will also be taken into account.

ACKNOWLEDGMENTS

This research is supported by a Hong Kong RGC grant
HKU 7179/09E and a Hong Kong UGC Special Equip-
ment Grant (SEG HKU09).

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,

A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “Above the clouds: A berkeley view of cloud comput-
ing,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, Feb 2009.

[2] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner,
“A break in the clouds: towards a cloud definition,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2009.

[3] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New
Computing Infrastructure (The Morgan Kaufmann Series in Computer
Architecture and Design). Morgan Kaufmann, November 2003.

[4] J. E. Smith and R. Nair, Virtual Machines: Versatile Platforms For
Systems And Processes. Morgan Kaufmann, 2005.

[5] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
performance isolation across virtual machines in xen,” in Pro-
ceedings of the ACM/IFIP/USENIX 2006 International Conference on
Middleware (Middleware’06), New York, USA, 2006, pp. 342–362.

[6] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Di-
matos, G. Hamilton, M. McCabe, and J. Owens, “Quantifying
the performance isolation properties of virtualization systems,”
in Proceedings of the 2007 workshop on Experimental computer science
(ExpCS ’07). New York, USA: ACM, 2007.

[7] Amazon elastic compute cloud: on line at
http://aws.amazon.com/ec2/.

[8] D. Milojicic, I. M. Llorente, and R. S. Montero, “Opennebula: A
cloud management tool,” Internet Computing, IEEE, vol. 15, no. 2,
pp. 11 –14, march-april 2011.

[9] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2009.

[10] E. Imamagic, B. Radic, and D. Dobrenic, “An approach to grid
scheduling by using condor-G matchmaking mechanism,” in 28th
International Conference on Information Technology Interfaces, 2006,
pp. 625–632.

[11] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in
google compute clusters,” in Proceedings of the 2nd ACM Sympo-
sium on Cloud Computing (SOCC’11). ACM, 2011, pp. 3:1–3:14.

[12] H. Khazaei, J. V. Misic, and V. B. Misic, “Modelling of cloud
computing centers using m/g/m queues,” in ICDCS Workshops,
2011, pp. 87–92.

[13] Y. Wu, K. Hwang, Y. Yuan, and W. Zheng, “Adaptive workload
prediction of grid performance in confidence windows,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 7, pp.
925 –938, july 2010.

[14] S. Di, D. Kondo, W. Cirne,“Characterization and Comparison of
Cloud versus Grid Workloads,” in Proceedings of 14th Interna-
tional Conference on Cluster Computing (IEEE Cluster2012), 2012,
pp. 230–238.

[15] Q. Zhang, , J. L. Hellerstein, and R. Boutaba, “Characterizing
task usage shapes in google’s compute clusters,” in Large Scale
Distributed Systems and Middleware Workshop (LADIS’11), 2011.

[16] L. Huang, J. Jia, B. Yu, B.G. Chun, P. Maniatis, and M. Naik,
“Predicting Execution Time of Computer Programs Using Sparse
Polynomial Regression,” in 24th Conference on Neural Information
Processing Systems (NIPS’10). 2010, pp. 1–9.

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the nineteenth ACM symposium on
Operating systems principles (SOSP’03). New York, NY, USA: ACM,
2003, pp. 164–177.

[18] P. Wendykier and J. G. Nagy, “Parallel colt: A high-performance
java library for scientific computing and image processing,” ACM
Trans. Math. Softw., vol. 37, pp. 31:1–31:22, September 2010.

[19] R. K. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation and
Modelling. John Wiley & Sons, April 1991.

[20] C. Jiang, C. Wang, X. Liu, and Y. Zhao, “A survey of job schedul-
ing in grids,” in Proceedings of the joint 9th Asia-Pacific web and 8th
international conference on web-age information management confer-
ence on Advances in data and web management (APWeb/WAIM’07).
2007, pp. 419–427.

[21] P. Crescenzi and V. Kann, A compendium of NP optimization prob-
lems. [Online]. Available: ftp://ftp.nada.kth.se/Theory/Viggo-
Kann/compendium.pdf

[22] O. Sinnen, Task Scheduling for Parallel Systems (Wiley Series on
Parallel and Distributed Computing). Wiley-Interscience, May 2007.

