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Abstract—Virtualization based cloud computing hosts net-
worked applications in virtual machines (VMs), and provides
each VM the desired degree of performance isolation using
resource isolation mechanisms. Existing isolation solutions ad-
dress heavily on resource proportionality such as CPU, memory
and I/O bandwidth, but seldom focus on resource provisioning
rate. Even the VM is allocated with adequate resources, if
they can not be provided in a timely manner, problems such
as network jitter will be very serious and significantly affect
the performance of cloud applications like internet audio/video
streaming. This paper systematically analyzes and illustrates
the causes of unpredictable network latency in virtualized
execution environments. We decouple the design goals of
resource proportionality from resource provisioning rate, and
adopt divide-and-conquer strategy to defeat network jitter
for VMs: (1) in VMM CPU scheduling, we differentiate self-
initiated I/O from event-triggered I/O, and individually map
them to periodic and aperiodic real-time domains to schedule
them together; (2) in network traffic shaping of VMs, we
introduce the concept of smooth window to smooth network
latency and apply closed-loop feedback control to maintain
network resource consumption. We implement our solutions
in Xen 4.1.0 and Linux 2.6.32.13. The experimental results
with both real-life applications and low-level benchmarks show
that our solutions can significantly reduce network jitter, and
meanwhile effectively maintain resource proportionality.

I. INTRODUCTION

Modern data centers are increasingly adopting virtualiza-

tion software for the purpose of server consolidation, flexible

resource management and better fault tolerance. By giving

virtual machines (VMs) the illusion of owning dedicated

physical resources, multiple VMs can share the single phys-

ical infrastructure. In order to guarantee the performance iso-

lation of co-located VMs, Virtual Machine Monitor (VMM,

also called hypervisor) such as VMware [1] and Xen [2],

orchestrates sophisticated resource controls to CPU, memory

and I/O allocations. The burgeoning of various types of

cloud applications such as audio/video streaming, interactive

online gaming and e-commerce, have fueled research interest

to focus on the design of virtualization-based service provi-

sioning with satisfactory Quality-of-Service (QoS) guaran-

tee. Since these applications are typically I/O intensive with

special requirements for I/O latency, arbitrary sharing of

resource infrastructure leads to significantly variable service

rate to VMs, and thus violates QoS metrics. Nowadays,

running forty to sixty VMs per physical host is not rare

[3], which means that on a physical machine with like eight

CPU cores, there will be as many as ten VMs sharing one

physical core on average. With hardware becoming more

and more powerful, the consolidation level will be much

higher, which makes the I/O problems more challenging.

This inevitable trend requires more effective I/O isolation

techniques to provide predictable I/O latency for VMs.

Cloud based media streaming services such as Amazon

CloudFront [4], use a global network of edge locations to

deliver streaming content. Researches [5], [6] have shown

that for media streaming, constant network delay with small

variation is tolerable and does not affect user-received media

quality. This is because the clients usually adopt buffer

mechanism to store certain amount of media data before

playing them. However, the network delay with large jitter

(variation in packet arrival time) will make the commonly

used buffer mechanism ineffective and significantly degrade

the received video quality. Research [7] has also pointed

out that for TCP protocol which adopts adaptive control

mechanism, large jitter in network latency can significantly

affect TCP performance, because TCP congestion control

algorithm heavily relies on network latency prediction to

control the TCP window size.

The current resource sharing methods for VMs mainly fo-

cus on resource proportionality maintaining, whereas ignore

the fact that I/O latency is mostly related to resource pro-

visioning rate. The resource isolation with only proportion

promise does not sufficiently guarantee performance isola-

tion, as resource provisioning with different time granularity

can significantly affect VM’s responsiveness to I/O. Even the

VM is allocated with adequate resources such as CPU time

and network bandwidth, large I/O latency will still happen

if the resources are provisioned at inappropriate moments.

So in order to achieve performance isolation, the problem

is not only how many resources each VM gets, but more

importantly whether the resources are provisioned in a timely
manner. In our research, we consider that the two design

goals should be orthogonal and do not interfere each other.

