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Abstract
To construct a large commodity cluster, a hierarchical

network is generally adopted for connecting the host ma-
chines, where a Gigabit backbone switch connects a few
commodity switches with uplinks to achieve scaled bisec-
tional bandwidth. This type of interconnection usually re-
sults in link contention and has congestion developed at
the uplink ports. Moreover, the non-deterministic delays
on scheduling communication events in clusters accelerate
the building up of congestion amongst these uplink ports,
which lead to severe packets drop and hinder the overall
performance. In this paper, we focus on the practical design
of high-speed complete exchange algorithm on a commod-
ity cluster interconnected by a hierarchical Ethernet-based
network. With the use of some architectural characteris-
tics in optimizing the performance of a complete exchange
algorithm, we introduce a congestion control mechanism
- global windowing that monitors and regulates the traffic
load, together with a permutation scheme - reorder scheme
that effectively alleviates the congestion problem. We eval-
uate the modified algorithm and compare its performance
with the original algorithm and a well-known algorithm in
a PC cluster connected by various types of switches, includ-
ing Gigabit Ethernet, input-buffered and shared-memory
Fast Ethernet switches.

1. Introduction

Commodity supercomputing is one of the targets in
building clusters. Being as one form of message pass-
ing machines, the performance of clusters depends largely
on the performance of the interconnection network. With
the introduction of low-latency communication support [2,
3, 8], software overheads induced in communication have
been significantly reduced. This allows applications to push

�This research was support by Hong Kong Research Grants Council
grant HKU 0000/000.

data faster into the network, as well as users have more con-
trol over communications, i.e. users can be more conscious
on when and where those communications are taking place.

However, having the capability to drive the network
in higher speed does not guarantee to achieve good per-
formance. Contention problems can happen in host node,
network link and switch, which adversely affect the overall
performance. Node contention happens when multiple data
packets are contended for the receive channel of a node,
while link contention occurs when two or more packets
share a communication link. And switch contention is in-
duced by the unbalance of traffic flow through the switch,
which results in overflow of the switch buffer.

Complete exchange, also named as all-to-all personal-
ized communication, is a typical example for showing how
contention problems are crucial to the overall performance.
This is a collective operation that takes place with a set of
processes, and each process has a distinct set of data to
transmit to every other process in the system. It is also
known to have the most stringent communication require-
ment imposed on the interconnection network. A common
approach to avoid contention loss is to design a communica-
tion schedule that prevents building up of congestion, which
results in packet drop. However, some contention-free
schedules demand on using a tightly synchronized scheme,
which brings on another type of overheads, the synchroniza-
tion overhead. In cluster environment, due to the distributed
nature, it is difficult to impose such a lock-step schedule.
For example, cluster node has its own local clock and pro-
cess scheduler, and there is no coordination in scheduling
those communication events. In addition, most of the syn-
chronization operation is implemented by software means.
Thus, this further impedes on normal data communication
and contends for network resources.

In this paper, we propose an efficient communica-
tion schedule for running the complete exchange opera-
tion on clusters, which are interconnected by a hierarchical
Ethernet-based network. The key feature of this communi-
cation scheme is the proactive approach in handling conges-



tion. We try to avoid contention in the first place by having
a node and switch contention-free permutation. If conges-
tion does develop, the communication scheme regulates the
traffic to avoid further building up of congestion.

This congestion control scheme is different from tra-
ditional congestion control schemes. Conventional mech-
anisms for controlling congestion are based on end-to-end
windowing schemes [7], however, they are not suitable for
collective operations in high-speed networks. First, they are
usually reactive schemes. They probe for congestion sig-
nals, such as packet loss and timeout signals, and respond
by recovering the loss and regulating the traffic load to avoid
further loss. Inevitably, packets are lost and performance
suffers. Second, the feedback information from the network
is usually outdated due to the propagation delay, and hence,
any reactive action taken may be too late. Third, end-to-end
windowing only provides isolated information on individ-
ual connection. It lacks in a global picture of the network,
such as the number of traffic sources and the communica-
tion pattern in used. However, in cluster computing, the
traffic pattern is predictable in the case of collective opera-
tions on a bounded-size enclosed network.