[23] K. Ramamritham, J. A. Stankovic, and W. Zhao, “Distributed
scheduling of tasks with deadlines and resource requirements.”
IEEE Trans. Computers, vol. 38, no. 8, pp. 1110–1123, 1989.

[24] M. C. McElvany and P. D. Stotts, “Guaranteed task deadlines
for fault-tolerant workloads with conditional branches,” Real-Time
Systems, vol. 3, no. 3, pp. 275–305, 1991.

[25] L. Zhao, Y. Ren, and K. Sakurai, “A resource minimizing schedul-
ing algorithm with ensuring the deadline and reliability in het-
erogeneous systems,” in 25th IEEE International Conference on
Advanced Information Networking and Applications (AINA’11), 2011,
pp. 275–282.

[26] W. Chen, A. Fekete, and Y. C. Lee, “Exploiting deadline flexibility
in grid workflow rescheduling,” in 11th IEEE/ACM International
Conference on Grid Computing (Grid’10), 2010, pp. 105–112.

[27] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pen-
darakis, “Efficient resource provisioning in compute clouds via
vm multiplexing,” in Proceeding of the 7th international conference
on Autonomic computing (ICAC’10). ACM, 2010, pp. 11–20.

[28] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds : Man-
aging performance interference effects for qos-aware clouds,”
EuroSys2010, pp. 237–250, 2010.

[29] L. Wu, S. K. Garg, and R. Buyya, “Sla-based resource allocation
for software as a service provider (saas) in cloud computing
environments,” in 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID’11), 2011, pp. 195–204.

[30] S. Chaisiri, R. Kaewpuang, B.-S. Lee, and D. Niyato, “Cost mini-
mization for provisioning virtual servers in amazon elastic com-
pute cloud,” in 19th Annual IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS’11), 2011, pp. 85–95.

[31] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with
deadline and budget constraints,” in 11th IEEE/ACM International
Conference on Grid Computing (Grid’10), 2010, pp. 41–48.

[32] M. Mao and M. Humphrey, “Auto-Scaling to Minimize Cost and
Meet Application Deadlines in Cloud Workflows,” in International
Conference for High Performance Computing, Networking, Storage &
Analysis (SC’11), 2011, pp. 49:1–49:12

[33] J. Weinman, “Smooth operator: The value of
demand aggregation,” 2011. [Online]. Available:
http://joeweinman.com/Resources/Joe Weinman Smooth Operator

Demand Aggregation.pdf
[34] V. Petrucci, O. Loques, and D. Mossé, “A dynamic optimization

model for power and performance management of virtualized
clusters,” in Proceedings of the 1st International Conference on Energy-
Efficient Computing and Networking (e-Energy’10). New York, NY,
USA: ACM, 2010, pp. 225–233.

[35] F. Chang, J. Ren, and R. Viswanathan, “Optimal resource alloca-
tion in clouds,” IEEE International Conference on Cloud Computing,
pp. 418–425, 2010.

11

Sheng Di Sheng Di received his M.Phil de-
gree from Huazhong University of Science and
Technology in 2007 and Ph.D degree from The
University of Hong Kong in 2011. He is cur-
rently a post-doctor researcher at INRIA. Dr.
Di’s research interest involves optimization of
distributed resource allocation especially in P2P
systems and large-scale Cloud computing plat-
forms. His background is mainly on the funda-
mental theoretical analysis and practical system
implementation. Contact him at the Department

of Computer Science, The University of Hong Kong, Hong Kong,
sdi@cs.hku.hk.

Cho-Li Wang Cho-Li Wang received his Ph.D.
degree from University of Southern California
in 1995. Dr. Wang’s research interests include
multicore computing, software systems for Clus-
ter and Grid computing, and virtualization tech-
niques for Cloud computing. He serves on the
editorial boards of several international jour-
nals, including IEEE Transactions on Computers
(2006-2010), Journal of Information Science and
Engineering, and Multiagent and Grid Systems.
He is the regional coordinator (Hong Kong) of

IEEE Technical Committee on Scalable Computing (TCSC). Contact him
at the Department of Computer Science, The University of Hong Kong,
clwang@cs.hku.hk.