In this paper, we systematically analyze and illustrate the

causes of network latency in VM-hosted platforms, which is

jointly caused by VMM CPU scheduling and network traffic

shaping. According to different data deliver models, we

characterize VM’s I/O type as self-initiated I/O and event-

triggered I/O. To address the non-deterministic scheduling

delay in VMM CPU scheduling, we individually map the

2011 Fourth IEEE International Conference on Utility and Cloud Computing

978-0-7695-4592-9/11 $26.00 © 2011 IEEE

DOI 10.1109/UCC.2011.19

65



two types of VMs to periodic and aperiodic real-time

domains to schedule them together. Specifically, we propose

a double runqueue design for each physical CPU, which can

provide real-time scheduling and meanwhile maintain CPU

time proportional share. In network traffic shaping for VMs,

we introduce the concept of smooth window to mitigate

the network jitter caused by varied packet sending delays.

Meanwhile, in order to guarantee that network bandwidth

allocation is not violated, the closed-loop feedback control

theory is applied to adaptively control the packet sending

rate by dynamically adjusting the smooth window position.

The contributions of this paper are: (1) we systematically

address network jitter problem for VMs, which is quite

important to achieve satisfactory QoS for cloud applications

like media streaming; (2) Our solutions decouple the design

goals of resource proportional share from resource provi-

sioning rate; (3) we implement our solutions in Xen 4.1.0

and Linux 2.6.32.13. (4) we conduct meaningful evaluations

using both real-life applications and low-level benchmarks,

and the results prove the effectiveness of our solutions.

The remainder of this paper is organized as follows. In

Section II, we give a systematic analysis of network latency

in VM-hosted platforms, and in Section III, we present

our design and architectures. Implementation is discussed

in Section IV and evaluation is presented in Section V. The

related work is discussed in Section VI. Finally, we conclude

our research in Section VII.

II. SYSTEMATIC ANALYSIS OF NETWORK I/O LATENCY
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Figure 1. The path of network I/O from VM to outside clients

In this section, we take Xen [2] as an example, to

systematically analyze what factors in VM-hosted platforms

affect the network latency perceived by end users. In Figure

1, we illustrate the path that network I/O packets have

traveled from VM to end users. Specifically, the I/O from

VM will firstly be sent to its front-end driver when the

guest domain is scheduled, and then be handed over to

the corresponding back-end drivers in the driver domain

(domain 0), through event channel and shared memory

mechanism [2] provided by Xen. When the driver domain

is scheduled by VMM CPU scheduler, the I/O packets from

each VM are further transferred to the network traffic shaper

for rate limiting. It should be noted that both guest domains

and the driver domain suffer scheduling delays caused by

VMM CPU scheduler. If the I/O packet comes before the

VM is scheduled, it has to wait until the VM gets CPU

cycles. During the VM’s scheduling time slice, batch of

I/O packets can be handled. Since the driver domain acts

as the I/O proxy for all guest domains, only when the

driver domain is scheduled the traffic shaper inside it can

take effect. For each packet in network traffic shaper, if the

VM’s remaining network resources are enough, the packet

will be immediately delivered to the hardware network card

with almost no delay. Otherwise if the allocated bandwidth

has been consumed too fast by previous packets and the

remaining is not enough for the current packet, it will be

inevitably delayed to wait for future allocated resource.

It can be observed that to address I/O latency problem,

the strategy of divide-and-conquer should be adopted and

the solutions in both VMM CPU scheduler and network

traffic shaper are needed. From the perspective of VMM

CPU scheduler, the scheduling entity it faces is virtual CPU

(vCPU) and once the vCPU is scheduled, batches of I/O

packets can be handled immediately with almost no delay.

Therefore, the VM’s I/O latency is actually VM’s scheduling

delay. Since VMM CPU scheduler has no direct control on

I/O packets, it is infeasible to ‘smooth’ the latency. More

reasonably the scheduling latency should be ‘reduced’ in a

best-effort way or in the user-specified manner, because if

the latency can be reduced to a low level, the network jitter

will also be low. In network traffic shaper, the situation is

different in that it directly schedules network packets so it

can explicitly control the delay of each packet, thus it is

possible for us to apply smoothing policy.