Our complete exchange algorithm on hierarchical net-
work is derived from an algorithm, which is developed on
a theoretical non-blocking network [10]. By introducing a
global windowing concept to all participating nodes, they
are responsible to monitor and regulate the traffic load to
avoid congestion loss. Based on architectural features like
the network buffering capacity and the balancing of up-
stream and downstream flows, we derive the global win-
dowing scheme and the reorder scheme, which successfully
transform the algorithm to work efficiently on the hierarchi-
cal network.

The rest of the paper is organized as follows. Section 2
lays down the architectural characteristics of the Ethernet-
based hierarchical network, and define the problems associ-
ated with this type of network. In Section 3, we also provide
a simple abstract model of the network to aids our analysis.
Section 4 presents a bandwidth-optimal complete exchange
algorithm on Ethernet-based hierarchical networks and non-
blocking networks. The experimental results of this algo-
rithm are presented in section 5. Finally, the conclusions
are presented in section 6.

2. Hierarchical Network

Ethernet-based network is the most widely used local
area networking (LAN) technology. Although standard Eth-
ernet has limited bandwidth in supporting cluster comput-
ing, its enhanced versions, such as Fast Ethernet (FE) and
Gigabit Ethernet (GE), provide sufficient bandwidth with a
steady upgrade path in building commodity clusters. There-
fore, many self-made clusters are using FE as the base of

their interconnections, e.g. Avalon [1], ICEBox [5], KLAT2
[6], VALHAL [11], etc.

There are generally two approaches in building a
Ethernet-based cluster with a few hundreds nodes. First,
using a single high-performance, high port density chassis
switch to connect all machines [4]. Second, using a hierar-
chical network, in which cluster nodes are connected to FE
switches and using the GE as a backbone network to inter-
connect all FE switches. Given that the backbone capacity
of the interconnection network is greater than the demand-
ing bandwidth of the whole cluster, both approaches support
a fully connected network with similar performance. In re-
ality, they are suffered from some architectural constraints
that limit their actual performance. Our previous study of
complete exchange on a single router switch [10] has re-
vealed that the buffering mechanism used within the switch
could hinder its actual performance, and we have proposed
a sub-optimal algorithm in dealing with the situation.

On the hierarchical network, connections between dif-
ferent technologies are bridged by one or more uplink ports.
Since both FE and GE are mutated from the standard Eth-
ernet, they are using the same mechanism in switching
packets. Packet received on an ingress port is switched to
the corresponding egress port according to the destination
MAC address found at the head of each packet. The switch
uses its address lookup table to make this forwarding deci-
sion.

The requirement of higher channel bandwidth for the
uplinks limits the switching technique adopted on this type
of interconnection. As cut-through switching is only possi-
ble for ports operate at the same data rate, this is not suit-
able for the uplink connections and makes the store-and-
forward switching be the only feasible solution. However,
the change of channel bandwidth between two technologies
may induce hot-spot as store-and-forward switching causes
cumulation of upstream and downstream packets over those
uplink ports.

Apparently, even under a node contention-free sched-
ule of a complete exchange algorithm, sharing of uplinks
is needed. For instance, all cross-switch traffics are going
via the uplinks to the GE switch, packets have to contend
for the shared uplinks even though they are from distinct
sources and to distinct destinations. In theory, under a node
contention-free schedule, the distribution of data packets
should be well balanced, thus, any transient congestion over
the uplinks could be handled by the buffers in the switches
as well as the higher throughput of the uplink connections.

However, the distributed nature of the clusters does not
guarantee to adhere to a tightly synchronized schedule. For
example, any random delay introduces in dispatching the
communication events of the complete exchange operation
may result in considerably contention. As congestion is
handled by the buffers in the switches, the buffering mecha-
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Figure 1. Interconnection topology of the two-level
switch hierarchy

nism used within the switches could affect their overall per-
formance. While there are many variations in switch ar-
chitectures, most switches fall into one or a combination
of three basic types: input-buffered, output-buffered and
shared-buffered [12].

For the input-buffered switches, incoming packets are
queued in buffers, one per input port. This is the simplest
design as the internal speed of the buffers only operates at
the same speed as the input/output links. However, it is
known to have the Head-Of-Line (HOL) blocking problem.
Packets block at the head of the queue also block the packets
behind them, even if some of these packets are destined for
idle output ports. By using queuing analysis, HOL block-
ing is shown to reduce throughput to 58% even under uni-
form traffic. While for the other two architectures, output-
buffered and shared-buffered, their buffering mechanisms
avoid the HOL problem, and thus have a higher conges-
tion tolerance and provide better performance than input-
buffered switches.