A. Characterizing VM’s I/O type

In virtualized environment, the notifications from VMM

to VMs or between VMs are mostly delivered through

event mechanism. Xen adopts event mechanism to replace

hardware interrupt for asynchronous I/O delivering [2]. The

VM is marked with external event pending so it perceives the

waited I/O. VMM CPU scheduler also takes advantage of

event mechanism to make scheduling decisions. Xen adopts

boost mechanism [8] to accelerate I/O speed which favors

to schedule the domain that receives external events. This

works well for VMM to schedule the driver domain because

all I/O events must be delivered to the driver domain first

for proxy, no matter it is incoming I/O to guest domain or

outgoing I/O from guest domain. However, the vulnerability

of boost mechanism is that, not all I/O for guest domains are

event-triggered. In the following two subsections, we char-

acterize VM’s I/O into two types: external event-triggered

I/O and self-initiated I/O. We use real examples to illustrate

the rationality of this classification.

I/O Triggered by External Events. This type of I/O is

identified as that the end users are not only the I/O receiver

66



 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40  45

R
T

P
 m

e
tr

ic
 (

m
s
)

Time (s)

delta
jitter

(a) 1ms

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40  45

R
T

P
 m

e
tr

ic
 (

m
s
)

Time (s)

delta
jitter

(b) 10ms

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40  45

R
T

P
 m

e
tr

ic
 (

m
s
)

Time (s)

delta
jitter

(c) 20ms

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40  45

R
T

P
 m

e
tr

ic
 (

m
s
)

Time (s)

delta
jitter

(d) 40ms

Figure 2. The effect of different scheduling delays on self-initiated I/O

but meanwhile, they are also I/O initiator. A very good

example can be found in VM-hosted web servers. Each

time when the users want to obtain web pages, files and

etc, they will send out an HTTP request to the VM, and

once the request arrives the VM is notified by receiving

external events. In this way, the hypervisor knows that there

is pending I/O for VM, so it can take advantage of this

knowledge to schedule the VM as soon as possible. Once

the VM is scheduled, it can immediately satisfy the users’

I/O requests by sending back HTTP replies including the

specified files.

It is easy to control the latency of this I/O type because

it follows the “request-reply” model. The end users will

explicitly notify the VM that it needs to be scheduled, so

the I/O delay can be completely determined by controlling

the scheduling delay of the VM. From the perspective of

the VM, it needs to be scheduled in the real time way only

when the external events are received.

Self-initiated I/O from Inside VM. This type of I/O has

no external trigger source but must be issued in a timely

manner, thus we call it “self-initiated I/O”. Examples can be

found in applications for the purpose of controlling and mon-

itoring: the server periodically sends instructions/requests to

the clients to perform status polling, information updating

and etc. Since the actions of the clients are totally driven

by the server, if the instructions can not be issued by the

server within the expected period, the job of the clients will

inevitably be delayed. Another common example can be seen

in the applications built above UDP protocol, such as RTP1

based media streaming. The end users are only I/O receivers

and never explicitly tell the server which frames they cur-

rently need. But user-perceived video quality totally depends

on the way that media data is delivered by the server. If

the desired data frame cat not be received in the expected

moment, the QoS and user experience will be seriously

affected. Unlike the I/O triggered by external events, this

type of I/O is actually self-triggered from inside VM. The

VMM CPU scheduler has no knowledge of when the VM

should serve the clients, but the user-perceived I/O latency

completely relies on when the VM is scheduled. If the VM

yields the CPU time (the idle process in guest operating

system), it can only rely on system virtual interrupts (such

1RTP protocol: http://www.ietf.org/rfc/rfc3550.txt

as VIRQ TIMER in Xen) to make the VMM CPU scheduler

aware that it needs to be scheduled again.
To illustrate and verify the effect of different scheduling

delays on self-initiated I/O, we use RTP video streaming as

a case for evaluation. Since RTP streaming data are UDP

packets and no external events from clients are involved

during streaming period, it is typically self-initiated I/O. The

VM runs alone on a dedicated physical core so that it owns

the whole CPU cycles of that core. In each test, when the

VM voluntarily yields CPU time, we activated it again after

every 1ms, 10ms, 20ms and 40ms respectively, as shown in

Figure 2. During all four tests, the VM only consumes about

60% CPU time. Experimental results show that even the VM

is provided with enough CPU resource, if the CPU cycles

are not provisioned in a timely manner, the I/O performance

will also be significantly affected.

B. The Deficiency of Xen’s CPU Scheduler
In Xen’s credit scheduler, it introduces a boost mechanism

[8] to improve the I/O performance. The basic idea is to

temporarily give the vCPU that receives external events a

BOOST priority with preemption, which is higher than other

vCPUs in UNDER and OVER state. However, the current

implementation sets the limitation that the vCPU is boosted

only when it is in block state and has not used up its credits.

This is because it assumes that the I/O intensive VMs usually

consume little CPU time and stay in block state most of

time. The assumption may hold in process scheduling in

traditional operating system, but may not always be true in

virtual machine scheduling.
With applications encapsulated in VM, more than one

process/thread exist in guest operating system. Take stream-

ing application for example, one I/O bound thread is re-

sponsible for sending data frames and consumes little CPU

time, meanwhile another thread performs encoding/decoding

functionality and is CPU bound. So from the perspective of

VMM CPU scheduler, the VM is both I/O intensive and

CPU intensive. It is very possible that the vCPU is already

in runqueue when I/O events arrive. In this case, the events

can be handled only when the vCPU gets next scheduled,

resulting in increased response time. Besides, when the VM

yields the CPU time it may have used up its credit. Since the

blocked VM stops earning credits, it may not get boosted due

to credit shortage when it receives I/O events. It is not fair

67



because the VM voluntarily yields CPU time in sacrifice of

its own share, thus it should be compensated when it needs

CPU cycles next time. Therefore, even for event-triggered

I/O, the original CPU scheduler can not effectively schedule

the VM to serve it, let alone self-initiated I/O.

C. Latency Caused by Network Traffic Shaper

In order to avoid performance interference among co-

located VMs which share the same network resource, and

also fit the pay-as-you-go model of cloud computing, the

network traffic shaping (rate limiting) is widely adopted

to control the consumed network bandwidth of each VM.

However, traffic shaping is always achieved by delaying

packets, which has significant effect on user-perceived net-

work latency. Xen implements token bucket algorithm [9] to

perform rate limiting among VMs.

packet delay

Packet

arrives

Packet

is issued

wait wait wait wait

credit is 

replenished

Time

Time

Figure 3. The network packet delay in token-bucket traffic shaping

As shown in Figure 3, token bucket algorithm works in the

way that if the remaining tokens (credits) are enough to send

the current packet, the packet will be issued immediately

without delay. Whereas if the tokens are in lack, the packet

has to be postponed for certain time to wait for tokens to be

replenished. The major disadvantage is that it is bandwidth-

oriented but not packet-oriented, which means that it works

well in bandwidth maintenance but has no guarantee for the

delay of each packet. This could cause large variation in

network latency and thus leads to network jitter.

III. PROPOSED SOLUTION

We introduce our new resource isolation methods, which

decouple the design goal of resource provisioning rate from

resource proportionality. Our approach is combined with two

components which work together to smooth the network la-

tency. In VMM CPU scheduler, we map the event-triggered

I/O domain to aperiodic domain and map self-initiated I/O

domain to periodic domain, and schedule them together in

a real time way. In network traffic shaper, we introduce

smoothing window to control the delay of network packets

and apply closed-loop feedback control theory to adaptively

adjust smoothing window to limit bandwidth consumption.