3. System Model

In our model, a cluster is defined as a collection of
autonomous machines that are interconnected by a switch-
based network. The network is composed of a two-level
switch hierarchy as depicted in Figure 1. For this tree topol-
ogy, all cluster nodes are the leaf nodes, and are grouped
into disjoint sets with d1 members in each set. Members
of the same set are connected to a parent which is a switch
node located at Level 1, and all communications generated
by the set - both within set and across set, have to go through
this switch node. Communications between sets are estab-
lished through the root switch node, which fully connects
all Level 1 switch nodes. To support high performance
communication, we assume that the switch-to-switch link
bandwidth c2 and the node-to-switch link bandwidth c1 sat-
isfy this constraint, d1c1 � c2, which ensures that the up-

link is capable of handling all upstream/downstream traffics
generated by the whole set at any particular instant. We
also assume that the backbone bandwidth of those Level 1
switches are greater than or equal to d1c1+c2, and the back-
bone bandwidth of the root switch is greater than or equal
to d2c2. With these assumptions, the aggregated bandwidth
available to a cluster with p nodes (where p = d1d2) is
bounded by d1d2c1.

Switches are the basic building blocks of this hier-
archical network. We assume they are packet-switched,
pipelined network, and operate in full-duplex configuration.
Buffers are provided in the switches for temporary storage,
but the amount of buffers is assumed to be finite. All cluster
nodes communicate via this switch-based network and as-
sume to have the same local characteristics, such as compu-
tation power, memory hierarchy, operation system supports,
and communication hardware. In this study, we assume that
each node equips with one network adapter, which supports
concurrent send and receive operations.

We analyze the performance of the complete exchange
algorithms based on a communication model discussed in
[9]. This communication model involves several param-
eters: send overhead (Os), network latency (L), network
gaps (gs, gr), receive overheads (Or, Ur) and network
buffer capacity (BL). The parameter Os stands for the soft-
ware overhead associated with the send process for sending
a b-byte data packet. The overall cost reflects the perfor-
mance of the host node, e.g. CPU and system bus speeds,
and the communication protocol in use, e.g. user-space
communication. The parameter L is the hardware latency
of moving a b-byte packet from the physical memory of
the source node to the physical memory of the destination
node. It encapsulates network-dependent features, such as
network topology, network speed, and diameter between
communicating entities. The value of L is subjected to the
traffic load in a real network. With the hierarchical network,
we have two different latency values for communication be-
tween cluster nodes within a switch and across switches.

The parameter BL corresponds to the available buffers
in a switch, which is a measure of the network tolerance of
a switch in handling contention1. Parameters gs and gr en-
capsulate the minimum time between consecutive injection
or reception of b-byte packets to or from the network by the
communication hardware. It models the data transfer capa-
bilities of the host machine and the network interface con-
troller, such as DMA transfer and the network technology
in use. For a homogenous cluster, we generally assume that
gs � gr and simplify the expression by g = max(gs; gr).

1For a simple switch, we only have one BL value, either associates
with the whole switch if it is a shared-buffer switch, or associates to a
switch port if it is an input-buffered or output-buffered switch. For a switch
with uplink module, we may have two BL values which depend on the
architecture used in the uplink module. One is associated to the switch/port
as above, and the another is associated to the uplink port.



for (s=1 to k) & (r=1 to k) in parallel do
   for (is= 1 to p-1) & (ir= 1 to p-1) do

      to = ϕs(myid,is)

      from = ϕr(myid,ir)
      if (send_item_to(tos,to) == success)
         inc is
      endif
      if (recv_item_from(fromr,from) == success)
         inc ir
      endif
   endfor
endfor

Figure 2. The Synchronous Shuffle Exchange al-
gorithm

Lastly, parameters Or and Ur stand for the software over-
heads induced by the asynchronous reception of a b-byte
packet. With Or captures the costs of all kernel events in-
cluding interrupt overhead and memory copy, and Ur cap-
tures the cost of user-space events such as data processing
and high-level protocol handling.