A. Credit-Independent real time CPU Scheduling

As explained in Section II A, for event-triggered I/O, the

VMs need to be scheduled in the real-time way only when

the external events are received, so we map this type of VM

to aperiodic domains; for self-initiated I/O, the VMs have

no external notification for scheduling but they must also be

scheduled in the real-time way, therefore they are mapped

to periodic domains, which means that the scheduler will

periodically wake them up to serve I/O.

vCPU 3
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Figure 4. The double runqueue design for per physical CPU core

We introduce the double-runqueue design for each physi-

cal CPU core, as shown in Figure 4. EDF (Earliest Deadline

First) runqueue is responsible to satisfy real-time VMs,

sorted by their vCPUs’ deadlines. Credit runqueue takes

the role to maintain CPU time proportionality, sorted by

their remaining credits. For periodic domains, they can stay

in both EDF runqueue and Credit runqueue. For aperi-

odic domains, only when external events are received they

are considered as real-time domains and can enter EDF

runqueue. Otherwise, they are regarded as non-real-time

domains and can only stay in Credit runqueue. In order to

avoid that the credit consumption of EDF-vCPUs affect the

CPU time proportionality, the vCPUs from EDF runqueue

are assigned with small time slice whereas the VCPUs from

Credit runqueue will get long time slice. Since we allow the

real-time vCPUs to preempt the others, the length of time

slice that each vCPU receives will not affect the scheduling

latency of real-time domains.

Each physical CPU runs a thread to periodically poll the

vCPUs’ deadlines in EDF runqueue. If the first vCPU’s

deadline has reached, it will immediately preempt the current

running vCPU. It is possible that the real-time vCPU is

picked before its deadline from the Credit runqueue, in that

case after the vCPU is descheduled, it will be re-inserted

into EDF runqueue with a new deadline labeled.

Credit Reservation for I/O. As analyzed in section II B,

a very important cause of non-deterministic I/O latency is

that the VM can not be scheduled to serve I/O due to credit

shortage. In guest operating system, I/O bound processes

usually consume little CPU time and have higher priority

than CPU bound processes. But if we simply allow all credits

consumed by its CPU bound processes and make the VM

in the situation of credit shortage, even when the external

events come, they can not be handled by I/O processes

because the VM can not be scheduled by VMM.

In order to defeat the possible credit shortage which

may prevents the VM from serving the external events,

we propose a credit reservation mechanism. Each VM will

reserve certain amount of credits within the credit accounting

period, and these credits can only be used when the VM

receives I/O events in block state. To guarantee that CPU

time proportionality is not affected, if the VM does not use
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up its reserved credits in the current accounting period, the

remaining credits will be added to its next accounting period.

B. Domain Placement Policy

Since both I/O requests from guest domains and I/O

replies to guest domains must traverse the driver domain, the

scheduling delay to the driver domain has much more serious

effect on the I/O latency, compared with the scheduling

delay of guest domains. The negative effect of driver domain

scheduling on I/O latency has been pointed out in [8], [10]

and [11]. We adopt the similar approaches and propose

a domain placement policy for multi-core platform. We

classify the domains as three different types: the driver

domain, real-time guest domains and non-real-time guest

domains. First, the driver domain can preempt any other

domain but can not be preempted by the others. Second, real-

time guest domains can not reside with the driver domain

on the same physical CPU core, so as to avoid competition

for scheduling opportunities.

C. Latency Smoothing in Network Traffic Shaping

As explained in Section II C, the original token-bucket

algorithm mainly focuses on bandwidth maintaining, regard-

less of the delays of network packets. The minimum packet

delays can be zero and the maximum delay can be as high as

replenishing period, which cause very large network jitter.

Smooth Window and Feedback Control. To guarantee

that the network delay does not largely vary, the smooth
window w = [dmin, dmax] is introduced in our design. The

imposed delay value di on each packet Pi, must be within

the range of smooth window: di ∈ w. We convert discrete

packet flow into continuous stream flow in the flowing way:

for each packet Pi of size si, the equivalent credit consuming

rate ri =
si
di

, thus ri ∈ [ si
dmax

, si
dmin

]. So in order to guarantee

that the bandwidth consumption does not exceed the limit,

the average credit consumption rate must be no more than

the credit replenish rate (derived from bandwidth allocation).

However, due to unpredictable characteristics of bypassing

packages (e.g. varied packet size and packet arriving speed),

it is very hard to rule the relationship between package’s de-

lay and the credit consumption rate. If the packets are issued

too fast with low delays, the high credit consumption rate

will violate bandwidth allocation; whereas if they are issued

too slowly with high delays, it will result in low bandwidth

utilization. Therefore, to dynamically tune packets’ delay

level and the credit consumption rate, we adopt closed-loop

feedback method [12] to construct a Proportional-Integral-

Derivative (PID) controller, as illustrated in Figure 5.

The controller measures the error e(t) between the con-

sumed credit and allocated credit (set point). The propor-

tional part reacts to the current value of the error, the

integral part accounts for the recent history in error, and the

differential part calculates the recent change in error. The

weighted sum of these values is used as control input to

adjust the position of smooth window (w = [dmin, dmax]).
Specifically, during each window adjusting interval, we first

use a pure proportional controller (P controller) to perform

a raw feedback control on the credit consumption rate: if the

current consumed credit level is lower (greater) than the set

point, the package’s delay will be set to the dmax (dmin).

In this way, the packets’ delays won’t largely vary since

they are all within the smooth window range. However, such

a raw adjustment may introduce overshoot (e.g. oscillation

of credit level) in the long term. In next adjusting period,

the smooth window position will be automatically adjusted

according to the credit deviation level from the set point of

last period. Therefore in general, the feedback controller cor-

rects the credit over-consumption when there is a sustained

positive error and vice versa.

Allocated

credit

Error

(set point)

Consumed

credit

feedback

_

+

Delay

controller
( )

P
K e t

* ( )
I

K e t dt

( ) /
D

K de t dt

( )e t
Smooth Window

adjusting

Figure 5. Closed-loop feedback control in network traffic shaper

IV. IMPLEMENTATION

Our VMM CPU scheduler is implemented in Xen 4.1.0.

We firstly extend Xen tools to allow users to specify real-

time domains with desired deadline requirements in VM

configuration file. The vCPUs in EDF runqueue are sorted

by their deadlines and likewise in Credit runqueue, they are

sorted by the remaining credits. Each physical CPU involves

a timer to periodically check the first vCPU’s deadline in

EDF runqueue. The timer period is currently set at 0.5ms so

the scheduling error of each real-time domain won’t exceed

0.5ms. In order to avoid that the scheduling behavior of EDF

runqueue affects CPU time proportionality, each vCPU from

EDF runqueue will receive only 0.5ms time slice while the

vCPUs from Credit runqueue will receive 30ms time slice.

Since we allow the EDF-vCPU to preempt the current vCPU,

a long time slice for Credit runqueue won’t cause scheduling

delay for real-time domains. The credit accounting algorithm

is also modified to allow each real-time domain to reserve

certain amount of credits for I/O, under the circumstance

that external events arrive when they are in block state. The

original load balancing mechanism is still kept to distribute

vCPUs across all available physical CPU cores.

The closed-loop feedback controller for network traffic

shaping is implemented in Linux 2.6.32.13. The tick rate HZ
in Linux kernel is modified from 100 to 1000, because with

HZ set at 100 by default, the timer precision of jiffies
is only 10ms which is too coarse to control the delay of

network packets. The smooth window size and window

adjusting interval are two tunable parameters, and choosing

values for them is actually the tradeoff between latency
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Figure 6. The effect of our VMM CPU scheduler on RTP video streaming

smoothing level and bandwidth maintaining accuracy. In our

current implementation, we set the window size to be 3ms

with window adjusting interval of 1 second, which seem to

work well for most cases in practice.