With current CPU performance and the adoption of
low-latency communication support, software overheads in-
duced in communication have been significantly reduced.
To take advantage of the full-duplex communication, we
assume that the cluster communication system satisfies this
condition, (Os + Or + Ur) < g < L. As a result, under
no conflict, the one-way point-to-point communication cost
(Tp2p) in transferring an M-byte long message between two
remote user processes is modeled as :

Tp2p(M) = Os + (k � 1)g + L+Or + Ur (1)

where k = M

b
, which corresponds to the fragmentation of

an M-byte message to k data packets of size b bytes. For op-
timal performance, b usually stands for the maximum trans-
fer unit (mtu) of the underlying communication scheme.

4. Synchronous Shuffle Exchange Algorithm

Figure 2 presents the synchronous shuffle exchange al-
gorithm, which is proposed in [10] and is a bandwidth-
optimal algorithm on any non-blocking network. The spirit
of this algorithm is the node contention-free schedule oper-
ated at the packet level without explicit synchronization op-
eration. By effectively utilizing the send and receive chan-
nels, this scheme multiplexes all the messages seamlessly to
a single pipeline flow by scheduling consecutive packets to
different destination nodes according to a node contention-
free permutation. There are three numerical functions (')
that can be used online to compute the node contention-free
permutation. They are the shift pattern, bitwise xor pattern
and the edgecolor pattern [10].

If every operation is executed on schedule, the permu-
tation scheme of the synchronous shuffle exchange can be
finished in minimal time. The following cost formula is the
communication cost for this complete exchange algorithm
on a non-blocking switch based on our system model,

Tsync = Os + kg(p� 1) + L� g +Or + Ur (2)

However in reality, as this schedule induces intensive
communication events and demands on logical synchrony,
non-deterministic delays between events could break the
synchronism and result in congestion developed in the
switch. For example, non-coordinated process scheduling
introduces randomness. We have shown in our previous
study that not all switches can withstand such an intensive
communication pattern for an extended period of time.

The assumption of logical synchrony on all cluster
nodes is generally too idealistic on the case of commod-
ity clusters, which have not hardware synchronization sup-
port. To impose this synchrony, explicit synchronization
operations can be used. However, this brings on extra syn-
chronization overhead to the total communication time, and
also stalls the communication pipelines as no data commu-
nications are taking place during the synchronization oper-
ation. Since performance loss is caused by oversubscribing
the network and induces packet loss at the bottleneck re-
gion, the best solution to avoid contention loss is to prevent
oversubscription to the network. That can be done by ap-
plying a global congestion window on each node to ensure
fair sharing of resources among cluster nodes.

4.1. Global Window Congestion Control

The conjecture behind the contention problem induced
by the synchronous shuffle exchange algorithm is the non-
deterministic delays on communication events. With the hi-
erarchical network, two more sources of delay could con-
tribute to this non-determinism: a) the queuing delay at the
uplinks and b) the difference of network latencies between
nodes within a switch and across switches. To achieve op-
timal performance on the hierarchical network, sharing of
uplinks, thus having link contention, is a fact that we have
to face. Although mild contention increases network delay,
it does not hurt the performance much unless the congestion
persists for a long period of time, which results in buffer
overflow. Therefore, a congestion control scheme is needed
to prevent overloading the network.

We adopt a proactive approach in congestion control,
as reactive schemes are not suitable for high-speed com-
munication. Based on the network capacity, each node is
assigned with a predefined resource limit, and force them to
regulate their traffic loads below this limit. This ensures that
no source will exceed its allowed traffic capacity and avoids
congestion loss. For our complete exchange algorithm, all



cluster nodes are assigned with a global window (Wg) at the
beginning of the operation.

During the execution flow, at ith communication step,
a process is sending a data packet to another process ac-
cording to a node contention-free permutation scheme '. If
every operation is on schedule, the number of outstanding
data packets (�) in transit from a process to other process

is bounded by
l
L

gs

m
. Under mild congestion, the process

experiences slight increase of �. If congestion persists, this
eventually induces packet loss, and � will increase dramat-
ically. The above observation implies that to avoid over-
flowing the network buffers, we need to regulate the num-
ber of outstanding packets (�). The basic principle behind
this scheme is simple. If a process finds that sending out
a data packet may overload the network, when � = Wg , it
just halts current transmission and waits until it is safe to
transmit, i.e. � < Wg . By picking the correct value for
Wg , this scheme guarantees that during any interval, the to-
tal number of packets entering the network does not exceed
the sum of a prespecified limit, which is the network buffer
capacity at the bottleneck region.