V. PERFORMANCE EVALUATION

The server we use to host virtual machines is equipped

with two quad-core Intel Xeon 5540 2.53GHz CPUs, and

16GB physical memory. Several testing clients are connected

with the server through a Gigabit Ethernet switch. For self-

initiated I/O evaluation, we downloaded an advertisement

video from YouTube.com as the example, and then use VLC

media player2 to deliver the streaming data from hosted

VM to the testing clients, based on RTP protocol. The

network packets are decoded using Wireshark3 for RTP

stream analysis. For event-triggered I/O evaluation, we use

ApacheBench, a web site stress test benchmark, to measure

HTTP service quality. Besides the two application-level

benchmarks, we also use low-level benchmarks Ping and

Netperf in the evaluation.

A. VMM CPU Scheduling on Controlling I/O Latency

We first evaluate the effect of our new VMM CPU

scheduler on reducing latency of self-initiated I/O. In Figure

6, VM 1 runs as streaming server with two CPU intensive

VMs (VM 2 and VM 3) on the same physical core. Since

when VM 1 runs alone, it consumes about 55% CPU

time during streaming period. So in order to avoid that

the streaming quality will be affected by insufficient CPU

cycles, we allocate 60% CPU time to VM 1. The remaining

40% CPU time is evenly allocated between VM 2 and VM

3. With Xen’s default CPU scheduler in Figure 6 (a), it can

be seen that after VM 2 starts, the RTP metric of VM 1 is

significantly degraded; after VM 3 starts, the negative effect

is even more serious. For comparison in Figure 6 (b), (c)

and (d), we use our new CPU scheduler and set VM 1 to be

periodic real-time domain with deadline set at 3ms, 5ms and

8ms respectively. During the whole video streaming period,

VM 1 runs along with VM 2 and VM 3. It can be observed

that the performance of VM 1 only depends on user-defined

deadlines, and is not affected by co-located VMs.

2VLC: http://www.videolan.org/
3Wireshark: http://www.wireshark.org/

We then evaluate the latency behaviors of event-trigger

I/O under our new VMM CPU scheduler. We set up the

stress test by individually running the testing VM together

with five, three and one CPU intensive VMs on one physical

CPU core. It should be noted that the testing VM is also CPU

intensive. On the client side, we use ping with 0.1s interval

to measure the ICMP latency to the testing VM. With Xen’s

default CPU scheduler in Figure 7 (a), the ICMP latency

is significantly affected by the number of co-located VMs.

For example, with 5 VMs running together with the testing

VM, the ping latency can be as high as 150ms. This can be

explained that Xen’s CPU scheduler uses 30ms time slice,

and with six VMs co-running on the same CPU core, the

maximum waiting time of each VM is 5 × 30 ms. With

our new VMM CPU scheduler in Figure 7 (b), we set the

testing VM to be aperiodic real-time domain with deadline

set at 3ms, 5ms and 8ms respectively. The testing VM also

runs together with five CPU intensive VMs on one physical

core. Results show that the network latency can be well

controlled under the user-defined deadline requirements, and

is not affected by co-located VMs.
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Figure 7. The effect of our VMM CPU scheduler on ping

B. Feedback Control on Smoothing I/O Latency

To evaluate the effect of our feedback control on reduc-

ing video streaming jitter, we use a 256MB VM as the

streaming server which runs alone at a dedicated physical

core. The VM’s network bandwidth was set at 2Mb/s, which

is consistent with the output rate of the video we use.

Figure 8 (a) shows that with Xen’s default setting which

replenishes credit to VM at every 50ms, the RTP metric

of VM shows very high jitter. Comparably in Figure 8 (b),

since our feedback control method with smooth window can

automatically smooth the delay of network packets, the RTP

performance is significantly improved.
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Figure 8. Feedback control on smoothing RTP video streaming jitter

We also evaluate the smoothing effect on HTTP request

waiting time in Figure 9. In client side, we use ApacheBench

to send 2000 HTTP requests to the VM for a 8KB file. The

experiment lasted for about 70 seconds. Results in Figure 9

(a) shows that with Xen’s default setting, the waiting time

jitters significantly which could range from 0ms to 50ms.

While with our solution in Figure 9 (b), the waiting time

can be greatly smoothed.
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Figure 9. Feedback control on smoothing HTTP requests waiting time

Figure 10 shows the auto-adjustment of smooth window

position during the above experiments. With feedback con-

trol, the smooth window periodically slides itself in an

automatic and adaptive way, to provide smoothed latency

and meanwhile maintain bandwidth consumption.
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Figure 10. Automatic adjustment of smooth window position

C. Resource Proportionality Maintaining

We use Netperf to evaluate the effect of VM network

rate limiting of our feedback control in Figure 11. The

testing VM is allocated with 4Mbps, 8Mbps, 16Mbps and

32Mbps respectively. Each test lasted for 60 seconds and

were conducted for three times to get the average value.

Experimental results with both TCP and UDP tests show

that, our solution has very effective control on bandwidth

shaping and meanwhile achieve high resource utilization.

 0

 10

 20

 30

 40

 50

4M 8M 16M 32M

M
b
p
s

TCP_STREAM

allocated
measured

(a) TCP bandwidth test

 0

 10

 20

 30

 40

 50

4M 8M 16M 32M

M
b
p
s

UDP_STREAM

allocated
measured

(b) UDP bandwidth test

Figure 11. Network bandwidth shaping test

In Figure 12, we evaluate CPU time proportionality of our

VMM CPU scheduler. On a single physical core, we firstly

booted three VMs (VM1, VM2 and VM3), and after a short

while we individually started another two VMs (VM4 and

VM5). VM1 and VM2 were then stopped after running for

certain time. All VMs are CPU intensive and allocated with

the same relative CPU proportion. Results show that our

CPU scheduler performs fairly on allocating CPU time.
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VI. RELATED WORK

Significant effort has been paid to address the I/O perfor-

mance of virtual machines in recent years. Some researchers

propose task-level solutions to map I/O bound tasks of VM

directly to physical CPU, such as [13], [14]. The drawback

is that additional hypercalls are needed and users have to

explicitly tell VMM which tasks they want to map. Our

approach is non-intrusive and do not need extra modification

to guest OS. Besides, The philosophy of our method is

different from other real-time schedulers such as [8] and

[15]. First, instead of scheduling real-time domains in an

best-effort way, we allow users to specify different level of

real-timeness. Second, our solution decouples the goal of

CPU time proportionality from CPU scheduling rate.

Resource sharing approaches can be classified as work-

conserving mode and non-work-conserving mode. Work-

conserving approaches allow clients to consume more that

their allocations when there are idle resources, thus improve

the resource utilization. Examples can be found in SFQ [16],

WFQ [17] and mClock [18]. However, the major disadvan-

tage is that it may cause large variation in VM’s received re-

source allocation and introduces non-deterministic factor to

network behavior. Non-work-conserving solutions force the
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client to consume no more than its allocation even there are

idle resources, such as leaky-bucket [19] and token-bucket

[9] algorithm. Due to the predictable network bandwidth of

non-work-conserving approaches, they are largely adopted

in real-life systems. For instance, Linux implements Hier-

archy Token Bucket (HTB) algorithm and Xen also adopts

token-bucket algorithm to achieve rate limiting. For latency

smoothing in network traffic shaping, there is comparatively

lesser work. Some solutions use special hardware such as

SR-IOV devices [20] or assign the VM dedicated device [21]

to guarantee its I/O performance. However, these approaches

are expensive and complicate the common functionalities

such as live migration and checkpointing as sacrifice.

VII. CONCLUSIONS

Our paper addresses the network jitter problem in vir-

tualized execution environment. We adopt a systematic

analysis approach to identify the causes of network jitter.

Our solutions decouple the design goals of resource pro-

portionality and resource provisioning rate. We implement

our solutions in Xen and Linux driver domain. Although

the implementation is done in para-virtualization (PV), our

solutions are generic and can be also applied to hardware

virtualization (HVM) in that: first, VMM CPU scheduler

treats HVM guests as the same as PV guests; second,

the feedback control method in network traffic shaper can

be easily extended to other similar network management

utilities such as Linux’s HTB and Open vSwitch [3]. The

evaluations with both application-level benchmarks and low-

level benchmarks prove the effectiveness of our solutions.
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