To compute Wg , we need to identify the bottleneck re-
gion and measure the buffer capacity (BL) associated to the
bottleneck, then we derive Wg from BL on the principle of
fair sharing. In [9], we have explained how to evaluate the
BL parameter of the switch from a user perspective. Based
on the communication pattern and schedule, we estimate the
average number of packets (�) generates at each communi-
cation step which are forwarded to the bottleneck region.

Under the synchronous shuffle schedule, in p-1 com-
munication steps, a process generates p-1 data packets
which are destined to p-1 distinct nodes. However, only
d1 � 1 packets are switched locally, and the rest, p � d1
packets, are forwarded by the FE switch to its uplink port.
Therefore, there are (p�d1)d1 packets being forwarded up-
stream by each FE switch in p-1 communication steps. Base
on the node contention-free permutation, the same amount
of data packets are switched downstream back from the Gi-
gabit backbone to each FE switch. Thus, the average num-
ber of packets directed to each FE switch’s uplink port per
communication step is

� =
(p� d1)d1

p� 1
(3)

From this we derive the value of Wg , which is

Wg =

�
BL

�

�
(4)

4.2. Reorder Scheme

However, knowing the value of Wg is a necessary but
not sufficient condition to avoid congestion loss. This is be-
cause, a) Wg is derived from taking the average traffic load,

node id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

switch 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

step
i-3 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
i-2 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
i-1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
i 1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2

i+1 1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
i+2 1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
i+3 1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
i+4 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
i+5 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
i+6 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
i+7 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
i+8 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
i+9 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

i+10 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
i+11 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

Figure 3. An example permutation in which global
windowing alone fails to regulate the traffic.
(The bottom matrix represents the induced cross-
switch traffics.)

and b) unlike the traditional end-to-end scheme, global win-
dowing needs to monitor and regulate all traffic flows of
a process, not just one connection. If the traffic distribu-
tion is not uniformly spread across the network, the global
windowing scheme could not fulfill its function correctly.
This is being shown in Figure 3 . The bottleneck region
of this 4x4 two-level hierarchical network is at the uplink
ports with BL = 30. However, under the xor permutation
scheme, contention loss could still happen even though the
global window policy is adopted.

In this example, the size of Wg is
�
30

3:2

�
= 9. As-

sume that at communication step i, four packets originated
from switch 2 and headed for switch 3 are blocked by some
cause, e.g. HOL, so as those packets that follow in step
i+1, i+2, and i+3 from the same switch. However, no pro-
cess is aware of this contention until after step i+8 when the
global windows of processes in switch 3 become saturated.
By that time, processes in switch 1 have already sent out
all their packets to processes in switch 3, which further in-
creases the queue length at switch 3. Moreover, processes
in switch 0 are not aware of the problem. This is because
the global window collects traffic information on the base
of past events, but none of these past events could indicate
the congestion problem in switch 3. As a result, processes
in switch 0 continue to send all their packets to processes in
switch 3, which finally overflow the buffer.

Although the overflow situation could be detected and
resolved by both global windowing and individual end-to-
end flow control schemes, performance has been suffered as
packets are lost inevitably. If we can arrange all communi-
cation events in a way that each process is communicating
with different processes reside in different switches at each
communication step, the traffic loads would become more
evenly distributed as well as having more regular informa-
tion feedback between different processes in different part
of the network.



node id 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

switch 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 0 0 0 0 3 3 3 3 2 2 2 2
2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

Figure 4. The resulting communication pattern af-
ter applying our reorder mapping scheme.

An approach in generating this kind of dispersed per-
mutation is by the reorder scheme, which is a rearrangement
of an existing permutation. Observed that the original per-
mutation is obtained by some simple functions (') which
operate on inputs such as current communication step and
node id. A simple method to rearrange the original permu-
tation is by redefining a mapping between logical node id
to its physical id. One example of such reorder scheme (�)
can be as follows:

logical id =

�
physical id

d1

�
+(physical id% d1)�d1 (5)

Carry on with the previous example, if we apply the xor
permutation on the reordered logical id, we get the commu-
nication schedule as shown in Figure 4 , which is a more
evenly distributed pattern with respect to both switches and
cluster nodes. We observe that with this new communica-
tion pattern, a process is communicating with different pro-
cesses located in different part of the network in consecutive
communication steps, and hence, greatly reduce the possi-
bility of switch contention and improves the effectiveness
of our congestion control scheme.

Based on the global windowing scheme and the re-
order scheme, we have modified the synchronous shuffle
exchange algorithm to work efficiently on the two-level hi-
erarchical network, and the modified algorithm is given in
Figure 5 .

5. Experimental Results

Our experimental platform is a cluster consists of 16
standard PCs running Linux 2.0.36. Each cluster node
equips with a 450MHz Pentium III processor with 512KB
L2 cache, 128MB of main memory, a Digital 21140A FE
card and is connected to a FE Switch. We use the Directed
Point (DP) communication system [8] to drive the network
and conduct all our experiments. We have implemented
a simple Go-Back-N protocol to support limited reliabil-
ity on DP. In our studies, we have 4 FE switches and one

Set η = 0
for (s=1 to k) & (r=1 to k) in parallel do
   for (is= 1 to p-1) & (ir= 1 to p-1) do
      to = ϕs(φ(physical id),is)
      from = ϕr(φ(physical id),ir)
      if (η < Wg) &&
         (send_item_to(tos,to) == success)
         inc is
         inc η
      endif
      if (recv_item_from(fromr,from) == success)
         inc ir
         dec η
      endif
   endfor
endfor

Figure 5. Synchronous Shuffle Exchange algo-
rithm with global windowing and reorder scheme

Switch/uplink Architecture BL

Alcatel PR2200 Shared-buffered 820
Intel 510T Shared-buffered 1990

IBM 8275-326 Input-buffered 45
Intel GE uplink Shared-buffered 1990+634
IBM GE uplink Input-buffered 45

Table 1. The BL parameter of different switches in
our experimental setup

GE switch to set up various configurations in evaluating our
algorithm.

The GE backbone switch is a chassis switch from Al-
catel. It is the model PowerRail 2200 (PR2200) with back-
plane capacity reaches 22 Gigabit per second (Gbps). This
switch is equipped with 8 GE ports on 2 modules, but we
only use up at most 4 ports in our experiments. Two FE
switches are from IBM, which are of the model 8275-326.
It is a 24-port input-buffered switch with backplane capacity
reaches 5 Gbps. A one-port GE uplink module is installed
on each switch to connect to the Gigabit backbone. Another
pair of FE switches are the Intel 510T switches, which are
revealed as shared-buffered architecture. The 510T is a 24-
port switch with only 2.2 Gbps backbone capacity. Both
switches are also equipped with add-on GE modules for
connecting to the PR2200. Table 1 summaries all the buffer
parameters of the above switches, which are used in our al-
gorithm to compute the global windows (Wg) for different
network configurations.

5.1. Configuration One - 16 x 1

In this section, we compare the performance of the
modified synchronous shuffle exchange algorithm with the
original synchronous shuffle algorithm on a single FE
switch. In Figure 6, we measured three complete exchange
implementations on the 16-node cluster interconnected by
an input-buffered switch (8275-326). They are the syn-
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Figure 6. Performance of Synchronous Shuffle Ex-
change on a single input-buffered switch.

chronous shuffle with global windowing (sync+GW), origi-
nal synchronous shuffle (sync), and the popular pairwise ex-
change (pairwise) [10]. The experiment is conducted with
each node sending k packets of size 1492 bytes to every
node in the cluster, which is ranged from k=1 to 2000. We
used a relative metric, called achieved bandwidth, to quan-
tify the efficiency of the algorithm in utilizing the network.
This metric is computed by dividing the total data sizes in-
jected into the network by each node with the measured
communication time.

The results show that both versions of the synchronous
shuffle algorithms have similar performance, which is peak
at 97% of the available bandwidth. When compared to
the theoretical performance (2), the synchronous shuffle ex-
change algorithm has its efficiency ranged from 87% to
97% of the available bandwidth. When compared with
the pairwise exchange, which has a higher synchronization
overhead, the results show that the synchronous shuffle al-
gorithm can effectively mask away those synchronization
overhead and achieve better performance, especially when
exchanging small size messages. However, the performance
of the original algorithm degrades significantly after k>512,
which corresponds to the total message length of 11MB per
node. Meanwhile, with the addition of the global window-
ing scheme to the synchronous shuffle algorithm, it contin-
ues to operate efficiently as the problem size scales.

5.2. Configuration Two - 4 x 4

With a different network configuration, we compare
four different implementations: synchronous shuffle with
global windowing and reorder scheme (sync+GWRS), orig-
inal synchronous shuffle (sync), original algorithm with
global windowing only (sync+GW) and the pairwise ex-
change (pairwise) algorithm. The results are shown in Fig-
ure 7. As we are using a two-level configuration, there are
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Figure 7. Performance of Synchronous Shuffle Ex-
change on a 4x4 configuration - 4 nodes connect
to a FE switch, which is connected to the Gigabit
backbone.

total 5 switches with different architectures. When com-
paring the buffer capacities of those switches, the obvious
limitation is on the uplink module of the IBM 326 switch.
With the corresponding BL value, we compute the Wg fac-
tor, which is equal to 14.

The results show that synchronous shuffle exchange
with global windowing and reorder scheme performs con-
sistently and efficiently in this test. It effectively masks
away the synchronization and contention overheads, which
appears to have a more significant influence on the pairwise
exchange algorithm when executes on this hierarchical net-
work. When compare with the original algorithm, we show
that the performance of the original algorithm starts to de-
grade at k>64, which means there is significant contention
on the uplink ports due to the intensive communication.
By applying the global windowing without reorder scheme,
we can slightly extend the contention tolerance of the syn-
chronous shuffle algorithm until k>128. This experiment
shows that both global windowing and reorder scheme are
required to monitor on the congestion problem.

5.3. Configuration Three - 8 x 2

In this configuration, we have eight nodes connect to
each IBM 326 switch, which then connects to the gigabit
switch PR2200. It is clear that the performance bottleneck
would lie on the uplink ports. Base on this configuration,
the computed value ofWg is 10, and the results are shown in
Figure 8. Same as the previous two experiments, the modi-
fied synchronous shuffle algorithm performs the best.

However, both the original synchronous shuffle and the
original algorithm with global windowing perform poorly
in this test. This is because, a) the Go-Back-N protocol is
known to suffer badly when the error rate is high; b) the GE
module of the model 326 is not performing as good as it
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Figure 8. Performance of Synchronous Shuffle Ex-
change on the 8x2 configuration - 8 nodes connect
to the IBM 326, which is connected to the PR2200.

should be. By using a bi-directional exchange benchmark
test, we revealed that the uplink ports could only support up
to 5 active bi-directional channels without packet loss. It
seems like the circuitry of the uplink modules cannot catch
up with the gigabit performance. We have tested with other
configurations, such as 6 x 2 and 4 x 2, and confirmed with
the above observations. This experiment shows that without
the reorder scheme, the global window congestion control
cannot be a standalone scheme for congestion avoidance.

6. Conclusion

This paper presented an efficient implementation of
complete exchange operation on a Ethernet-based hierar-
chical network. The hierarchical network is based on a
Gigabit switch as the backbone to which all Fast Ethernet
switches are connected. With this system configuration,
clusters can be scaled up to hundreds of nodes, and support
enough bandwidth for high-speed communication. Our re-
search can be used in any combination of Ethernet-based
switched network, which we belief, over 50% of the self-
made clusters are based on. And the concept is applicable
to future technologies, such as 10Gigabit Ethernet, which
simply extends the topology to multi-level hierarchy.

We demonstrated that the contention problems on such
network - link, node, and switch contention, can severely
affect the overall performance of the clusters. To avoid con-
gestion loss on this type of network, we propose the syn-
chronous shuffle exchange algorithm with congestion con-
trol scheme. This algorithm makes uses of architectural
characteristics to avoid congestion build-up in the first place
and reduces congestion whenever it happens. By making
use of the network buffer capacity to generate a global win-
dow, which forces each node to limit their traffic loads, and
ensures a fair sharing of network resources that avoids con-

gestion overflow. We also make use of information from
the network topology to derive a reorder scheme in gener-
ating a communication schedule, which is both node and
switch contention-free, and it supports a more evenly dis-
tributed traffic pattern on the network. This also improves
the synchronism of the traffic information exchange be-
tween cluster nodes, and hence, improves the effectiveness
of the global window scheme in monitoring the network.
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